Определение 1. Функция вида
где a, b, c, d – комплексные числа, называется дробно-линейной.
Отображение, задаваемое этой функцией, называется дробно- линейным.
Условие ad − bc ≠ 0 означает, что w ≠ const . Функция (1) осуществляет конформное отображение расширенной комплексной плоскости Z на расширенную комплексную плоскость w, так как производная
Для 0 c ≠ предполагаем, что
для c = 0 функция (1) становится линейной, т. е. w = az + b и w(∞) = ∞. Функция
является обратной к функции (1). Она также является дробно-линейной и однозначной на расширенной комплексной плоскости, т. е. здесь функция (1) является однолистной.
Каждое дробно-линейное отображение может быть получено в результате последовательного выполнения трех отображений: линейного, отображения w = 1/z и снова линейного отображения.
Дробно-линейные отображения переводят:
1) окружность или прямую в окружность или прямую (круговое свойство);
2) пару точек, симметричных относительно окружности, – в пару то- чек, симметричных относительно образа этой окружности (свойство сохранения симметрии). Здесь "окружность", в частности, может быть прямой, если под последней понимать окружность бесконечного радиуса.
Существует единственное дробно-линейное отображение, которое три разных точки z1, z2, z3 переводит соответственно в три разные точки w1, w2, w3. Это отображение задается формулой
Если одна из точек zk или wk (k =1, 2, 3) является бесконечно удаленной точкой, то в формуле (2) разности, в которые входит zk или wk, требуется заменить единицами.
Существует бесконечно много дробно-линейных отображений, которые заданную окружность γ отображают на заданную окружность Г, причем область D, для которой γ является границей, отображается на одну из областей, для которой Г является границей.
Для обеспечения единственности дробно-линейного отображения достаточно выполнение одного из условий:
1) заданная точка z0 ∈ D отображается в заданную точку w0 ∈ D', а любая кривая, выходящая из точки z0, поворачивается на заданный угол α w0 = f (z0), α = arg(f '(z0));
2) точки z0 ∈ D и z1 ∈ γ отображаются соответственно в заданные точки w0 ∈ D' и w1 ∈ Γ.
Пример 1. Найти образ окружности, заданной уравнением
x2 + y2 + 2x − 4y + 1 = 0,
при отображении w = 1/z.
Решение. На основании кругового свойства дробно-линейного отображения окружность переходит в окружность. Для ее нахождения на заданной окружности x2 + y2 + 2x − 4y + 1 = 0, выберем три точки, например: z1 = −1 z2 = 1 + 2i, z3 = −3 + 2i, образами которых при отображении w = 1/z будут точки
Точками w1, w2, w3 однозначно определяется образ данной окружности, уравнение которой:
Для отображения w = 1/z имеем
Выразив отсюда x = x(u, v), y = (u, v) и подставив в уравнение заданной окружности, получим искомый образ (3).
Пример 2. Найти образ
области D при отображении , где D = {z, 0 < Re(z) <
1, 0 < Im(z) < 1}.
Будем искать образ границы области D (рис. 1).
Сторона OA: y = 0, 0 ≤ x ≤ 1 отображается на отрицательную часть действительной оси (v = 0, − ∞ < u ≤ 0) (рис. 2).
Рис. 1. Область D
Рис. 2. Образ области D
Сторона AB: x = 1, 0 < y ≤ 1, отображается в линию u = 1, −∞ < v ≤ −1.
Сторона BC: y =1, 1 ≥ x ≥ 0, отображается в линию, параметрическое уравнение которой имеет вид
Исключив параметр x, получим
Аналогично образ стороны CO определяется уравнением
В соответствии с принципом соответствия границ образом квадрата будет заштрихованная область на рис. 1.
Пример 3. Найти дробно-линейное отображение, которое точки z1 = 1 и z2 = −1 оставляет неподвижными, а точку z3 = i переводит в точку w3 = 0.
Найти образ полуплоскости Im(z) > 0 при данном отображении.
Решение. По условию имеем три пары соответствующих точек
z1 = 1, z2 = -1, z3 = i,
w1 = 1, w2 = -1, w3 = 0,
Применяя формулу (2),
получим искомое дробно-линейное отображение.
Найдем теперь образ верхней полуплоскости, границей которой является действительная ось. Согласно круговому свойству действительная ось отображается в окружность. Чтобы найти ее, на действительной оси выберем три точки, например: z1 =1, z2 = 0, z3 = −1, образами которых бу- дут точки w1 = 1, w2 = −i, w3 = −1. Они лежат на окружности |w| =1. По принципу соответствия границ получаем, что образом верхней полуплоскости будет область D'= {w, |w| < 1}.
Пример 4. Найти дробно-линейное отображение, которое круг |z − 4i| < 2 отображает на полуплоскость v > u так, что w(4i) = −4, w(2i) = 0.
Решение. Условие задачи
определяет две пары соответствующих точек. Третью пару найдем, пользуясь
свойством симметрии дробно линейного отображения, согласно которому точки z1
= 4i и z3 = ∞, симметричные относительно окружности |z
− 4i| = 2, перейдут в точки w1 = −4 и w3 =
− 4i, симметричные относительно прямой u = v . Таким образом, найдена
третья пара точек z3 = ∞ и w3 = −4i. По
формуле (2) найдем искомое отображение .
Скачано с www.znanio.ru
Материалы на данной страницы взяты из открытых источников либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.