Тема урока: Линейные уравнения с одной переменной
Цель урока: Научить учащегося решать линейные уравнения, используя свойства равносильности уравнений.
Знаешь ли ты?
1)Какое уравнение называется линейным уравнением с одной переменной?
2)Какие уравнения называют равносильными уравнениями?
3)Сформулируйте первое и второе свойства уравнения.
4)Как находят корни линейного уравнения с одной переменной при а≠0?
Данное уравнение | Найди ошибку | Найди правильный решение |
18+3х=х+14 ; | 18+3х=х+14 ; |
|
3х-1=2 (х-2); | 3х-1=2 (х-2); | |
13-(2х-5)=х-3 | 13-(2х-5)=х-3 | |
7х-(3+2х)=х+9 | 7х-(3+2х)=х+9 |
Задание 1.
«Найдите ошибку»
Работа в парах
Задание 2
Дано уравнения 8х-7=3x+n. Найдите n, если корнем уравнения является число.
-2; 2) -0,2; 3) 0,4; 4) 3
Задание 3
При каком значенни а уравнение:
1) 2ах=5 не имеет корней;
2) (3+а)х=1+4а имеет корень, равный числу 2;
3) (4+3а)х=16+5а имеет корень, равный числу (-3)?
Задание 4
Выберите равносильные уравнения:
1) у+2 у+2 у+2 =7 и (у-5)(у+9)=0
2) 2у+5 2у+5 2у+5 =3 и (у+1)(у+4)=0
3) 5х−11 5х−11 5х−11 =4 и (х-8)(х-3)=0
4) 8−х 8−х 8−х =2 и (х-6)(х-10)=0
Индивидуальная работа
Задание 5
Решите уравнение:
1) 4−7х 15 4−7х 4−7х 15 15 4−7х 15 + 1−х 3 1−х 1−х 3 3 1−х 3 =4− 2х+1 5 2х+1 2х+1 5 5 2х+1 5
2) 10−у 6 10−у 10−у 6 6 10−у 6 + 3у+8 3 3у+8 3у+8 3 3 3у+8 3 = у+6 5 у+6 у+6 5 5 у+6 5
3) 3(2х+5) 8 3(2х+5) 3(2х+5) 8 8 3(2х+5) 8 − 2 5х+7 3 2 5х+7 5х+7 5х+7 2 5х+7 3 3 2 5х+7 3 = 7 х−15 4 7 х−15 х−15 х−15 7 х−15 4 4 7 х−15 4 −6 7 8 7 7 8 8 7 8
Задание 6
Решите уравнение:
1) 2 2+ 1 2+ 1 2+х 2 2 2+ 1 2+ 1 2+х 2+ 1 2+ 1 2+х 1 1 2+ 1 2+х 2+ 1 2+х 1 1 2+х 2+х 1 2+х 1 2+ 1 2+х 2 2+ 1 2+ 1 2+х =1 2) 5 1+ 4 1+ 5 1+х 5 5 1+ 4 1+ 5 1+х 1+ 4 1+ 5 1+х 4 4 1+ 5 1+х 1+ 5 1+х 5 5 1+х 1+х 5 1+х 4 1+ 5 1+х 5 1+ 4 1+ 5 1+х =2
Рефлексия.
Учитель возвращает учащихся к целям обучения, критериям успеха.
-какова цель урока?
-достигли ли мы цели?
- какие заданий вы решили?
- Почему вы выполняете эти задания?
Материалы на данной страницы взяты из открытых источников либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.