Методическая разработка
по ОП.03 Электротехника и электроника
на тему
«Измерение мощности»
2021
Цель занятия:
1. Изучить тему Измерение мощности
Время: 2 часа
Место: кабинет Электротехники и электроники
Учебно - материальное обеспечение:
Плакаты, презентации, лабораторное оборудование.
Распределение времени занятия:
Вступительная часть 5 мин;
Проверка подготовки обучающихся к занятию 5 мин;
Учебные вопросы занятия 25 мин;
Домашнее задание 5 мин;
Заключение 5 мин.
Содержание занятия
Вступительная часть
– принять рапорт дежурного по группе;
– проверить наличие студентов и их готовность к занятию;
– ответить на вопросы, которые возникли при подготовке к занятию на самостоятельной работе;
– провести опрос по ранее изученному материалу:
– Опрос рекомендуется провести устно, задавая вопросы и вызывая одного-двух студентов для ответа,
Измерение мощности электрического тока. Для измерений мощности в цепях постоянного и в цепях синусоидального тока промышленной частоты применяются ваттметры, обеспечивающие непосредственный отсчет мощности по шкале.
Ваттметр электродинамической системы состоит из двух катушек (рамок):
- неподвижной, токовой из толстого провода, включаемой последовательно с потребителем;
- подвижной обмотки напряжения, выполненной из тонкого провода, включаемой параллельно потребителю.
При постоянном токе вращающий момент электродинамического прибора пропорционален произведению токов в его обмотках:
где
– ток в неподвижной катушке, А;
– ток в
подвижной катушке, А.
В ваттметре ток подвижной обмотки прямо пропорционален приложенному напряжению
где Rп – сопротивление подвижной катушки, Ом.
Следовательно, вращающий момент прямо пропорционален мощности. Поэтому электродинамический ваттметр имеет равномерную шкалу, т.е.
Вращающий момент электродинамического прибора, включенного в цепь синусоидального тока:
то есть показания ваттметра пропорциональны току, напряжению и cosφ, то есть активной мощности цепи Р.
Ваттметр имеет четыре зажима: к одним двум выводится токовая обмотка, к другим двум – обмотка напряжения. Первая пара зажимов включается в измеряемую цепь последовательно, вторая – параллельно. Начала обмоток обозначаются звездочками (*) и соединяются вместе. Это необходимо, чтобы токи в катушках пропускались в определенном направлении.
На шкале ваттметра указываются верхние пределы измерений тока и напряжения. Если, например, на шкале ваттметра обозначено I = 5 А и U = 100 В, это значит, что верхний предел измерения ваттметра Р = 500 Вт, то есть им можно измерять мощности до 500 Вт.
Очевидно, что цена деления ваттметра равна
где п – число делений шкалы.
9.3.5 Электроннолучевые осциллографы
Электроннолучевые осциллографы (ЭЛО) предназначены для визуального наблюдения, измерения и регистрации электрических сигналов. Они также могут быть использованы для измерения частоты, угла сдвига фаз, составляющих комплексного сопротивления и т.д.
В настоящее время выпускается множество осциллографов, различающихся назначением и характеристиками. Кроме универсальных ЭЛО. которые используются при периодических и непериодических сигналах непрерывного и импульсного характера, выпускаются запоминающие ЭЛО для регистрации одиночных импульсов, стробоскопические для исследования высокочастотных процессов, цифровые ЭЛО, и др.
Осциллографы различаются чувствительностью, полосой пропускания, погрешностью воспроизведения формы кривой.
Основными узлами ЭЛО являются (рис. 9.6) электроннолучевая трубка ЭЛТ, делитель напряжения ДН, усилители вертикального УВО и горизонтального УГО отклонения, калибраторы амплитуды КА и длительности КД, генератор развертки ГР, блок синхронизации БС.
Электроннолучевая трубка имеет подогреваемый катод К, модулятор яркости М, фокусирующий анод А1 и ускоряющий анод А2 . Делитель напряжения ДН служит для ослабления исследуемого сигнала, усилители УВО и УГО служат для увеличения чувствительности при исследовании слабых сигналов. Калибраторы КА и КД служат для калибровки вертикального и горизонтального отклонения луча ЭЛТ. Генератор ГР формирует специальное пилообразное напряжение, которое подается на пластины горизонтального отклонения. Блок БС синхронизирует генератор ГР и входной сигнал. Принцип получения изображения на экране ЭЛТ можно понять с помощью рис. 9.5, где показаны кривые изменения напряжения их, поступающего от генератора ГР (рис.9.5) на горизонтально отклоняющие пластины, и напряжения иy – входного напряжения, поступающего на вертикально отклоняющие пластины. При равных периодах изменения напряжений их и иy на экране ЭЛТ получим один период изменения иу.
Если при неизменном периоде напряжения их уменьшить период входного сигнала иy , например, в два раза, то на экране мы увидим два периода входного напряжения. Для получения устойчивого изображения на экране необходимо, чтобы частота пилообразного напряжения ГР была кратна частоте входного сигнала.
Рис. 9.5. Структурная схема электроннолучевого осциллографа
Рис. 9.6. Принцип работы развертки ЭЛО
Электроннолучевой осциллограф может использоваться не только для наблюдения формы сигнала, но и для измерения его параметров и параметров цепи.
Измерение мгновенного значения напряжения. Измеряемое напряжение определяется непосредственно с помощью градуированной сетки экрана осциллографа, при использовании значений коэффициентов усиления усилителя вертикального отклонения, обозначенных на передней панели ЭЛО в милливольтах на сантиметр или в вольтах на сантиметр. Измеренное амплитудное значение напряжения в вольтах равно произведению измеренного в сантиметрах по шкале экрана длины отрезка l, соответствующего амплитуде входного напряжения и масштаба градуировки ky, т.е.
Um=lky.
Этому способу измерения напряжения присуща погрешность отсчета – субъективная погрешность. Для уменьшения ее используют двойную шкалу, нанесенную как с внутренней, так и с наружной стороны трубки, или изготавливают беспараллаксные шкалы из прозрачного материала с линиями на двух сторонах. Погрешность измерения напряжения этим способом находится на уровне 4–7%.
Измерение частоты. Наиболее распространенным является способ сравнения неизвестной частоты с эталонной по фигурам Лиссажу (рис. 9.7). При этом измерении на вход усилителя Y подается сигнал с измеряемой частотой fx, а на вход X – сигнал от генератора образцовой частоты f0. Когда частоты f0 и fx близки по значению, на экране появляется изображение вращающегося эллипса, который становится неподвижным при полном совпадении частот. При кратном соотношении частот на экране появляется более сложная фигура (фигура Лиссажу). При этом частота сигнала, поданного на вход Y (частота fx), так относится к частоте сигнала, поданного на вход X (частота f0), как число точек касания n касательной, проведенной к данной фигуре по горизонтали, относится к числу точек касания т касательной, проведенной по вертикали (рис. 9.6), т.е.
(9.18)
Искомая частота может быть определена также с помощью яркостных меток, получаемых за счет модуляции яркости луча осциллографа подачей сигнала образцовой частоты с использованием калибратора длительности КД (см. рис. 9.5). Для проведения измерения необходимо на экране ЭЛО получить неподвижное изображение сигнала, на котором будут видны яркие метки с темными промежутками. Зная количество меток за период исследуемого сигнала и их частоту следования, можно определить частоту измеряемого сигнала.
Измерение сдвига фаз. Одним из методов измерения сдвига фаз между двумя синусоидальными функциями является использование фигуры Лиссажу – метод эллипса. Пусть заданы два напряжения:
(9.19)
На входы X
и Y осциллографа подаются
напряжения их и иy
. Если
угол или
,
то на экране осциллографа появляется эллипс (рис. 9.8). При
на экране будет прямая, а при
– окружность, если коэффициенты
усиления по каналам X
и
Y равны,
т.е. Кх = Кy.
Рис. 9.7. Измерение частоты по фигурам Лиссажу
Рис. 9.8. Измерение сдвига фаз с помощью ЭЛО
Рис. 9.9. Схема измерения сопротивления двухполюсника с помощью ЭЛО
Измеряя на экране ЭЛО отрезки Оа и Ос или ab и cd, можно определить значение
(9.20)
Знак угла рассмотренный метод непосредственно определить не позволяет, но по наклону эллипса можно судить, находится ли угол в пределах от 0 до 90° или от 90° до 180°.
Измерение входного сопротивления двухполюсника. Измерение входного комплексного сопротивления любого двухполюсника сводится к измерению значения входного напряжения, тока и угла сдвига фаз между ними (рис. 9.9). Перед началом измерения необходимо отключить генератор развертки и установить луч в центре экрана. Целесообразно также провести уравнивание коэффициентов усиления по каналам X и Y.
Далее измеряют напряжение u0
на образцовом резисторе R0 и,
зная сопротивление последнего, вычисляют входной ток. Аналогично измеряют
напряжение uвх.
Затем известным способом измеряют угол сдвига фаз между
и0 и uвх.
Модуль комплексного сопротивления z определяют как
(9.21)
Активная и реактивная составляющие комплексного входного сопротивления вычисляются по формулам
,
(9.22)
Кроме рассмотренного осциллографа, существуют и другие разновидности.
Стробоскопические осциллографы. Используются для исследования быстропротекающих процессов или очень коротких импульсов (периодически повторяющихся или искусственно превращаемых в периодическую последовательность).
Стробоскопический метод осциллографирования позволяет значительно уменьшить скорость развертки по сравнению с той, которая требуется при непосредственном наблюдении исследуемого импульса на скоростном осциллографе. Скорость развертки удается уменьшить, трансформируя масштаб времени. На экране осциллографа появляется изображение, по форме подобное исследуемому сигналу, но в увеличенном временном масштабе. При этом роль переносчиков информации играют короткие стробирующие импульсы, длительность которых значительно меньше длительности исследуемого импульса. Стробоскопические осциллографы позволяют, не применяя специальных ЭЛТ, получить эквивалентную полосу пропускания осциллографа порядка сотен и тысяч мегагерц при фактической полосе пропускания усилителя вертикального отклонения в десятки килогерц или единицы мегагерц.
Запоминающие осциллографы могут быть аналоговые, со специально запоминающими ЭЛТ, и цифровые, выполняемые на обычных ЭЛТ. В аналоговых ЭЛО применяют запоминающие ЭЛТ с видимым изображением. Записываемый сигнал хранится в форме потенциального рельефа и может быть впоследствии воспроизведен путем считывания рельефа электронным лучом.
Достоинством аналоговых осциллографов является широкий частотный диапазон исследуемых сигналов. Цифровые запоминающие осциллографы имеют свои преимущества: практически неограниченное время хранения информации, широкие пределы изменения скорости считывания, возможность замедленного воспроизведения отдельных участков запомненной осциллограммы, простоту управления, вывод информации в цифровой форме на ЭВМ или обработка ее внутри осциллографа.
ЗАКЛЮЧИТЕЛЬНАЯ ЧАСТЬ
- подвести итоги занятия;
- напомнить тему, цели и учебные вопросы;
- объявить оценки;
- ответить на вопросы;
- отметить активность и дисциплину на занятии;
- дать задание на самоподготовку.
Список используемой литературы
1. Славинский, А. К. Электротехника с основами электроники : учебное пособие / А. К. Славинский, И. С. Туревский. — Москва : ФОРУМ : ИНФРА-М, 2020. — 448 с.
2. Маркелов, С. Н. Электротехника и электроника : учебное пособие / С.Н. Маркелов, Б.Я. Сазанов. — Москва : ИНФРА-М, 2020. — 267 с.
Материалы на данной страницы взяты из открытых источников либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.