Методическая разработка
по ОП.03 Электротехника и электроника
на тему
«Сопротивления в цепях переменного тока»
2019
Цель занятия:
1. Изучить тему Сопротивления в цепях переменного тока
Время: 2 часа
Место: кабинет Электротехники и электроники
Учебно - материальное обеспечение:
Плакаты, презентации, лабораторное оборудование.
Распределение времени занятия:
Вступительная часть 5 мин;
Проверка подготовки обучающихся к занятию 5 мин;
Учебные вопросы занятия 25 мин;
Домашнее задание 5 мин;
Заключение 5 мин.
Содержание занятия
Вступительная часть
– принять рапорт дежурного по группе;
– проверить наличие студентов и их готовность к занятию;
– ответить на вопросы, которые возникли при подготовке к занятию на самостоятельной работе;
– провести опрос по ранее изученному материалу:
– Опрос рекомендуется провести устно, задавая вопросы и вызывая одного-двух студентов для ответа,
Определение: Переменными называют токи и напряжения, изменяющиеся во времени, по величине и направлению. Их величина в любой момент времени называется мгновенным значением. Обозначаются мгновенные значения малыми буквами: i, u, e, p.
Токи, значения которых повторяются через равные промежутки времени, называются периодическими. Наименьший промежуток времени, через который наблюдаются их повторения, называется периодом и обозначается буквой Т. Величина, обратная периоду, называется частотой, т.е. и измеряется в герцах (Гц). Величина называется угловой частотой переменного тока, она показывает изменение фазы тока в единицу времени и измеряется в радианах, деленных на секунду.
Максимальное значение переменного тока или напряжения называется амплитудой. Оно обозначается большими буквам с индексом ''m'' (например, Im). Существует также понятие, действующего значения переменного тока (I). Количественно оно равно:
что для синусоидального характера изменения тока соответствует
Переменный ток можно математически записать в виде:
Здесь индекс выражает начальную фазу. Если синусоида начинается в точке пересечения осей координат, то = 0, тогда
Начальное значение тока может быть слева или справа от оси ординат. Тогда начальная фаза будет опережающей или отстающей.
СОПРОТИВЛЕНИЯ В ЦЕПЯХ ПЕРЕМЕННОГО
ТОКА
Электрический ток
в проводниках непрерывно связан с магнитным и электрическими полями.
Элементы, характеризующие преобразование электромагнитной энергии в тепло,
называются активными сопротивлениями (обозначаются R).
Элементы, связанные с наличием только магнитного поля, называются
индуктивностями.
Элементы, связанные с наличием электрического поля, называются емкостями.
Типичными представителями активных сопротивлений являются резисторы, лампы
накаливания, электрические печи и т.д.
Индуктивностью обладают катушки реле, обмотки электродвигателей и транс-форматоров.
Индуктивное сопротивление подчитывается по формуле:
где L - индуктивность.
Емкостью обладают конденсаторы, длинные линии электропередачи и т.д.
Емкостное сопротивление подсчитывается по формуле:
где С - емкость.
Реальные потребители электрической энергии могут иметь и комплексное значение
сопротивлений. При наличии R и L значение суммарного сопротивления Z
подсчитывается по формуле:
Аналогично ведется подсчет Z и для цепи R и С:
Потребители с R, L, C имеют суммарное сопротивление:
1.3. ПОСЛЕДОВАТЕЛЬНОЕ СОЕДИНЕНИЕ АКТИВНОГО СОПРОТИВЛЕНИЯ R,
КОНДЕНСАТОРА С И ИНДУКТИВНОСТИ L
Рассмотрим цепь с активным, индуктивным и
емкостным сопротивлениями, включенными последовательно (рис. 1.3.1).
Для анализа схемы разложим напряжение сети
U на три составляющие:
UR - падение напряжения на активном сопротивлении,
UL - падение напряжения на индуктивном сопротивлении,
UC - падение напряжения на емкостном сопротивлении.
Ток в цепи I будет общим для всех элементов:
Проверку производят по формуле:
Следует отметить, что напряжения на
отдельных участках цепи не всегда совпадают по фазе с током I.
Так, на активном сопротивлении падение напряжения совпадает по фазе с током, на
индуктивном оно опережает по фазе ток на 90° и на емкостном - отстает от него
на 90°.
Графически это можно показать на векторной диаграмме (рис. 1.3.2).
Изображенные выше три вектора падения напряжений можно геометрически сложить в один (рис. 1.3.3).
В таком соединении элементов возможны
активно-индуктивный или активно-емкостный характеры нагрузки цепи.
Следовательно, фазовый сдвиг имеет как положительный, так и отрицательный знак.
Интересным является режим, когда = 0.
В этом случае
Такой режим работы схемы называется
резонансом напряжений.
Полное сопротивление при резонансе напряжений имеет минимальное значение:
, и при заданном
напряжении U ток I может достигнуть максимального значения.
Из условия определим
резонансную частоту
Явления резонанса напряжений широко используется в радиотехнике и в отдельных промышленных установках.
1.4. ПАРАЛЛЕЛЬНОЕ СОЕДИНЕНИЕ КОНДЕНСАТОРА И КАТУШКИ,
ОБЛАДАЮЩЕЙ АКТИВНЫМ СОПРОТИВЛЕНИЕМ И ИНДУКТИВНОСТЬЮ
Рассмотрим цепь параллельного включения конденсатора и катушки, обладающей активным сопротивлением и индуктивностью (рис. 1.4.1).
В этой схеме общим параметром для двух ветвей является напряжение U. Первая ветвь - индуктивная катушка - обладает активным сопротивлением R и индуктивностью L. Результирующее сопротивление Z1 и ток I1 определяются по формуле:
, где
Поскольку сопротивление этой ветви комплексное, то ток в ветви отстает по фазе от напряжения на угол .
Покажем это на векторной диаграмме (рис. 1.4.2).
Спроецируем вектор тока I1 на оси координат. Горизонтальная составляющая тока будет представлять собой активную составляющую I1R, а вертикальная - I1L. Количественные значения этих составляющих будут равны:
где
Во вторую ветвь включен конденсатор. Его сопротивление
Этот ток опережает
по фазе напряжение на 90°.
Для определения тока I в неразветвленной части цепи воспользуемся формулой:
< p>
Его значение можно
получить и графическим путем, сложив векторы I1 и I2
(рис. 1.4.3)
Угол сдвига между током и напряжением обозначим буквой j.
Здесь возможны различные режимы в работе цепи. При = +90° преобладающим будет
емкостный ток, при = -90° - индуктивный.
Возможен режим, когда = 0, т.е. ток в неразветвленной части цепи I будет иметь
активный характер. Произойдет это в случае, когда I1L = I2,
т.е. при равенстве реактивных составляющих тока в ветвях.
На векторной диаграмме это будет выглядеть так (рис. 1.4.4):
Такой режим
называется резонансом токов. Также как в случае с резонансом напряжений, он
широко применяется в радиотехнике.
Рассмотренный выше случай параллельного соединения R, L и C может быть также
проанализирован с точки зрения повышения cosj
для электроустановок. Известно, что cosj
является технико-экономическим параметром в работе электроустановок.
Определяется он по формуле:
, где
Р - активная мощность электроустановок,
кВт,
S - полная мощность электроустановок, кВт.
На практике cosj определяют
снятием со счетчиков показаний активной и реактивной энергии, и разделив одно
показание на другое, получают tgj
.
Далее по таблицам находят и cosj.
Чем больше cosj, тем экономичнее
работает энергосистема, так как при одних и тех же значениях тока и напряжения
(на которые рассчитан генератор) от него можно получить большую активную
мощность.
Снижение cosj приводит к
неполному использованию оборудования и при этом уменьшается КПД установки.
Тарифы на электроэнергию предусматривают меньшую стоимость 1 киловатт-часа при
высоком cosj, в сравнении с низким.
К мероприятиям по повышению cos относятся:
- недопущение холостых ходов электрооборудования,
- полная загрузка электродвигателей, трансформаторов и т.д.
Кроме этого, на cosj, положительно
сказывается подключение к сети статических конденсаторов.
ЗАКЛЮЧИТЕЛЬНАЯ ЧАСТЬ
- подвести итоги занятия;
- напомнить тему, цели и учебные вопросы;
- объявить оценки;
- ответить на вопросы;
- отметить активность и дисциплину на занятии;
- дать задание на самоподготовку.
Список используемой литературы
1. Славинский, А. К. Электротехника с основами электроники : учебное пособие / А. К. Славинский, И. С. Туревский. — Москва : ФОРУМ : ИНФРА-М, 2020. — 448 с.
2. Маркелов, С. Н. Электротехника и электроника : учебное пособие / С.Н. Маркелов, Б.Я. Сазанов. — Москва : ИНФРА-М, 2020. — 267 с.
Скачано с www.znanio.ru
© ООО «Знанио»
С вами с 2009 года.