Тема: « Методы наблюдения и регистрации частиц в ядерной физике»
11 класс
Цель: дать представление о методах регистрации заряженных частиц, раскрыть особенности каждого метода, выявить основные закономерности, изучить применение методов. Познакомить обучающихся с устройствами, с помощью которых развивалась физика атомных ядер и элементарных частиц.
Развивать познавательный интерес, умение работать и находить необходимую информацию в интернет - ресурсах, в литературе, печатных изданиях, совершенствовать навыки самостоятельной работы. Способствовать формированию умения анализировать, сравнивать и обобщать полученные факты, делать выводы. Формировать коммуникативную культуру. Воспитывать интерес к физике как науке Оборудование: счетчик Гейгера, камера Вильсона, Пузырьковая камера, портреты ученых, карточки желтого, красного и зеленого цвета для рефлексии (раздаточный материал).
Тип урока: урок изучения нового материала
Ход урока.
1. Организационный момент.
Создать условия для формирования внутренней потребности обучающихся во включение в учебную деятельность Приветствие учителя.
2. Актуализация опорных знаний:
Вопросы
Что такое ионизация?
(Ответ. Процесс распада нейтральных атомов на ионы и электроны)
Как получить пересыщенный пар?
(Ответ. Резко увеличить объём сосуда. При этом температура
понизится и пар станет пересыщенным.)
Что произойдёт с пересыщенным паром, если в нём появится частица?
(Ответ. Она явится центром конденсации, на ней образуется роса.)
Как влияет магнитное поле на движение заряженной частицы?
(Ответ. В поле скорость частицы меняется по направлению, но не по модулю.)
Как называется сила, с которой магнитное поле действует на заряженную частицу? Куда она направлена?
(Ответ. Это сила Лоренца; она направлена к центру окружности.) 3.Постановка темы и учебной цели урока.
4. Изучение нового материала ( заполняют таблицу, в ходе урока читают в учебнике информацию по каждому прибору ).
Физика элементарных частиц – сравнительно молодая область физической науки. Она выделилась из ядерной физики в пятидесятые годы двадцатого века. Предположение о дискретности строения вещества появилось еще в античности. Тогда же появился и термин "атом", что в переводе на русский язык означает «неделимый». Этот термин сохраняется сегодня в науке чисто традиционно, поскольку современной физике известно множество составляющих атомы частиц. Некоторые из этих частиц, прежде всего - электрон, протон, нейтрон и фотон, - нам уже знакомы.
Для изучения ядерных явлений были разработаны многочисленные методы регистрации элементарных частиц и излучений. Рассмотрим некоторые из них, которые наиболее широко используются.
1) Газоразрядный счётчик Гейгера
Счётчик Гейгера - один из важнейших приборов для автоматического счёта частиц. Счётчик состоит из стеклянной трубки, покрытой изнутри металлическим слоем (катод), и тонкой металлической нити, идущей вдоль оси трубки (анод).
Трубка заполняется газом, обычно аргоном. Действие счётчика основано на ударной ионизации. Заряженная частица (электрон, Υ- частица и т.д.), пролетая в газе, отрывает от атомов электроны и создаёт положительные ионы и свободные электроны. Электрическое поле между анодом и катодом (к ним подводится высокое напряжение) ускоряет электроны до энергии, при которых начинается ударная ионизация. Возникает лавина ионов, и ток через счётчик резко возрастает. При этом на нагрузочном резисторе R образуется импульс напряжения, который подаётся в регистрирующее устройство. Для того чтобы счётчик мог регистрировать следующую попавшую в него частицу, лавинный разряд необходимо погасить. Это происходит автоматически.
Счётчик Гейгера применяется в основном для регистрации электронов и Y-квантов ( фотонов большой энергии). Однако непосредственно Y- кванты вследствие их малой ионизирующей способности не регистрируются. Для их обнаружения внутреннюю стенку трубки покрывают материалом, из которого Y-кванты выбивают электроны.
Счётчик регистрирует почти все попадающие в него электроны; что же касается Y- квантов, то он регистрирует приблизительно только один Y-квант из ста. Регистрация тяжёлых частиц (например, Ј-частиц) затруднена, так как сложно сделать в счётчике достаточно тонкое «окошко», прозрачное для этих частиц.
2) Камера Вильсона
Действие камеры Вильсона основано на конденсации перенасыщенного пара на ионах с образованием капелек воды. Эти ионы создаёт вдоль своей траектории движущаяся заряженная частица.
Прибор представляет собой цилиндр с поршнем, накрытый плоской стеклянной крышкой. Рабочий объем камеры заполнен газом, который содержит насыщенный пар. При быстром перемещении поршня вниз газ в объеме адиабатически расширяется и охлаждается, при этом становясь перенасыщенным. Когда в этом пространстве пролетает частица, создающая на своем пути ионы, то на этих ионах образуются капельки сконденсировавшегося пара. В камере возникает след траектории частицы (трек) в виде полоски тумана, который можно наблюдать и фотографировать. Трек существует десятые доли секунды. Вернув поршень в исходное положение, и удалив ионы электрическим полем, можно вновь выполнить адиабатное расширение. Таким образом, опыты с камерой можно проводить многократно.
Если камеру поместить между полюсами электромагнита, то возможности камеры по изучению свойств частиц значительно расширяются. В этом случае на движущуюся частицу действует сила Лоренца, что позволяет по искривлению траектории определить значение заряда частицы и ее импульс. Вектор индукции В магнитного поля направлен перпендикулярно плоскости чертежа за чертеж. Влево отклоняется позитрон, вправо — электрон.
3) Пузырьковая камера
Отличается от камеры Вильсона тем, что перенасыщенные пары в рабочем объеме камеры заменяются перегретой жидкостью, т.е. такой жидкостью, которая находится под давлением, меньшим давления ее насыщенных паров.
Пролетая в такой жидкости, частица вызывает возникновение пузырьков пара, образуя тем самым трек
В исходном состоянии поршень сжимает жидкость. При резком понижении давления температура кипения жидкости оказывается меньше температуры окружающей среды.
Жидкость переходит в неустойчивое (перегретое) состояние. Это и обеспечивает появление пузырьков на пути движения частицы. В качестве рабочей смеси применяются водород, ксенон, пропан и некоторые другие вещества.
Преимущество пузырьковой камеры перед камерой Вильсона обусловлено большей плотностью рабочего вещества. Пробеги частиц вследствие этого оказываются достаточно короткими, и частицы даже больших энергий застревают в камере. Это позволяет наблюдать серию последовательных превращений частицы и вызываемые ею реакции.
4) Метод толстослойных фотоэмульсий
Для регистрации частиц наряду с камерами Вильсона и пузырьковыми камерами применяются толстослойные фотоэмульсии. Ионизирующие действие быстрых заряженных частиц на эмульсию фотопластинки. Фотоэмульсия содержит большое количество микроскопических кристалликов бромида серебра.
Быстрая заряженная частица, пронизывая кристаллик, отрывает электроны от отдельных атомов брома. Цепочка таких кристалликов образует скрытое изображение. При появлении в этих кристалликах восстанавливается металлическое серебро, и цепочка зёрен серебра образует трек частицы.
По длине и толщине трека можно оценить энергию и массу частицы. Из-за большой плотности фотоэмульсии треки получаются очень короткими, но при фотографировании их можно увеличить. Преимущество фотоэмульсии состоит в том, что время экспозиции может быть сколько угодно большим. Это позволяет регистрировать редкие явления. Важно и то, что благодаря большой тормозящей способности фотоэмульсии увеличивается число наблюдаемых интересных реакций между частицами и ядрами.
5) Сцинтилляционный метод.
Сцинтилляционный счетчик состоит из сцинтиллятора, фотоэлектронного умножителя и электронных устройств для усиления и подсчета импульсов. Сцинтиллятор преобразует энергию ионизирующего излучения в кванты видимого света, величина которых зависит от типа частиц и материала сцинтиллятора. Кванты видимого света, попав на фотокатод, выбивают из него электроны, число которых многократно увеличивается фотоумножителем. В результате этого на выходе фотоумножителя образуется значительный импульс, который затем усиливается и сосчитывается пересчетной установкой. Таким образом, за счет энергии a-или b-частицы, g-кванта или другой ядерной частицы в сцинтилляторе появляется световая вспышка-сцинтилляция, которая затем с помощью фотоэлектронного умножителя (ФЭУ) преобразуется в импульс тока и регистрируется.
|
Счетчик Гейгера1928г. |
Камера Вильсона 1912г |
Пузырьковая камера 1952г. |
Назначение |
|
|
|
Принцип действия |
|
|
|
Достоинства |
|
|
|
Недостатки |
|
|
|
Применение |
|
|
|
Рефлексия (ЛЕСТНИЦА)
Плохо понимаю новый материал(красная карточка), понимаю, но нужно еще поработать(желтая карточка), все понятно, все получится(ЗЕЛЕНАЯ КАРТОЧКА),прикрепляют на лоске.
5.Закрепление полученных знаний:
1.С помощью, каких методов, устройств изучается микромир?
2.На что обращаем внимание при изучении трека элементарной частицы?
6.Подведение итогов урока.
7. Домашнее задание: подготовиться к лабораторной работе
© ООО «Знанио»
С вами с 2009 года.