ВАШЕ СВИДЕТЕЛЬСТВО
О ПУБЛИКАЦИИ В СМИ И РЕЦЕНЗИЯ
бесплатно за 1 минуту
Добавить материал
×
Медианары для учителей с выдачей свидетельства
Количество Ваших материалов: 0.
Авторское
свидетельство о публикации в СМИ
добавьте 1 материал
Свидетельство
о создании электронного портфолио
добавьте 5 материала
Секретный
подарок
добавьте 10 материалов
Грамота за
информатизацию образования
добавьте 12 материалов
Рецензия
на любой материал бесплатно
добавьте 15 материалов
Видеоуроки
по быстрому созданию эффектных презентаций
добавьте 17 материалов
Ахмед Изнауров свидетельство о публикации рецензия
‘видетельство о публикации скачивание доступно только автору
Свидетельство Скачивание доступно только автору
перечислимые множества их свойства

перечислимые множества их свойства

  • Научно-исследовательская работа
  • Научные работы
  • Образовательные программы
  • Повышение квалификации
  • Подготовка к тестированию
  • Информатика
  • Высшее образование

Перечисли́мое мно́жество (эффекти́вно перечислимое, рекурси́вно перечислимое, полуразреши́мое множество[1]) — множество конструктивных объектов(например, натуральных чисел), все элементы которого могут быть получены с помощью некоторого алгоритма. Дополнение перечислимого множества называетсякорекурсивно перечислимым[2]. Всякое перечислимое множество является арифметическим. Корекурсивно перечислимое множество может не быть перечислимым, но всегда является арифметическим. Перечислимые множества соответствуют уровню арифметической иерархии (англ.), а корекурсивно перечислимые — уровню Всякое разрешимое множество является перечислимым. Перечислимое множество является разрешимым, тогда и только тогда, когда его дополнение также перечислимо. Другими словами, множество является разрешимым в том и только том случае, когда оно и перечислимо, и корекурсивно перечислимо. Подмножествоперечислимого множества может не быть перечислимым (и даже может не быть арифметическим).