Позиционные и непозиционные системы счисления

  • docx
  • 14.11.2021
Публикация на сайте для учителей

Публикация педагогических разработок

Бесплатное участие. Свидетельство автора сразу.
Мгновенные 10 документов в портфолио.

Иконка файла материала Л2-01080.docx

Позиционные и непозиционные системы счисления.

Понятие числа является фундаментальным как для математики, так и для информатики. С числами связано еще одно важное понятие — система счисления.

Система счисления это способ изображения чисел и соответствующие ему правила действий над числами.

Разнообразные системы счисления, которые существовали раньше и которые используются в наше время, можно разделить нанепозиционные и позиционные.

В древние времена, когда люди начали считать, появилась потребность в записи чисел. Первоначально количество предметов отображали равным количеством каких-нибудь значков: насечек, черточек, точек.

Изучение археологами «записок» времен палеолита на кости, камне, дереве показало, что люди стремились группировать отметки по 3, 5, 7, 10 штук. Такая группировка облегчала счет. Люди учились считать не только единицами, но и тройками, пятерками и пр. Поскольку первым вычислительным инструментом учеловека были пальцы, поэтому и счет чаще всего вели группами по 5 или по 10 предметов.

В дальнейшем свое название получили десяток десятков (сотня), десяток сотен (тысяча) и так далее. Такие узловые числа для удобства записи стали обозначать особыми значками — цифрами. Если при подсчете предметов их оказывалось 2 сотни, 5 десятков и еще 4 предмета, то при записи этой величины дважды повторяли знак сотни, пять раз — знак десятков и четыре раза знак единицы.

В таких системах счисления от положения знака в записи числа не зависит величина, которую он обозначает; поэтому они называются непозиционными системами счисления.

Непозиционными системами пользовались древние египтяне, греки, римляне и некоторые другие народы древности.

На Руси вплоть до XVIII века, использовалась непозиционная система славянских цифр. Буквы кириллицы (славянского алфавита) имели цифровое значение, если над ними ставился специальный знак ~ титло. Например Ã — 1, — 4, — 100.

Непозиционные системы счисления были более или менее пригодны для выполнения сложения и вычитания, но совсем не удобны при умножении и делении.

Идея позиционной системы счисления впервые возникла в древнем Вавилоне.

В позиционных системах счисления величина, обозначаемая цифрой в записи числа, зависит от ее позиции.

Количество используемых цифр называется основанием позиционной системы счисления.

Система счисления, применяемая в современной математике, является позиционной десятичной системой. Ее основание равно десяти, так как запись любых чисел производится с помощью десяти цифр:

0,1, 2, 3, 4, 5, 6, 7, 8, 9.

Хотя десятичную систему принято называть арабской, но зародилась она в Индии, в V веке. В Европе об этой системе узнали в XII веке из арабских научных трактатов, которые были переведены на латынь. Этим и объясняется название «арабские цифры». Однако широкое распространение в науке и в обиходе десятичная позиционная система получила только в XVIвеке. Эта система позволяет легко выполнять любые арифметические вычисления, записывать числа любой величины. Распространение арабской системы дало мощный толчок развитию мате­матики.

С позиционной десятичной системой счисления вы знакомы с раннего детства, только, возможно, не знали, что она так называется.

Позиционный тип этой системы легко понять на примере любого многозначного числа. Например, в числе 333 первая тройка означает три сотни, вторая — три десятка, третья — три единицы. Одна и та же цифра в зависимости от позиции в записи числа обозначает разные величины.

 

333 = 3x100 + 3x10 + 3.

Еще пример:

32478 = 3 х 10000 + 2 х 1000 + 4 х 100 + 7 х 10 + 8 =

= 3 х 104 + 2 х 103 + 4 х 102 + 7 х 101 + 8 х 100.

Отсюда видно, что всякое десятичное число можно представить как сумму произведений составляющих его цифр на соответствующие степени десятки. То же самое относится и к десятичным дробям.

26,387 = 2 х 101 + 6 х 100+ 3 х 10-1 + 8 х 10-2 + 7 х 10-3