Рабочая тетрадь ученика после проведения урока.doc
Задача 1а
Дан куб ABCDA1B1C1D1. На его ребре АА1 дана точка Q.
Построить точку пересечения прямой В1Q с плоскостью, в
которой лежит грань ABCD.
РЕШЕНИЕ.
1. Проекция точки В1 на плоскость ABC точка В.
2. Проекция точки Q на плоскость АВС точка А.
3. Проекция В1Q на плоскость АВС – прямая АВ.
4. Точка пересечения АВ и В 1 Q есть точка М. 5. Точка
F – искомая , т. к.
плоскости грани
A A 1 B 1 B .
F принадлежит плоскости грани
ABCD и
Задача 1в
Дан куб ABCDA1B1C1D1. На ребре СС1 дана точка N, а точка М
принадлежит грани AA1D1D. Построить точку пересечения прямой
MN с плоскостью основания.
РЕШЕНИЕ.
1. Проекция точки
N на плоскость АВС – точка С.
2. Проекция точки М на плоскость АВС – точка К .
3. Проекция
N на плоскость АВС – прямая СК.
4. Точка пересечения
5. Точка Р – искомая, т.к. она принадлежит прямой
плоскости грани АВС
N и СК есть точка Р.
М
М
D .
М
N и Задача 2а
Дан тетраэдр DABC и плоскость MNP, заданная тремя точками на
ребрах тетраэдра. N принадлежит DB, M принадлежит DA,
P принадлежит АC. Построить линию пересечения плоскости MNP и
плоскости основания.
РЕШЕНИЕ.
1. Проекция точки М на плоскость основания – точка А_.
2. Проекция точки N на плоскость основания – точка В.
3. Тогда проекция MN на плоскость основания – прямая АВ. 4. Точка пересечения MN и AB точка _ R _ принадлежит плоскости
основания, и точка P принадлежит этой плоскости.
Следовательно, _секущая плоскость
MNP
пересекутся по прямой
RP
и плоскость основания
.
Построим сечение тетраэдра плоскостью MNP
5. Точка пересечения ВС и _ RP
6. MNKP сечение тетраэдра.
_ точка _К_.
Задача 2б
Дан тетраэдр DABC и плоскость MNP, заданная тремя точками на
ребрах тетраэдра. N принадлежит DB, M принадлежит DA,
P принадлежит DC. Построить линию пересечения плоскости MNP и
плоскости основания.
1. Проекция точки М на плоскость основания – точка _А_.
2. Проекция точки N на плоскость основания –_точка В. _ прямая АВ.
3. Тогда проекция MN на плоскость основания –
4. Точка пересечения MN и AB точка _
5. Проекция точки Р на плоскость основания – точка С.
6. Проекция МР на плоскость – прямая АС.
7. Точка пересечения МР и АС точка Т.
8. Точки
R .
R и Т принадлежат плоскости АВС, следовательно, секущая
плоскость MNР и плоскость основания пересекаются по прямой
R Т.
1. Метод внутреннего проектирования.
2. Метод внешнего проектирования.
3. Комбинированный метод.
Задача 3(I метод)
Построить сечение параллелепипеда плоскостью, проходящей
через точки M, N, K. РЕШЕНИЕ
1. Соединим точки K и N , N иМ.
2. Через точку М поведем на грани ВВ1С1С прямую параллельно NK
до
пересечения с ребром СС1 . Получим точку Q .
3. Проведем через точку Q на грани CC1D1D прямую параллельно МN до
пересечения с _ DC
_. Получим точку _F_.
4. Соединим К и _ F _, т. к. они принадлежат грани ABCD
5. MNKFQ искомое сечение.
_.
Задача 4 ( I I метод)
Построить сечение параллелепипеда плоскостью, проходящей
через точки M, N, K. РЕШЕНИЕ
1. Проекция точки М на плоскость АВС точка _ B _. Проекция точки N на
плоскость АВС точка _ A _, тогда проекция MN – есть _ AB
_.
2. Продолжим MN и АВ. Точка _ G _ принадлежит АВС , это точка
пересечения _ AB
и
MN
_.
3. Точка _К_ принадлежит АВС, поэтому прямая_ G К_ «след» , линия
пересечения секущей плоскости и плоскости АВС.
4. Продолжим ВС до пересечения с_ G К_ , получим точку _Н_.
5. Соединим точки М и _Н_. Точка пересечения с ребром СС1 точка Q _.
6.
MNKFQ искомое сечение.
Задача 5 ( I I I метод)
Построить сечение параллелепипеда плоскостью, проходящей
через точки M, N, K. 1. Строим точку Р точку пересечения секущей плоскости с плоскостью АВС.
2. Проведем РК до пересечения с DC. Получим точку _F_
.
3. Через точку _ F _ проведем _ FQ // MN до пересечения с СС1 .
4. Соединим точку М с точкой Q , а точку N с точкой _К .
5. MNKFQ искомое сечение.
Рабочая тетрадь по математике на теме «Построение сечений тетраэдра и параллелепипеда плоскостью».
Рабочая тетрадь по математике на теме «Построение сечений тетраэдра и параллелепипеда плоскостью».
Рабочая тетрадь по математике на теме «Построение сечений тетраэдра и параллелепипеда плоскостью».
Рабочая тетрадь по математике на теме «Построение сечений тетраэдра и параллелепипеда плоскостью».
Рабочая тетрадь по математике на теме «Построение сечений тетраэдра и параллелепипеда плоскостью».
Рабочая тетрадь по математике на теме «Построение сечений тетраэдра и параллелепипеда плоскостью».
Рабочая тетрадь по математике на теме «Построение сечений тетраэдра и параллелепипеда плоскостью».
Рабочая тетрадь по математике на теме «Построение сечений тетраэдра и параллелепипеда плоскостью».
Рабочая тетрадь по математике на теме «Построение сечений тетраэдра и параллелепипеда плоскостью».
Рабочая тетрадь по математике на теме «Построение сечений тетраэдра и параллелепипеда плоскостью».
Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.