Урок 17
РЕШЕНИЕ ЗАДАЧ ПО ТЕМЕ «РАВНОБЕДРЕННЫЙ ТРЕУГОЛЬНИК»
Цели: изучить свойство биссектрисы (медианы, высоты) равнобедренного треугольника, проведенной к основанию; изучить признак равнобедренного треугольника и закрепить знание свойств равнобедренного треугольника при решении задач; развивать логическое мышление учащихся.
Ход урока
I. Проверка домашнего задания учащихся.
1. Один учащийся на доске готовит доказательство теоремы о свойстве углов при основании равнобедренного треугольника.
2. Второй учащийся решает на доске домашнюю задачу № 117 (по рис. 67).
3. Устно по готовым чертежам на доске (см. рис. 1–3) решаем задачи, предварительно повторив материал в ходе ответов учащихся на контрольные вопросы 10–12 на с. 50.
Найдите DВА.
Рис. 1 Рис. 2 Рис. 3
II. Изучение нового материала.
1. Сформулировать и записать признак равнобедренного треугольника (обратная теорема свойства углов равнобедренного треугольника):
Если в треугольнике два угла равны, то он равнобедренный.
2. Решить задачу № 111 (по рис. 65) устно по заранее заготовленному чертежу на доске.
3. Изучить теорему о биссектрисе равнобедренного треугольника, проведенной к основанию (рис. 64):
1) перед изучением теоремы повторить первый признак равенства треугольников; повторить определение биссектрисы, медианы и высоты треугольника; определение и свойство смежных углов треугольника;
2) учить учащихся при формулировке теоремы выделять, что дано, что надо доказать; учить краткой записи доказательства теоремы.
4. Объяснение учителя. Мы установили, что биссектриса, медиана и высота равнобедренного треугольника, проведенные к основанию, совпадают. Поэтому справедливы также утверждения:
1) Высота равнобедренного треугольника, проведенная к основанию, является медианой и биссектрисой.
2) Медиана равнобедренного треугольника, проведенная к основанию, является высотой и биссектрисой.
5. Устно решить задачу № 110.
III. Решение задач на закрепление изученного материала.
1. Решение задач (устно) по готовым чертежам (заранее изготовить плакаты с рисунками, см. рис. 1–5).
Найдите DВА (учить учащихся читать чертеж по обозначениям на нем).
Рис. 1 Рис. 2 Рис. 3
Рис. 4 Рис. 5
2. Решить задачу № 119 с записью решения на доске и в тетрадях.
|
Дано: DЕК – равнобедренный; EF – биссектриса; DK = 16 см, DЕF = 43°. Найти: KF, DЕK, ЕFD. |
Решение
1) По условию ЕF – биссектриса DDЕK и DЕF = 43°, тогда
DЕK = 2 · DЕF = 43° · 2 = 86°.
2) EF – медиана равнобедренного DЕK (по свойству биссектрисы, проведенной к основанию), тогда KF = DK; KF = 16 : 2 = 8 (см).
3) ЕF – высота равнобедренного DЕK (свойство биссектрисы, проведенной к основанию равнобедренного треугольника).
Значит, ЕFD = ЕFK = 90°.
Ответ: KF = 8 см; DЕK = 86°; ЕFD = 90°.
3. Решить задачу № 120 (а) с записью решения на доске и в тетрадях.
IV. Итоги урока.
Домашнее задание: повторить п. 15; изучить пункты 16–18, ответить на вопросы 4–13 на с. 50; решить задачи №№ 114, 118 и 120 (б).
© ООО «Знанио»
С вами с 2009 года.