Особенности решения задач «на работу».
А=Р*t, где А-работа
Р- производительность труда
t- время
Р=А/t
t=А/Р
Если в условии не дана вся работа, то её можно принять за 1
Общая производительность равна сумме производительностей.
Пример 1
Для наполнения плавательного бассейна водой имеются три насоса. Первому насосу для наполнения бассейна требуется времени в три раза меньше, чем второму, и на 2 ч больше, чем третьему. Три насоса, работая вместе, наполнили бы бассейн за 3ч, но по условиям эксплуатации одновременно должны работать только два насоса. Определите минимальную стоимость наполнения бассейна, если 1ч работы любого из насосов стоит 140 рублей.
Решение: Эту задачу удобно решать с помощью таблицы.
Алгоритм решения задачи
1. Внесем в таблицу известные величины ( работу примем за 1)
2. Одну из неизвестных величин обозначим за х.
3. Остальные неизвестные величины выразим через х, используя условие задачи или формулы.
. 4Составим уравнение.
5. Решим уравнение и ответим на главный вопрос задачи.
Уравнение
1/х+2 + 1/3(х+2) + 1/х = 1/3
Решив уравнение, мы найдем х=6
6ч- время наполнения бассейна третьим насосом.
Тогда время первого насоса 8ч, второго 24ч.
Значит минимальное время работы двух насосов – это время работы 1 и3 насосов ,т.е. 14ч
Определим минимальную стоимость наполнения бассейна двумя насосами.
140*14=1960(руб.)
Ответ: 1960 руб.
Реши сам!
Задача4. Два тракториста, работая вместе, вспахали поле за 48 часов. Если бы половину поля вспахал один из них, а затем оставшуюся половину другой, то работа была бы выполнена за 100 часов. За сколько часов мог бы вспахать поле каждый тракторист, работая отдельно?
Ответ: 120 часов и 80 часов.
Материалы на данной страницы взяты из открытых источников либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.