Вариант ОГЭ по математике от 5 июня 2018
Оценка 4.6

Вариант ОГЭ по математике от 5 июня 2018

Оценка 4.6
Разработки уроков
docx
математика
9 кл
09.06.2018
Вариант ОГЭ по математике от 5 июня 2018
По сравнению со структурой 2017 года из работы исключён модуль «Реальная математика». Задачи этого модуля распределены по модулям «Алгебра» и «Геометрия». Количество заданий и максимальный первичный балл оставлены без изменений. 2. Куриные яйца в зависимости от их массы подразделяют на пять категорий: высшую, отборную, первую, вторую, третью. Используя данные, представленные в таблице, определите, к какой категории относится яйцо массой 59,2 г.огэ
конспект.docx
1. Найдите значение выражения Часть 1  Модуль «Алгебра» 12 15 : . 2 5 Решение. 12 15 12 2 ⋅ = : 4 2 8 32 = = 0,32.   2 5 = Ответ: 0,32. 5 15 = ⋅ 5 5 25 100 2. Куриные   яйца  в зависимости   от  их  массы  подразделяют  на  пять  категорий: высшую,   отборную,   первую,   вторую,   третью.   Используя   данные,   представленные   в таблице, определите, к какой категории относится яйцо массой 59,2 г. Категория Масса одного яйца (в г) Высшая Отборная Первая Вторая Третья 75,0 и более 65,0–74,9 55,0–64,9 45,0–54,9 менее 45 1) высшая 2) отборная 3) первая 4) вторая Решение. Анализируя информацию во втором столбце таблицы видим, что для числа 59,2 выполняется только одно неравенство:  55,0 < 59,2 < 64,9. Значит яйцо данной массы относится к первой категории. Ответ: 3. 3. На координатной прямой точки A, B, C и D соответствуют числам –0,39; –0,09; –0,93; –0,03. Какой точке соответствует число –0,09? 1) A 2) B 3) C 4) D Решение. Поскольку   все   участвующие   числа   отрицательны,   а   отрицательное   число   тем   меньше,   чем больше его абсолютное значение, то наши числа располагаются в следующем порядке: −0,93 < −0,39 < −0,09 < −0,03. Значит число –0,09 соответствует точке C. Ответ: 3. 4. Найдите значение выражения √42 ⋅ 75 ⋅ 14. Решение. Ответ: 210. √42 ⋅ 75 ⋅ 14 = √6 ⋅ 7 ⋅ 3 ⋅ 25 ⋅ 2 ⋅ 7 = 6 ⋅ 5 ⋅ 7 = 210. 5. На   графике   показано   изменение   температуры   воздуха   на   протяжении   трех суток. По горизонтали указывается дата и время, по вертикали – значение температуры в   градусах   Цельсия.   Определите   по   графику   наименьшую   температуру   воздуха   20 февраля. Ответ дайте в градусах Цельсия. Решение. Заметим, что температура 20 февраля показана на крайней правой части графика. Прикладывая линейку горизонтально к нижней точке этой части графика заметим, что искомая температура равна – 7 градусов Цельсия. Ответ: –7. 6. Решите уравнение 2 + 4 = 21. Если уравнение имеет более одного корня, в ответ укажите меньший из корней. Решение. 2 + 4 − 21 = 0, = 22 + 21 = 25, �� = −2 − 5 = −7, = −2 + 5 = 3, 4 1 1 = −7 < 2 = 3, 2 поэтому в ответ указываем число –7. Ответ: –7. 7. Средний вес мальчиков того же возраста, что и Гоша, равен 57 кг. Вес Гоши  составляет 150% среднего веса. Сколько килограммов весит Гоша? Если 57 кг – это 100% среднего веса, то 150% среднего веса – в 1,5 раза больше, чем 57 кг: 57 ⋅ Решение. 1,5 = 85,5. Ответ: 85,5. 8. На диаграммах показано содержание питательных веществ в сухарях, твороге, сливочном   мороженом   и   сгущенном   молоке.   Определите   по   диаграммам,   в   каком продукте содержание жиров превышает 15%. *к прочему относятся вода, витамины и минеральные вещества. 1) сухари 2) творог 3) мороженое 4) сгущённое молоко В ответе запишите номер выбранного варианта ответа. Решение. Круговой сектор можно задать с помощью центрального угла. Если вся окружность – 360°, что соответствует 100% площади круга, то 15% – это 54° соответственно. Итак, нам нужно найти круг, в котором центральный угол сектора, соответствующего жирам, больше или равен 54 градусам. Видно, что искомый продукт – творог. Ответ: 2. 9. На экзамене 50 билетов, Сеня не выучил 5 из них. Найдите вероятность того, что ему попадется выученный билет. Решение. Ответ: 0,9. 50 − 5 45 9 = = 50 50 10 = 0,9. 10. На рисунках изображены графики функций вида  = + . Установите соответствие между графиками функций и знаками коэффициентов k и b. ГРАФИКИ КОЭФФИЦИЕНТЫ 1)  < 0, < 0 2)  < 0, > 0 3)  > 0, > 0 В таблице под каждой буквой укажите соответствующий номер. Решение. Знак коэффициента k отвечает за направленность прямой: если  < 0, то прямая убывает (с увеличением  x  значения  y  уменьшаются),   если   > 0,   то   прямая   возрастает   (с   увеличением  x значения y также увеличиваются). Среди представленных графиков только на "Б" прямая возрастает, поэтому Б – 3. Из уравнения прямой   = + нетрудно понять, что коэффициент  b  – это значение  y, соответствующее значению   = 0 или это значение ординаты точки пересечения прямой с осью  Oy. Хорошо видно, что прямая на рисунке "В" пересекает ось ординат в точке выше оси абсцисс, то есть  > 0, значит В – 2. Остается А – 1. А 1 Б 3 В 2 Ответ: 11. Последовательность () задана условиями: 1 = −4, +1 = − 2. Найдите 8. Решение . Очевидно, что последовательность () является арифметической прогрессией с разностью  = −2. Тогда Ответ: –16. 8 = 1 + (7 − 1) = −4 + 6 ⋅ (−2) = −16. 12. Найдите значение выражения 2 − 12 + 36 ( − 6): + 6 при = −10. Решение. Преобразуем для начала: 2 − 12 + 36 ) ( ) ( + 6 ( − 6)( + 6) + 6 − 6 : + 6 = − 6 ⋅ 2 − 12 + 36 = −10 + 6 −4 1 = = ( − 6)2 = = − 6 Ответ: 0,25. −10 − 6 = 4 −16 = 0,25. 13. Чтобы   перевести   значение   температуры   по   шкале   Цельсия   в   шкалу Фаренгейта,  пользуются  формулой   = 1,8 + 32,  где   –  температура  в градусах Цельсия,   – температура в градусах Фаренгейта. Скольким градусам по шкале Фаренгейта соответствует 55 градусов по шкале Цельсия? Решение. Подставляем: Ответ: 131. = 1,8 ⋅ 55 + 32 = 99 + 32 = 131. 14. Укажите решение системы неравенств �−27 + 3 > 0, 6 − 3 < −6. 3) (9; +∞) 4) (−∞; 9) 1) (4; +∞) 2) (4; 9) Решение. �−27 + 3 > 0, ⟺ �3 > 27, ⟺ � > 9, ⟺ > 9 ⟺ ∈ (9; +∞), > 4 6 − 3 < −6 3 > 12 то есть в ответ записываем число 3. Ответ: 3. 15. Найдите угол, который минутная стрелка описывает за 12 минут. Ответ дайте  Модуль «Геометрия» в градусах. Решение. Известно, что минутная стрелка проходит весь циферблат (совершает один полный оборот) за 60 минут. Поэтому за одну минуту стрелка опишет ровно мин = 360° 60 мин = 6°мин−1. Тогда за 12 минут стрелка опишет угол, равный: 6 ⋅ 12 = 72. Ответ: 72. 16. В треугольнике ABC угол C равен 177°. Найдите внешний угол при вершине C. Ответ дайте в градусах. Решение. Внешним углом треугольника является смежный с ним, а сумма смежных углов равна 180°,  поэтому искомый угол равен: 180 − 177 = 3 градуса. Ответ: 3. 17.Радиус  окружности,  описанной  около  равностороннего  треугольника,  равен 10√3. Найдите длину стороны этого треугольника. Решение. Из теоремы синусов: sin = 2, Ответ: 30. = 2 sin = 2 ⋅ 10√3 ⋅ sin 60° = 2 ⋅ 10√3 ⋅ 2 √3 = 30. 18. Диагонали AC и BD трапеции ABCD с основаниями BC и AD пересекаются в  точке O,  = 6,  = 13,  = 38. Найдите AO. Решение. Треугольники BOC и DOA подобны,  откуда = , 6 = 494 − 13, 38 − = 6 , 13 19 = 494, = 26. Ответ: 26. 19. На   клетчатой   бумаге   с   размером клетки 1×1 изображён ромб. Найдите площадь этого ромба. Удобнее всего Решение. будет искать площадь ромба как половину произведения его перпендикулярных диагоналей. Считая по клеточкам находим, что меньшая диагональ ромба (вертикальная) равна 4, большая диагональ (горизонтальная) равна 12. Тогда Ответ: 24. = 12 = 2 4 ⋅ 12 = 24. 2 20. Какое из следующих утверждений верно? 1) Сумма углов выпуклого четырехугольника равна 360 градусам. 2) Средняя линия трапеции равна сумме ее оснований. 3) Любой параллелограмм можно вписать в окружность.  В ответ запишите номер выбранного утверждения. Решение. 1) По формуле суммы углов выпуклого  n­угольника = ( − 2) ⋅ 180° нетрудно проверить, что первое утверждение верно. 2) Известно, что средняя линия трапеции равна половине суммы её оснований,  второе утверждение неверно. 3) Только в тот параллелограмм, в котором сумма длин противоположных сторон одинакова, можно вписать окружность (то есть в ромб), не в любой параллелограмм. Значит третье утверждение неверно. Ответ: 1. 21. Решите систему  уравнений Часть 2  Модуль «Алгебра» 22 − = , � 2 − 1 = . Решение. Вычтем из первого уравнения второе, получим: 2 2 − 3 + 1 = 0, = 9 − 8 = 1, = 1 3 − 1 = 0,5, = 3 + 1 = 1. 4 2 4 1 = 21 − 1 = 0, 2 = 2 − 1 = 1. Ответ: (0,5; 0), (1; 1). 22. Расстояние между пристанями А и В равно 48 км. Из А в В по течению реки отправился   плот,   а   через   час   вслед   за   ним   отправилась   моторная   лодка,   которая, прибыв в пункт В, тотчас повернула обратно и возвратилась в А. К этому времени плот проплыл 25 км. Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 5 км/ч. Решение. Плот плыл в течение 25 = 5 часов, значит лодка плыла на час меньше, то есть 4 часа. Получим уравнение: 5 5 48 − + 48 + 5 = 4, 48 + 5 ⋅ 48 + 48 − 5 ⋅ 48 = 42 − 100, 4 2 − 96 − 100 = 0, 2 − 24 − 25 = 0, = 144 + 25 = 169 = 132, 1 = 12 − 13 = −1, 2 = 12 + 13 = 25. 4 Ответ: 25. 23. Постройте график функции 1 3 − � + 3 + �. �� = Определите, при каких значениях m прямая  = имеет с графиком ровно одну общую точку. 2 3 3 Решение. Для начала узнаем промежутки знакопостоянства модуля: 3 − 3 = 2 − 9 = ( − 3)( + 3) Итак, при  ≤ −3, 0 < ≤ 3 имеем: 3 1 = 3 1 6 3 �− � = 3 2 При −3 < < 0,  > 3 имеем 1 = + + 3 + 3 3 ⋅ 2 = . 2 3 3 � − + + � = . 3 По   построенному   графику   нетрудно ответить на вопрос задачи. Важно помнить о том,   что   линия   = 0 не   имеет   общих точек с графиком. Ответ: –1,  1. Модуль «Геометрия» 24. Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны  соответственно 45° и 150°, а  = 32. Решение. Проведем перпендикуляры AF и CE, как показано на рисунке. Тогда треугольник   BAF –  равнобедренный, = √2, а угол D равен 30°, откуда = ⋅ sin 30° = 16. Поскольку  = как расстояние между параллельными прямыми,  то  = √2 = 16√2. Ответ: 16√2. 25. В  треугольнике  ABC  с  тупым  углом  BAC  проведены  высоты  1 и  1.  Докажите, что треугольники 11 и ABC подобны. Решение. Поскольку           ∠1 = ∠1 как вертикальные,   то   прямоугольные  треугольники 1 и  1 подобны  по двум углам. Значит = 1 , 1 откуда следует, что треугольники 11 и ABC подобны по углу и двум сторонам. Ответ: что и требовалось доказать. 26. В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности,   вписанной   в   треугольник  ABC.   Расстояния   от   точки  O  до   точки  A  и прямых AD и AC соответственно равны 25, 13 и 7. Найдите площадь параллелограмма ABCD. Решение. Отметим   точки   касания   окружности со сторонами треугольника – точки E, F, G. Понятно, что точки E, O, H лежат на одной прямой и = = = 7, = 25, = 13. Тогда высота  параллелограмма ABCD равна  = + = 20. Из прямоугольного треугольника AOG: = �2 − 2 = √625 − 49 = √576 = 24. По свойству отрезков касательных, проведенных из одной точки к окружности: = , = = , = = . Применяя две формулы для площади треугольника ABC, получим: 1 ℎ 1 , = ⋅ = ⋅ ( + + ), 2 2 ( + ) ⋅ 20 = 7 ⋅ �2 + 2( + )�, 56. + = = 7 = = ⋅ = 56 ⋅ 20 = 1120. 3 Ответ: 1120. Решения 4ege.ru 24

Вариант ОГЭ по математике от 5 июня 2018

Вариант ОГЭ по математике от 5 июня 2018

Вариант ОГЭ по математике от 5 июня 2018

Вариант ОГЭ по математике от 5 июня 2018

Вариант ОГЭ по математике от 5 июня 2018

Вариант ОГЭ по математике от 5 июня 2018

Вариант ОГЭ по математике от 5 июня 2018

Вариант ОГЭ по математике от 5 июня 2018

Вариант ОГЭ по математике от 5 июня 2018

Вариант ОГЭ по математике от 5 июня 2018

Вариант ОГЭ по математике от 5 июня 2018

Вариант ОГЭ по математике от 5 июня 2018

Вариант ОГЭ по математике от 5 июня 2018

Вариант ОГЭ по математике от 5 июня 2018

Вариант ОГЭ по математике от 5 июня 2018

Вариант ОГЭ по математике от 5 июня 2018

Вариант ОГЭ по математике от 5 июня 2018

Вариант ОГЭ по математике от 5 июня 2018

Вариант ОГЭ по математике от 5 июня 2018

Вариант ОГЭ по математике от 5 июня 2018

Вариант ОГЭ по математике от 5 июня 2018

Вариант ОГЭ по математике от 5 июня 2018

Вариант ОГЭ по математике от 5 июня 2018

Вариант ОГЭ по математике от 5 июня 2018

Вариант ОГЭ по математике от 5 июня 2018

Вариант ОГЭ по математике от 5 июня 2018

Вариант ОГЭ по математике от 5 июня 2018

Вариант ОГЭ по математике от 5 июня 2018

Вариант ОГЭ по математике от 5 июня 2018

Вариант ОГЭ по математике от 5 июня 2018

Вариант ОГЭ по математике от 5 июня 2018

Вариант ОГЭ по математике от 5 июня 2018

Вариант ОГЭ по математике от 5 июня 2018

Вариант ОГЭ по математике от 5 июня 2018

Вариант ОГЭ по математике от 5 июня 2018

Вариант ОГЭ по математике от 5 июня 2018

Вариант ОГЭ по математике от 5 июня 2018

Вариант ОГЭ по математике от 5 июня 2018

Вариант ОГЭ по математике от 5 июня 2018

Вариант ОГЭ по математике от 5 июня 2018

Вариант ОГЭ по математике от 5 июня 2018

Вариант ОГЭ по математике от 5 июня 2018

Вариант ОГЭ по математике от 5 июня 2018

Вариант ОГЭ по математике от 5 июня 2018

Вариант ОГЭ по математике от 5 июня 2018

Вариант ОГЭ по математике от 5 июня 2018

Вариант ОГЭ по математике от 5 июня 2018

Вариант ОГЭ по математике от 5 июня 2018
Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.
09.06.2018