Каждому члену общества приходится отвечать на вопросы: как добиваться наиболее высокого жизненного уровня, наивысшей производительности труда, наименьших потерь, максимальной прибыли, минимальной затраты времени и так далее. Эти «жизненные» задачи называют задачами на оптимизацию. Математики изобрели множество способов для их решения. Один из них – решение с помощью неравенств и систем неравенств.
ЗАДАНИЕ 3.docx
Решение задач с помощью уравнений.
Каждому члену общества приходится отвечать на вопросы: как
добиваться наиболее высокого жизненного уровня,
наивысшей
производительности труда, наименьших потерь, максимальной прибыли,
минимальной затраты времени и так далее. Эти «жизненные» задачи
называют задачами на оптимизацию. Математики изобрели множество
способов для их решения. Один из них – решение с помощью неравенств и
систем неравенств.
Задача: Рассчитать размеры бассейна, длиной 4,5м, глубиной не менее 1 м и не
более 1,5 м, сечением 7,5 м2, чтобы на облицовку стен и дна пошло
наименьшее количество плитки.
Вопрос: Как правильно рассчитать размер бассейна?
Что нужно учитывать во время расчета?
Какую величину принять за оптимизирующую?
Прежде, чем приступить к решению задачи на оптимизацию:
1)Задание для индивидуальной работы:
изучить способы графического решения неравенств и систем
неравенств с двумя переменными.
Высказать свою точку зрения на этот вопрос. Запишите свой ответ.
После этого передай свой ответ другим участникам группы для
рецензирования. После этого внести изменения в свой ответ.
1)Задание для групповой работы:
В процессе работы необходимо познакомиться с такими понятиями,
как способ «чередования», «метод областей», «обобщённый метод областей»,
«целевая функция», «пробная точка», «особая точка», «направляющий
вектор».
И после этого провести исследовательскую работу на предмет места
нахождения точек наименьшего и наибольшего значения целевой функции.
Можно пользоваться любыми источниками, в том числе Интернетом.
При работе с данной задачей ученики сопоставляет различные данные,
показывает свое умение работать с информацией, представленной в различном
виде, умение комбинировать информацию, обобщать и делать вывод,
оформить решение в виде графика.
Защита своего исследования с представлением презентации как
доказательства решения данной задачи.
Вид функции и график, который должны получить учащиеся в ходе
исследования: Надо найти такие решения системы, при которых целевая
функция S(x,y)= 9х+2ху+4,5у принимает наименьшее
;5,7
;5,1
у
x
5,7
x
значение.
.
5
1
y
75
11
25
4
75
13
75
14 y=7,
5
y=
5
y=7,5/
x
x=1,
5
x=
1
Размеры бассейна:
1,5м и 5м
Задачи на оптимизацию
Задачи на оптимизацию
Задачи на оптимизацию
Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.