1. Биология как наука, содержание, методы исследования. Значение биологии для медицины. Фундаментальные свойства живого. Эволюционно обусловленные уровни организации живого.
Биология — наука о жизни. Она изучает жизнь как особую форму движения материи, законы ее существования и развития. Предметом изучения биологии являются живые организмы, их строение, функции, их природные сообщества. Термин «биология» предложен в 1802 г. впервые Ж. Б. Ламарком. Вместе с астрономией, физикой, химией, геологией и другими науками, изучающими природу, биология относится к числу естественных наук.
Современная биология представляет собой систему наук о живой природе. Биологические науки служат теоретической основой медицины, агрономии, животноводства, а также всех тех отраслей производства, которые связаны с живыми организмами.
Методы биологических наук. Основными частными методами в биологии являются: описательный, сравнительный, исторический и экспериментальный.
Для того чтобы выяснить сущность явлений, необходимо прежде всего собрать фактический материал и описать его. Собирание и описание фактов были главным приемом исследования в ранний период развития биологии, который, однако, не утратил значения и в настоящее время. Самый старый из методов. Дал возможность накопить и систематизировать огромный фактический материал по ботанике, зоологии, анатомии.
Еще в XVIII в. получил распространение сравнительный метод, позволяющий путем сопоставления изучать сходство и различие организмов и их частей. На принципах этого метода была основана систематика, сделано одно из крупнейших обобщений — создана клеточная теория. Применение сравнительного метода в анатомии, палеонтологии, эмбриологии, которые часто объединяют под общим названием тройной метод изучения филогенеза, зоогеографии и др.способствовало утверждению эволюционных представлений. Сравнительный метод перерос в исторический, но не потерял значения и сейчас.
Исторический метод выясняет закономерности появления и развития организмов, становления их структуры и функции. Утверждением в биологии исторического метода наука обязана Дарвину.
Экспериментальный метод исследования явлений природы связан с активным воздействием на них путем постановки опытов (экспериментов) в точно учитываемых условиях и путем изменения течения процессов в нужном исследователю направлении. Этот метод позволяет изучать явления изолированно и добиваться повторяемости их при воспроизведении идентичных условий. Эксперимент обеспечивает не только более глубокое, чем другие методы, проникновение в сущность явлений, но и непосредственное овладение ими. Высшей формой эксперимента является моделирование изучаемых процессов.
Значение биологии для медицины:
Ученые древности были выдающимися биологами, но биология, как теоретическая основа медицины, стала формироваться в 19 веке.
1)Создание клеточной теории Шлейденом и Шванном 1838
2)Труды Пастера и его последователей, изучавших микроорганизмы в качестве возбудителей инфекционных болезней, заложили научные основы инфекционных патологий, ускорили развитие хирургии.
3)Учение об иммунитете И.И.Мечникова 1896
4)Успехи генетики позволили развивать медико–генетическое консультирование с целью диагностики, профилактики, лечения наследственных болезней.
Важность изучения биологии для медика определяется тем, что биология — это прежде всего основа медицины. «Медицина, взятая в плане теории,— это прежде всего общая биология»,— писал один из крупнейших теоретиков медицины И. В. Давыдовский (1887—1968). Успехи медицины связаны с биологическими исследованиями, поэтому врач постоянно должен быть осведомлен о новейших достижениях биологии. Достаточно привести несколько примеров из истории науки, чтобы убедиться в тесной связи успехов медицины с открытиями, казалось бы, в чисто теоретических областях биологии. Исследования Л. Пастера (1822—1895), опубликованные в 1862 г. и доказавшие невозможность самопроизвольного зарождения жизни в современных условиях, открытие микробного происхождения процессов гниения и брожения произвело переворот в медицине и обеспечило развитие хирургии. В практику были введены сначала антисептика (предохранение заражения раны посредством химических веществ), а затем асептика (предупреждение загрязнения путем стерилизации предметов, соприкасающихся с раной). Это же открытие послужило стимулом к поискам возбудителей заразных болезней, а с обнаружением их связаны разработка профилактики и рационального лечения.
Изучение физиологических и биохимических закономерностей, открытие клетки и изучение микроскопического строения организмов позволило глубже понять причины возникновения болезненного процесса, способствовали внедрению в практику новых методов диагностики и лечения. Новейшие исследования в области закономерностей деления клеток и клеточной дифференцировки имеют прямое отношение как к проблеме регенерации, т. е. восстановлению поврежденных органов, так и к проблеме злокачественного роста, борьбе с онкологическими заболеваниями.
Изучение И. И. Мечниковым (1845— 1916) процессов пищеварения у низших из многоклеточных организмов привело к открытию фагоцитоза и способствовало объяснению явлений иммунитета, сопротивляемости организма возбудителям болезни. И современные представления об иммунитете опираются на биологические исследования. Раскрытие механизмов иммунитета необходимо также для преодоления тканевой несовместимости, проблемы очень важной для восстановительной хирургии, с которой связаны вопросы трансплантации органов.
Исследования И. И. Мечникова по межвидовой борьбе у микроорганизмов явились предпосылкой открытия антибиотиков, используемых для лечения многих болезней, а массовое производственное получение антибиотиков стало возможно лишь благодаря применению методов генетики для создания высокопродуктивных штаммов продуцентов антибиотиков.
Советский исследователь Б. П. Токин открыл у растений летучие вещества — фитонциды, нашедшие широкое применение в медицине.
Большое число болезней имеет наследственную природу. Профилактика и лечение их требуют знаний генетики. Но и ненаследственные болезни протекают неодинаково и требуют различного лечения в зависимости от генетической конституции человека, чего не может не учитывать врач. Многие врожденные
аномалии возникают вследствие воздействия неблагоприятных условий среды. Предупредить их — задача врача, вооруженного знаниями биологии развития организмов.
Здоровье людей в большой мере зависит от состояния окружающей среды. Знание биологических закономерностей необходимо для научно обоснованного отношения к природе, охране и использованию ее ресурсов, в том числе и с целью лечения и профилактики заболеваний.
Фундаментальные свойства живого.
К числу фундаментальных свойств, совокупность которых характеризует жизнь, относятся: самообновление, связанное с потоком вещества и энергии; самовоспроизведение, обеспечивающее преемственность между сменяющими друг друга генерациями биологических систем, связанное с потоком информации; саморегуляция, базирующаяся на потоке вещества, энергии и информации.
Перечисленные фундаментальные свойства обусловливают основные атрибуты жизни: обмен веществ и энергии, раздражимость, гомеостаз, репродукцию, наследственность, изменчивость, индивидуальное и филогенетическое развитие, дискретность и целостность.
Обмен веществ и энергии. Характеризуя явления жизни, Ф. Энгельс в работе «Диалектика природы» писал: «Жизнь — это способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их внешней природой, причем с прекращением этого обмена веществ прекращается и жизнь, что приводит к разложению белка». При этом Ф. Энгельс отмечал, что обмен веществ может иметь место и между телами неживой природы. Однако принципиально обмен веществ как свойство живого качественно отличается от обменных процессов в неживых телах. Для того чтобы показать эти отличия, рассмотрим ряд примеров.
Горящий кусок угля находится в состоянии обмена с окружающей природой, происходит включение кислорода в химическую реакцию и выделение углекислого газа. Образование ржавчины на поверхности железного предмета является следствием обмена со средой. Но в результате этих процессов неживые тела перестают быть тем, чем они были. Наоборот, для тел живой природы обмен с окружающей средой является условием существования. В живых организмах обмен веществ приводит к восстановлению разрушенных компонентов, заменяя их новыми, подобными им, т. е. к самообновлению и самовоспроизведению, или построению тела живого организма за счет усвоения веществ из окружающей среды.
Из сказанного следует, что организмы существуют как открытые системы. Через каждый организм идет непрерывно поток вещества и поток энергии. Осуществление этих процессов обусловлено свойствами белков, особенно их каталитической активностью. При этом несмотря на непрерывное обновление вещества, структуры в живом сохраняются, точнее, непрерывно воспроизводятся, что связано с информацией, заложенной в нуклеиновых кислотах. Нуклеиновые кислоты обладают свойством хранить и воспроизводить наследственную информацию, а также реализовывать ее через синтез белков. Благодаря тому, что организмы— открытые системы, они находятся в единстве со средой, а физические, химические и биологические свойства окружающей среды обусловливают осуществление всех процессов жизнедеятельности.
Раздражимость. Эта неотъемлемая черта, свойственная всему живому, является выражением одного из общих свойств всех тел природы — свойства отражения. Она связана с передачей информации из внешней среды любой биологической системе (организм, орган, клетка) и проявляется реакциями этих систем на внешнее воздействие. Благодаря этому свойству достигается уравновешивание организмов с внешней средой: организмы избирательно реагируют на условия окружающей среды, способны извлекать из нее все необходимое для своего существования, а следовательно, с ними связан столь характерный для живых организмов обмен веществ, энергии и информации. Свойство раздражимости связано с химическим строением самого субстрата жизни.
Получение необходимой информации обеспечивает в биологических системах саморегуляцию, которая осуществляется по принципу обратной связи. Продукты жизнедеятельности могут оказывать сильное и строго специфическое тормозящее воздействие на те ферменты, которые составляют начальное звено в длинной цепи реакций. По принципу обратной связи регулируются процессы обмена веществ, репродукции, считывания наследственной информации, а следовательно, проявление наследственных свойств в индивидуальном развитии и т. д.
Саморегуляцией в организмах поддерживается постоянство структурной организации—гомеостаз. Организмам свойственно постоянство химического состава, физико-химических особенностей. Для всех живых существ характерно наличие механизмов, поддерживающих постоянство внутренней среды. Структурная организация в широком смысле, т. е. определенная упорядоченность, обнаруживается не только при исследовании жизнедеятельности отдельных организмов. Организмы различных видов, связанные друг с другом средой обитания, составляют биоценозы (исторически сложившиеся сообщества). В биоценозах в результате обмена веществ, энергии и информации между организмами и окружающей их неживой природой также поддерживается определенный биоценотический гомеостаз: постоянство видового состава и числа особей каждого вида.
Биологическим системам на различных уровнях организации свойственна адаптация. Под адаптацией понимается приспособление живого к непрерывно меняющимся условиям среды. В основе адаптации лежат явления раздражимости и характерные для нее адекватные ответные реакции. Адаптации выработались в процессе эволюции как следствие выживания наиболее приспособле-ных. Без адаптации невозможно поддержание нормального существования.
Репродукция. В связи с тем что жизнь существует в виде отдельных (дискретных) биологических систем (клетки, организмы и др.) и существование каждой отдельно взятой биологической системы ограничено во времени, поддержание жизни на любом уровне связано с репродукцией. Любой вид состоит из особей, каждая из которых рано или поздно перестанет существовать, но благодаря репродукции (размножению) жизнь вида не прекращается. Размножение всех видов, населяющих Землю, поддерживает существование биосферы. Самовоспроизведение на молекулярном уровне обусловливает особенности обмена веществ живых организмов по сравнению с неживыми телами.
На молекулярном уровне репродукция осуществляется на основе матричного синтеза. Принцип матричного синтеза заключается в том, что новые молекулы синтезируются в соответствии с программой, заложенной в структуре ранее существовавших молекул. Матричный синтез лежит в основе образования молекул белков и нуклеиновых кислот.
Наследственность обеспечивает материальную преемственность (поток информации) между поколениями организмов. Она тесно связана с репродукцией (авторепродукцией) жизни на молекулярном, субклеточном и клеточном уровнях. Хранение и передача наследственной информации осуществляются нуклеиновыми кислотами. Благодаря наследственности из поколения в поколение передаются признаки, обеспечивающие приспособление организмов к среде обитания.
Изменчивость — свойство, противоположное наследственности, связанное с появлением признаков, отличающихся от типичных. Если бы при репродукции всегда проявлялась только преемственность прежде существовавших свойств и признаков, то эволюция органического мира была бы невозможна; но живой природе свойственна изменчивость. В первую очередь, она связана с «ошибками» при репродукции. По-иному построенные молекулы нуклеиновой кислоты несут новую наследственную информацию. Это новая измененная информация в большинстве случаев бывает вредной для организма, но в ряде случаев в результате изменчивости организм приобретает новые свойства, полезные в данных условиях. Новые признаки подхватываются и закрепляются отбором. Так создаются новые формы, новые виды. Таким образом, наследственная изменчивость создает предпосылки для видообразования и эволюции, а тем самым и существования жизни.
Индивидуальное развитие. Организмы, появляющиеся в результате репродукции, наследуют не готовые признаки, а определенную генетическую информацию, возможность развития тех или иных признаков. Эта наследственная информация реализуется во время индивидуального развития. Индивидуальное развитие выражается, как правило, в увеличении массы (рост), что, в свою очередь, базируется на репродукции молекул, клеток и других биологических структур, а также в дифференцировке, т. е. появлении различий в структуре, усложнении функций и т. д.
Филогенетическое развитие, основные закономерности которого установлены Ч. Дарвино.м, (1809—1882), базируется на прогрессивном размножении, наследственной изменчивости, борьбе за существование и отборе. Действие этих факторов привело к огромному разнообразию форм жизни, приспособленных к различным условиям среды обитания. Прогрессивная эволюция прошла ряд ступеней: доклеточных форм, одноклеточных организмов, все усложняющихся многоклеточных вплоть до человека. Однако вместе с человеком появилась новая форма существования материи — социальная, высшая по сравнению с биологической и не сводимая к ней. В силу этого человек в отличие от всех других существ представляет собой биосоциальный организм.
Дискретность и целостность. Жизнь характеризуется диалектическим единством противоположностей: она одновременно целостна и дискретна. Органический мир целостен, существование одних организмов зависит от других. В очень общей и упрощенной форме это можно представить так. Животные-хищники для своего питания нуждаются в существовании растительноядных, а последние — в существовании растений. Растения в процессе фотосинтеза поглощают из атмосферы СО2, выделение которого в атмосферу связано с жизнедеятельностью живых организмов. Кроме того, растения из почвы получают ряд минеральных веществ, количество которых не истощается благодаря разложению органических веществ, осуществляемому бактериями, и т. д.
Органический мир целостен, так как составляет систему взаимосвязанных частей, и в то же время дискретен. Он состоит из единиц — организмов, или особей. Каждый живой организм дискретен, так как состоит из органов, тканей, клеток, но вместе с тем каждый из органов, обладая определенной автономностью, действует как часть целого. Каждая клетка состоит из органоидов, но функционирует как единое цел л Наследственная информация осуществляется генами, но ни один из генов вне всей совокупности не определяет развитие признака и т. д. Жизнь связана с молекулами белков и нуклеиновых кислот, но только их единство, целостная система обусловливает существование живого.
С дискретностью жизни связаны различные уровни организации органического мира.
Уровня организации живого. В серединеХХ в. в биологии сложились представления об уровнях организации как конкретном выражении упорядоченности, являющейся одним из основных свойств живого (биологические микросистемы: мол., субклеточ., клеточ.; биолог.мезосист.:тк., ор., орг.; биол.макросис.: поп.-вид., биоценотич.).
Живое на нашей планете представлено в виде дискретных единиц — организмов, особей. Каждый организм, с одной стороны, состоит из единиц подчиненных ему уровней организации (органов, клеток, молекул), с другой — сам является единицей, входящей в состав надорганизменных биологических макросистем (популяций, биоценозов, биосферы в целом).
На всех уровнях жизни проявляются такие ее атрибуты, как дискретность и целостность, структурная организация (упорядоченность), обмен веществ, энергии и информации и т.д. Характер проявления основных свойств жизни на каждом из уровней имеет качественные особенности, упорядоченность. Как известно, в результате обмена веществ, энергии и информации устанавливается единство живого и среды, но понятие среды для разных уровней различно. Для дискретных единиц молекулярного и надмолекулярного (субклеточного) уровней окружающей средой является внутренняя среда клетки; для клеток, тканей и органов — внутренняя среда организма. Внешняя живая и неживая среда на этих уровнях организации воспринимается через изменение внутренней среды, т. е. опосредованно. Для организмов (индивидуумов) и их сообществ среду составляют организмы того же и других видов и условия неживой природы.
Существование жизни на всех уровнях подготавливается и определяется структурой низшего уровня. Характер клеточного уровня организации определяется молекулярным и субклеточным уровнями, организменный— клеточным, тканевым, органным, видовой (популяционный) — организменным и т. д. Следует отметить большое сходство дискретных единиц на низших уровнях и все возрастающее различие на высших уровнях.
Молекулярный уровень. На молекулярном уровне обнаруживается удивительное однообразие дискретных единиц. Жизненный субстрат для всех животных, растений, вирусов составляет всего 20 одних н тех же аминокислот и 4 одинаковых азотистых основания, входящих в состав молекул нуклеиновых кислот. Близкий состав имеют липиды и углеводы. У всех организмов биологическая энергия запасается в виде богатых энергией аденозинфосфорных кислот (АТФ, АДФ, АМФ). Наследственная информация у всех заложена в молекулах ДНК (исключение составляют лишь РНК-содержащие вирусы), способной к саморепродукции. Реализация наследственной информации осуществляется при участии молекул РНК, синтезируемых на матричных молекулах ДНК. В связи с тем, что с молекулярными структурами связано хранение, изменение и реализация наследственной информации, этот уровень иногда называют молекулярно-генетическим.
Клеточный уровень. На клеточном уровне также отмечается однотипность всех живых организмов. Клетка является основной самостоятельно функционирующей элементарной биологической единицей, характерной для всех живых организмов. У всех организмов только на клеточном уров-не возможны биосинтез и реализация наследственной информации. Клеточный уровень у одноклеточных организмов совпадает с организменным. В истории жизни на нашей планете был такой период (первая половина архейской эры), когда все организмы находились на этом уровне организации. Из таких организмов состояли все виды, биоценозы и биосфера в целом.
Тканевый уровень. Совокупность клеток с одинаковым типом организации составляет ткань. Тканевый уровень возник вместе с появлением многоклеточных животных и растений, имеющих дифференцированные ткани. У многоклеточных организмов он развивается в период онтогенеза. Большое сходство между всеми организмами сохраняется на тканевом уровне. Совместно функционирующие клетки, относящиеся к разным тканям, составляют органы. Всего лишь 5 основных тканей входят в состав органов всех многоклеточных животных и 6 основных тканей образуют органы растений.
Организменный (онтогенетический) уровень. На организменном уровне обнаруживается труднообозримое многообразие форм. Разнообразие организмов, относящихся к разным видам, да и в пределах одного вида,— следствие не разнообразия дискретных единиц низшего порядка, а все усложняющихся их пространственных комбинаций, обусловливающих новые качественные особенности. В настоящее время на Земле обитает более миллиона видов животных и около полумиллиона видов высших растений. Каждый вид состоит из отдельных индивидуумов.
Особь — организм как целое — элементарная единица жизни. Вне особей в природе жизнь не существует. На организменном уровне протекают процессы онтогенеза, поэтому уровень этот называют еще онтогенетическим. Нервная и гуморальная системы осуществляют саморегуляцию в организме и обусловливают определенный гомеостаз.
Популяционно-видовой уровень. Совокупность организмов (особей) одного вида, населяющих определенную территорию, свободно между собой скрещивающихся, составляет популяцию. Популяция — это элементарная единица эволюционного процесса; в ней начинаются процессы видообразования. Популяция входит в состав биогеоценозов.
Биоценотический и биосферный уровни. Биогеоценозы — исторически сложившиеся устойчивые сообщества популяций разных видов, связанных между собой и с окружающей неживой природой обменом веществ, энергии и информации. Они являются элементарными системами, в которых осуществляется вещественно-энергетический круговорот, обусловленный жизнедеятельностью организмов. Биогеоценозы составляют биосферу и обусловливают все процессы, протекающие в ней.
Только при комплексном изучении явлений жизни на всех уровнях можно получать целостное представление об особой (биологической) форме существования материи.
Представление об уровнях организации жизни имеет непосредственное отношение к основным принципам медицины. Оно заставляет смотреть на здоровый и больной человеческий организм как на целостную, но в то же время сложную иерархически соподчиненную систему организации. Знание структур и функций на каждом из них помогает вскрыть сущность болезненного процесса. Учет той человеческой популяции, к которой относится данный индивидуум, может потребоваться, например, при диагностике наследственной болезни. Для вскрытия особенностей течения заболевания и эпидемического процесса необходимо также учитывать особенности биоценотической и социальной среды. Имеет ли дело врач с отдельным больным или человеческим коллективом, он всегда основывается на комплексе знаний, полученных на всех уровнях биологических микро-, мезо- и макросистем.
2. Ионизирующая радиация как фактор среды обитания. Виды ионизирующих излучений. Проникающая и ионизирующая способность ионизирующих излучений. Биологические эффекты ионизирующей радиации. Радиационный гормезис.
Солнечная радиация является одним из важнейших абиотических факторов среды и относится к числу факторов, сыгравших ключевую историческую роль в эволюции биосферы. Эта эволюция, по образному выражению Ю. Одума, была направлена на «укрощение» поступающего солнечного излучения, использование его полезных составляющих, ослабление вредных и защиту от них. Таким образом, свет – это фактор не только жизненно важный, но и лимитирующий, причем и на максимальном, и на минимальном уровнях.
Солнечный свет – это электромагнитное излучение с различными длинами волн от 0,05 до 3000 нм и более. Этот поток можно разделить на несколько областей, различающихся физическими свойствами и экологическим значением для различных групп организмов:
· <150 нм зона ионизирующей радиации
· 150 – 400 нм ультрафиолетовая радиация
· 400 - 800 нм видимый свет
· 800 – 1000 нм инфракрасная радиация
· >1000 нм так называемая зона дальней инфракрасной радиации – мощного фактора теплового режима среды.
Наука, изучающая ответные реакции биологических объектов и систем на действие ионизирующих излучений, называется радиобиология.
Ее основоположниками были:
- Рентген В.К. 1895 катодные лучи (Х-лучи) вызывают флуоресценцию экрана покрытого цианоплатинитом бария. Первый рентгеновский снимок кисти своей руки
- Беккерель А.А. самопроизвольное испускание невидимых глазу проникающих излучений (α-, β- и γ-излучений), исходящих от солей урана; 1900 радиоактивные лучи частично состоят из электронов
- Мария Складовская-Кюри, Пьер Кюри торий испускает «лучи Беккереля», 2 новых радиоактивных элемента (полоний и радий) 1898; испускание «лучей Беккереля» - радиоактивность
- Ирен и Фредерик Жолио Кюри – обнаружили при проведении реакции образование нового, не встречающегося в природе радионуклида, фосфора 30Р – искусственная радиоактивность
- Тарханов (Тарханишвили) Р.И. провел первые исследования на лягущках и насекомых, облученных лучами Рентгена, и пришел к выводу, что «Х-лучами можно не только фотографировать, но и влиять на ход жизненных функций»
- Лондон Е.С. в 1896 начал многолетние широкие исследования по рентгенорадиологии и экспериментальной радиобиологии
- Герман Меллер 1927 рентгеновские лучи вызывают повышенную частоту появления мутантных потомков у дрозофил, родителей которых подвергали облучению à фундаментальные исследования механизмов действия мутагенных факторов до 1945
В 1918 году в Петербурге был открыт первый в стране радиобиологический государственный институт рентгенологии и радиологии , организатором которой был М.И. Неменов
3. Клетка как элементарная генетическая и структурно-функциональная единица живого. Прокариотические и эукариотические клетки. Клеточная теория, история и современное состояние. Значение ее для биологии и медицины.
Клетка — элементарная биологическая система, способная к самообновлению, самовоспроизведению и развитию. Клеточные структуры лежат в основе строения растений и животных. Каким бы многообразным ни представлялось строение организмов, в основе его лежат сходные структуры—клетки. Среди современных организмов можно последовательно проследить формирование клетки в процессе эволюции органического мира — от прокариотов, таких, как микоплазма и дробянки (общее название бактерий и синезеленых водорослей), к эукариотам. В отношении прокариот и животных типа простейших понятия «клетка» и «организм» совпадают. Их называют одноклеточными. Одноклеточными являются также некоторые виды- водорослей и грибов. Большинство растений и животных состоят из многих клеток; они получили название многоклеточных. У многоклеточных организмов клетки образуют ткани, входящие в состав органов. Жизнедеятельность клеток у многоклеточных подчинена координирующему влиянию целостного организма. Координация у животных осуществляется нервной системой и гуморальными факторами, т. е. жидкостями, циркулирующими в организме, а у растений — непосредственной цитоплазматической связью между клетками и циркулирующими веществами (фитогормонами).
Клеточная теория Шванна. Немецкий зоолог Т. Шванн (1810-1882) в 1839 г. опубликовал труд «Микроскопические исследования о соответствии в структуре и росте животных и растений». В этой классической работе были заложены основы клеточной теории. Поскольку при создании этой теории Шванн широко пользовался работами ботаника М. Шлейдена, последний по праву считается соавтором клеточной теории. Исходя из предположения о схожести растительных и животных клеток, доказываемой одинаковым механизмом их возникновения, Шванн обобщил многочисленные данные в виде теории, согласно которой клетки являются струтурной и функциональной основой живых существ.
Развитие клеточной теории Р. Вирховом. В 1858 г. вышел в свет основной труд немецкого патолога Р. Вирхова (1821—1902) «Целлюлярная патология». Это произведение, ставшее классическим, оказало, влияние на дальнейшее развитие учения о клетке и для своего времени имело большое прогрессивное значение. До Вирхова основу всех патологических процессов видели в изменении состава жидкостей и борьбе нематериальных сил организма. Вирхов подошел к объяснению патологического процесса материалистически, показав связь его в организме с морфологическими структурами, с определенными изменениями в строении клеток. Это исследование положило начало новой науке — патологии, которая является основой теоретической и клинической медицины. Вирхов ввел в науку ряд новых представлений о роли клеточных структур в организме.
Положение Вирхова «каждая клетка из клетки» — блестяще подтвердилось дальнейшим развитием биологии. В настоящее время неизвестны иные способы появления новых клеток, помимо деления уже существующих. Однако этот тезис не отрицает того факта, что на заре жизни клетки развились из образований, еще не имевших клеточной структуры.
Однако представления Вирхова не были лишены ошибок. Им была создана вызвавшая критику концепция «клеточного государства», согласно которой многоклеточный организм состоит из относительно самостоятельных единиц – клеток -, поставленных в своей жизнедеятельности в тесную зависимость друг от друга.
В целом появление «Целлюлярной патологии» Вирхова следует рассматривать как важную веху в истории биологии и медицины. Освобожденная от механистических ошибок и дополненная позднейшими открытиями, она легла в основу современных представлений о клеточном строении организма.
Клеточная теория в современном виде включает 3 главных положения:
1) Жизнь в ее структурном, функциональном и генетическом отношении обеспечивается в конечном итоге только клеткой (именно клетка является биологической единицей, с помощью которой происходит извлечение из внешней среды, превращение и использование организмами энергии и веществ; непосредственно в клетке сохраняется и используется биологическая информация.
2) Единственным способом возникновения новых клеток является деление предсуществующих клеток (все клетки хранят биологическую информацияю, редуплицируют генетический материал с целью его передачи в ряду поколений, используют информацию для осуществления своих функций на основе синтеза белка, хранят и переносят энергию, превращают энергию в работу, регулируют обмен веществ).
3) Структурно-функциональными единицами многоклеточных существ являются клетки.
Прокариоты — доядерные организмы, не имеющие типичного ядра, заключенного в ядерную мембрану. К прокариотическим организмам относят бактерии и сине-зеленые водоросли (цианобактерии). Их генетический аппарат представлен: нуклеоидом – кольцевой молекулой ДНК, находящейся в цитоплазме и не отграниченной от нее оболочкой (аналог ядра); плазмидами – внехромосомными генетическими элементами, представляющими небольшие кольцевые ДНК. Плазмиды находятся вне генома и реплицируются независимо от него. Прокариотические клетки защищены клеточной стенкой, наружная часть которой образована гликопептидом муреином – он придает клетке форму и жесткость, через поры клеточной стенки свободно проходят вода, ионы и малые органические молекулы. Внутренняя часть клеточной стенки представлена плазматической мембраной. Многоскладчатые впячивания мембраны в цитоплазму образуют мезосомы, участвующие в построении клеточных перегородок и в репродукции и являющиеся местом прикрепления ДНК. В цитоплазме мало органелл, но присутствуют многочисленные мелкие рибосомы (70S).Микротрубочки отстутствуют, движения цитоплазмы не происходит. Жгутики более простого строения, чем у эукариот; не ограничены мембраной, состоят из сферических субъединиц белка флагеллина. На клеточной стенке имеются тонкие выросты – пили, или фимбрии. Они короче и тоньше жгутиков, служат для прикрепления бактерий к субстрату или друг к другу. Дыхание осуществляется в мезосомах, у цианобактерий – в цитоплазматических мембранах. Хлороспластов и других клеточных органелл, окруженных мембраной, нет. Размножаются путем бинарного деления с образованием двух дочерних клеток. Перед клеточным делением происходит репликация ДНК, во время которой мезосомы удерживают геном в определенном положении. Мезосомы могут прикрепляться к перегородкам между дочерними клетками и участвовать в синтезе веществ клеточной стенки. У бактерий наблюдается и половой размножение, но в самой примитивной форме; при этом происходит лишь обмен генетическим материалом (генетическая рекомбинация). Различают 3 способа передачи ДНК: конъюгация (однонаправленный перенос фрагмента ДНК от клетки-донора к клетке-реципиенту, которые контактируют друг с другом), трансформация (перенос без непосредственного контакта клеток) и трансдукция (перенос с помощью бактериофагов).
Эукариоты — ядерные организмы, имеющие ядро, окруженное ядерной мембраной. Генетический материал сосредоточен преимущественно в хромосомах, имеющих сложное строение и состоящих из нитей ДНК и белковых молекул. Эукариотическая клетка может быть самостоятельным одноклеточным организмом или частью многоклеточного организма, образуя различные ткани. Имеет поверхностный аппарат, состоящий из цитоплазматической мембраны, суб- (микротрубочки и микрофиламенты, образующие цитоскелет) и надмембранного (гликокаликс) комплекса. В цитоплазме большое количество органелл: одномембранных (ЭПС, комплекс Гольджи, лизосомы,пероксисомы, вакуоли у растительных клеток), двумембранных (митохондрии, пластиды у растительных клеток), немембранных (рибосомы, клеточный центр, микротрубоски, микрофиламенты) и органелл специального назначения (реснички, жгитики, миофибриллы).
Ядро кружено ядерной оболочкой, содержит ядерный сок с хроматином, ядрышками, белками, свободными нуклеотидами, солями, ионами и т.д. В зависимости от функционального состояния хроматина различают гетерохроматин (генетически неактивные участки хроматина) и эухроматин (активные). Деление митотическое и мейотическое. Эукариотические организмы делятся на царства растений, животных и грибов, клетки которых имеют морфологические различия.
4. Клетка как открытая система. Организация потоков веществ, энергии и информации в клетке. Специализация и интеграция клеток многоклеточного организма.
Все живые организмы, обитающие на Земле, являются открытыми системами, для которых характерен непрерывно протекающий обмен веществ и энергии с окружающей средой. Обмен веществ и энергии – основное свойство живого. Жизнедеятельность клетки как единицы биологической активности обеспечивается совокупностью взаимосвязанных, приуроченных к определенным внутриклеточным структурам, упорядоченных во времени и пространстве (метаболических) процессов. Эти процессы образуют 3 потока: информации, энергии и веществ.
Поток информации. Благодаря наличию потока информации клетка, используя многовековой эволюционный опыт предков, создает организацию, соответствующую критериям живого, сохраняет и поддерживает эту организацию во времени, несмотря на меняющиеся условия внешней среды, передает ее в ряду поколений. В потоке информации участвуют ядро (ДНК хромосом), макромолекулы, переносящие информацию в цитоплазму (иРНК), цитоплазматический аппарат транскрипции (рибосомы и полисомы, тРНК, ферменты активации аминокислот). На завершающем этапе этого потока полипептиды, синтезированные на полисомах, приобретают третичную и четвертичную структуру и используются в качестве катализаторов или структурных блоков. Кроме ядерного генома, основного по объему заключенной информации, в эукариотических клетках функционируют также геномы митохондрий, а в зеленых растениях и хлоропластов.
Поток энергии. Поток энергии у представителей разных групп организмов представлен внутриклеточными механизмами энергообеспечения — брожением, фото- или хемосинтезом, дыханием.
Центральная роль в биоэнергетике клеток животных принадлежит дыхательному обмену. Он включает реакции расщепления низкокалорийного органического «топлива» в виде глюкозы, жирных кислот, аминокислот и использования выделяемой энергии для синтеза высококалорийного клеточного «топлива» в виде АТФ. АТФ и другие соединения, богатые энергией в биологически утилизируемой форме, называются макроэргическими. Энергия АТФ, непосредственно или будучи перенесенной на другие макроэргические соединения, например креатинфосфат, используемый в мышцах, в разнообразных процессах преобразуется в тот или иной вид работы — химическую (синтезы), осмотическую (поддержание градиентов веществ), электрическую, механическую, регуляторную. Среди органелл животной клетки особое место в дыхательном обмене принадлежит митохондриям, с внутренней мембраной которых связаны ферменты дыхательной цепи, а также матриксу цитоплазмы, в котором протекает процесс безкислородного расщепления глюкозы—анаэробный гликолиз. Из преобразователей энергии химических связей АТФ в работу наиболее изучена механохимическая система поперечнополосатой мышцы. Она состоит из сократительных белков и фермента, расщепляющего макроэргические соединения с высвобождением энергии.
Особенностью потока энергии растительной клетки служит фотосинтез механизм преобразования энергии солнечного света в энергию химических связей органических веществ.
Механизмы энергообеспечения клетки высокоэффективны. Коэффициенты полезного действия хлоропласта достигают 25%, а митохондрии — 45— 60%, существенно превосходя аналогичный показатель паровой машины (8%) или двигателя внутреннего сгорания (17%).
Поток вещества. Реакции дыхательного обмена не только поставляют энергию, но и снабжают клетку строительными блоками для синтеза разнообразных молекул. Ими служат многие продукты расщепления пищевых веществ. Особая роль в этом принадлежит центральному звену дыхательного обмена — циклу Кребса, осуществляемому в митохондриях. Через этот цикл проходит путь углеродных атомов (углеродных скелетов) большинства соединений, служащих промежуточными продуктами синтеза химических компонентов клетки, а также переключение метаболизма клетки с одного преобладающего пути на другой, например, с углеводного на жировой. Таким образом, дыхательный обмен одновременно составляет ведущее звено потока веществ, объединяющего метаболические пути расщепления и синтеза углеводов, белков, жиров, нуклеиновых кислот.
Многоклеточные организмы состоят из клеток, имеющих принципиально одинаковое строение. Однако форма, размеры и структура клеток зависят от функций, которые они выполняют. Например, мышечные клетки удлиненные, клетки эпителиальной ткани расположены на базальной мембране, плотно прилегают друг к другу, межклеточное вещество почти отсутствует. Нервные клетки благодаря большому количеству отростков получили звездчатую форму. Лейкоциты подвижны, округлой формы, могут приобретать амебоиднои формы и т.д. Причем функционально специализированные клетки разных типов и видов имеют сходные структуру, форму и размеры. Таким образом, клетки животных очень разнообразны по размерам, структуре и функциям, которые они выполняют. Однако все клетки обязательно должны содержать основные компоненты: цитоплазматическую мембрану, цитоплазму и ядро (за исключением эритроцитов и тромбоцитов, в которых ядро отсутствует).
В процессе дифференцировки менее специализированная клетка становится более специализированной. Например, эмбриональная стволовая клетка «превращается» в клетку эктодермы. Деление и дифференцировка — основные процессы, путем которых одиночная клетка (зигота) развивается в многоклеточный организм, содержащий самые разнообразные виды клеток. Дифференцировка меняет функцию клетки, ее размер, форму и метаболическую активность. Достигается это изменениями в экспрессии генов, в то время как ДНК остается неизменной.
Общее название для всех клеток, еще не достигших окончательного уровня специализации (то есть способных дифференцироваться) — стволовые клетки. Степень дифференцированости клетки (ее «потенция к развитию») называется потентностью. Клетки, способные дифференцироваться в любую клетку взрослого организма, называются плюрипотентными. Зигота и последуюшие бластомеры являются тотипотентными так как они могут дифференцироваться в любую клетку, в том числе и во внешние эмбриональные ткани.
Самая первая дифференцировка в процессе развития эмбриона происходит, когда из 32 тотипотентных клеток, на которые поделилась зигота, формируются два разных слоя: внутренний эмбриобласт и внешний трофобласт. Эмбриобласт дает начало плюрипотентным эмбриональным стволовым клеткам, из которых потом формируется весь организм. Трофобласт становится плацентой. По мере развития эмбриона клетки становятся все более специализированными (мультипотентные, унипотентные) пока не станут окончательно дифференцировавшими клетками, обладающими конечной функцией, как например мышечные клетки. В организме человека насчитывается порядка 220 различных типов клеток.
Небольшое количество клеток во взрослом организме сохраняют мультипотентность. Они используются в процессе естественного обновления клеток крови, кожи и др., а также для замещения поврежденных тканей. Так как эти клетки обладают двумя основными функциями стволовых клеток — способность обновляться, поддерживая мультипотентность, и способность дифференцироваться — их называют взрослыми стволовыми клетками.
5. Клеточный цикл, его периодизация. Митотический цикл и его механизмы. Проблемы клеточной пролиферации в медицине
В результате процессов обмена веществ и энергии клетка все время изменяется, происходит ее онтогенез, получивший название жизненного цикла клетки. Клеточный цикл – это периоды существования клетки от момента ее образования рутем деления материнской клетки до собственного деления или смерти. С размножением клеток, или пролиферацией, связаны рост и обновление многих структур в многоклеточном организме. Пролиферационный (митотический) цикл – комплекс взаимосвязанных и согласованных во времени событий, происходящих в процессе подготовки клетки к делению и на протяжении самого деления. При размножении клеток осуществляются механизмы, лежащие в основе наследования свойств и передачи потока информации также на организменном уровне. Кроме того, в жизненный цикл включается период выполнения клеткой многоклеточного организма специфических функций, а также периоды покоя.В периоды покоя клетка может либо начать подготовку к митозу, либо приступить к специализации в определенном функциональном направлении
Молодые клетки, образовавшиеся после деления, не могут немедленно приступить к новому клеточному делению. В них предварительно должны произойти важные процессы: увеличение объема, восстановление структурных компонентов ядра и цитоплазмы, связанных с синтезом белка и нуклеиновых кислот.
Совокупность процессов, происходящих в клетке от одного деления до следующего и заканчивающихся образованием двух клеток новой генерации, называется митотическим циклом. Различают четыре периода этого цикла: пресинтетический (или постмитотический), синтетический, постсинтетический (или премитотический) и митоз.
Пресинтетический период (G1) следует непосредственно за делением. В это время синтез ДНК еще не происходит, но накапливаются РНК и белок, необходимые для образования клеточных структур. Это наиболее длительная фаза; в готовящихся к делению клетках она продолжается от 10 ч до нескольких суток.
Второй период — синтетический (S) характеризуется синтезом ДНК и редупликацией хромосомных структур, поэтому к концу его содержание ДНК удваивается. Происходит также синтез РНК и белка. Продолжительность этой фазы 6—10 ч.
В следующий, постсинтетический период (G2), ДНК уже не синтезируется, но происходит накопление энергии и продолжается синтез РНК и белков, преимущественно ядерных. Эта фаза длится 3—4 ч. Наконец, наступает деление ядра клетки — митоз (гр. mitos — нить), или кариокинез (гр. karyon — ядро, kinesis— движение). Термины «митоз» и «кариокинез»— синонимы.
Если количество ДНК в гаплоидном наборе хромосом (n) обозначить как С, то после деления клетки диплоидный набор хромосом (2n) содержит 2С ДНК. В пресинтетический период (G1) неизменным сохраняется то же количество ДНК, но в синтетиеский период (S) количество ДНК удваивается, и тогда, когда клетка переходит к постсинтетияескому периоду (G2), диплоидный набор хромосом (2n) содержит уже 4С ДНК. В это время каждая из хромосом редуплицирована и состоит из двух нитей (хроматид). Постсинтетический период и период митоза характеризуются сохранением того же набора хромосом (2n) и того же количества ДНК (4С). В результате митоза каждая дочерняя клетка содержит 2n хромосом и 2C ДКК.
Три периода митотического цикла (G1, S, G2), во время которых происходит подготовка клетки к делению, объединяются под названием интерфазы. В ряде случаев клетки, образовавшиеся в результате деления, могут начать подготовку к следующему делению. Так происходит в эмбриональных и других быстро размножающихся тканях. При этом митотический цикл клетки совпадает со всем периодом ее существования, .т. е. жизненным циклом клетки. Если же клетки приобретают специализацию, начинают дифференцироваться, то пресинтетический период удлиняется. Для клеток каждого типа тканей устанавливается определенная продолжительность периода G1. В высокоспециализированных клетках, таких, как нервные, период G1 продолжается в течение всей жизни организма. Другими словами, они все время находятся в пресинтетическом периоде и никогда не делятся. Однако некоторые дифференцированные клетки (эпителиальная, соединительнотканная) при определенных условиях из периода G1 переходят к следующим периодам митотического цикла. У таких клеток жизненный цикл продолжительнее митотического.
Деление клетки. Деление клетки включает два этапа: деление ядра — митоз и деление цитоплазмы — цитокинез.
Митоз — сложное деление ядра клетки, биологическое значение которого заключается в точном идентичном распределении дочерних хромосом с содержащейся в них генетической информацией между ядрами дочерних клеток. А в результате этого деления ядра дочерних клеток имеют набор хромосом, по количеству и качеству идентичный таковому материнской клетки. Хромосомы — основной субстрат наследственности, они — та единственная структура, для которой доказана самостоятельная способность к редупликации. Все другие органоиды клетки, способные к редупликации, осуществляют ее под контролем ядра. В связи с этим важно сохранить постоянство числа хромосом и равномерно распределить их между дочерними клетками, что и достигается всем механизмом митоза. Такой способ деления в клетках растений был открыт в 1874 г. русским ботаником И. Д. Чистяковым (1843—1877), а в клетках животных — в 1878 г. русским гистологом П. И. Перемежко (1833—1894). Детальные исследования по делению клеток были выполнены несколько позже на растительных объектах Э. Страсбургером (1844—1912) и на клетках животных — В. Флеммингом.
В процессе митоза последовательно протекает четыре фазы: профаза, ,метафаза, анафаза и телофаза. Эти фазы, непосредственно следующие друг за другом, связаны незаметными переходами. Каждая предыдущая обусловливает переход к последующей.
В клетке, вступающей в деление, хромосомы приобретают вид клубка из множества тонких, слабо спирализо-ванных нитей. В это время каждая хромосома состоит из двух сестринских хроматид. Образование хроматид происходит в S-период митотического цикла как следствие репликации ДНК.
В самом начале профазы, а иногда и до ее наступления центриоль делится на две, и они расходятся к полюсам ядра. Одновременно хромосомы претерпевают процесс скручивания (спирализации), вследствие чего значительно укорачиваются и утолщаются. Хроматиды несколько отходят друг от друга, оставаясь связанными лишь центромерами. Между хроматидами появляется щель. Ядрышки исчезают, ядерная оболочка под действием ферментов из лизосом растворяется, хромосомы оказываются погруженными в цитоплазму. Одновременно появляется ахроматиновая фигура, которая состоит из нитей, тянущихся от полюсов клетки (если есть центриоли, то от них). Ахроматиновые нити прикрепляются к центромерам хромосом. Образуется веретено деления. Электронно-микроскопические исследования показали, что нити веретена — это трубочки, канальцы. Погруженные в цитоплазму хромосомы направляются к экватору клетки.
В метафазе хромосомы находятся в упорядоченном состоянии в области экватора. Хорошо видны все хромосомы, благодаря чему изучение кариотипов (подсчет числа, изучение форм хромосом) проводится именно в этой стадии. В это время каждая хромосома состоит из двух хроматид, концы которых разошлись. Поэтому на метафазных пластинках (и идиограммах из метафазных хромосом) хромосомы имеют X-образную форму. Изучение хромосом проводится именно в этой стадии.
В анафазе каждая хромосома продольно расщепляется по всей ее длине, в том числе и в области центромеры - происходит расхождение хроматид, которые после этого становятся сестринскими, или дочерними, хромосомами. Они имеют палочкообразную форму, изогнутую в области первичной перетяжки. Нити веретена сокращаются, направляются к полюсам, а за ними начинают расходиться к полюсам и дочерние хромосомы. Расхождение их осуществляется быстро и всех одновременно. В телофазе дочерние хромосомы достигают полюсов. После этого хромосомы деспирализуются, теряют ясные очертания, вокруг них формируются ядерные оболочки. Ядро приобретает строение, сходное с интерфазным материнской клетки. Восстанавливается ядрышко.
Далее происходит цитокинез, т. е. разделение цитоплазмы. В клетках животных этот процесс начинается с образования в экваториальной зоне перетяжки, которая, все более углубляясь, отделяет, наконец, сестринские клетки друг от друга. В клетках растений разделение сестринских клеток начинается во внутренней области материнской клетки. Здесь мелкие пузырьки эндоплазматической сети сливаются, образуя, в конце концов, клеточную мембрану. Построение целлюлозных клеточных оболочек связано с использованием секретов, накапливающихся в диктиосомах.
Митоз, сочетающийся с задержкой цитокинеза, приводит к образованию многоядерных клеток. Такой процесс наблюдается, например, при размножении простейших путем шизогонии. У многоклеточных организмов так образуются синцитии, т. е. ткани, состоящие из протоплазмы, в которой отсутствуют границы между клетками. Такими являются некоторые мышечные ткани и тегумент плоских червей.
Продолжительность каждой из фаз митоза различна — от нескольких минут до сотен часов, что зависит от ряда причин: типа тканей, физиологического состояния организма, внешних факторов (температура, свет, химические вещества). Изучение влияния этих факторов на различные периоды митотического цикла с целью воздействия на него имеет большое практическое значение.
Амитоз — прямое деление клетки надвое путем перетяжки. При этом делении морфологически сохраняется интерфазное состояние ядра, хорошо видны ядрышко и ядерная мембрана. Хромосомы не выявляются и равномерного распределения их не происходит. Ядро делится на две относительно равные части без образования веретена деления. Равномерного рапределения генетического материала не происходит (из одной клетки образуются 2 неидентичные друг другу). Образовавшиеся клетки делиться митотически не могут. В норме у человека амитоз встречается в клетках специализированных тканей (зародышевые оболочки, фолликулярные клетки яичника), при необходимости быстрого восстановления тканей (после операций, травм ит.д.), в отживших стареющих клетках и др. При патологии у человека встречается в патологически измененных клетках, не способных в дальнейшем дать полноценные клетки (воспаления, злокачественный рост при опухолях).
Эндомитоз (гр. endon — внутри). При эндомитозе после репродукции хромосом деления клетки не происходит. Это приводит к увеличению числа хромосом иногда в десятки раз по сравнению с диплоидным набором, т. е. приводит к возникновению полиплоидных клеток. Эндомитоз встречается в интенсивно функционирующих клетках различных тканей, например в клетках печени.
Политения (гр. роlу — много). Политенией называется воспроизведение в хромосомах тонких структур — хромонем, количество которых может увеличиваться многократно, достигая 1000 и более, но увеличения числа хромосом при этом не происходит. Хромосомы приобретают гигантские размеры. Политения наблюдается в некоторых специализированных клетках, например, в слюнных железах двукрылых. При политении выпадают все фазы митотического цикла, кроме репродукции первичных нитей хромосом. Клетки с политенными хромосомами у дрозофилы используются для построения цитологических карт генов в хромосомах.
Процесс деления клетки с момента ее активации
называется пролиферацией. Иными словами, пролиферация – это размножение клеток,
т.е. увеличение числа клеток (в культуре или ткани), происходящее путем
митотических делений. Во взрослом организме человека клетки различных тканей и
органов имеют неодинаковую способность к делению. Кроме того при старении
интенсивность пролиферации клеток снижается (т.е. увеличивается интервал между митозами). Встречаются популяции клеток, полностью потерявшие свойство делиться.
Это, как правило, клетки, находящиеся на терминальной стадии дифференцировки, например, зрелые нейроны, зернистые лейкоциты крови, кардиомиоциты. В этом отношении
исключение составляют иммунные В- и Т-клетки памяти, которые, находясь в конечной стадии дифференцировки,
при появлении в организме определенного стимула в виде ранее встречавшегося антигена, способны начать пролиферировать. В организме есть постоянно
обновляющиеся ткани – различные типы эпителия, кроветворные ткани. В таких
тканях существует пул клеток, которые постоянно делятся, заменяя отработавшие
или погибающие типы клеток (например, клетки крипт
кишечника,
клетки базального слоя покровного эпителия, кроветворные клетки костного мозга). Также в организме существуют клетки, которые не
размножаются в обычных условиях, но вновь приобретают это свойство при
определенных условиях, в частности при необходимости регенерации тканей и органов.
Процесс пролиферации клеток жестко регулируется
как самой клеткой (регуляция клеточного цикла, прекращение или замедление синтеза аутокринных ростовых факторов и их
рецепторов), так и ее микроокружением (отсутствие стимулирующих контактов с
соседними клетками и матриксом, прекращение секреции и/или синтеза паракринных ростовых факторов).
Нарушение регуляции пролиферации приводит к неограниченному делению клетки, что
в свою очередь инициирует развитие онкологического процесса в организме. В опухолях атипичные клетки делятся митотическим
способом. В результате деления образуются идентичные измененной клетки. Деление
происходит многократно. В итоге опухоль быстро растет.
В результате нарушения пролиферации клеток возникают также различные иммунодефициты, анемии, кератоз и др.
С начала 60-х гг. появились новые взгляды на значение для старения и продолжительности жизни закономерностей клеточной пролиферации. На основании подсчета числа делений фибробластов, высеваемых в культуру ткани от эмбриона человека и от людей в возрасте 20 лет и выше, было сделано заключение о пределе клеточных делений (лимит Хейфлика), которому соответствует видовая длительность жизни. Старение – свойство самих клеток, запрограммированное в геноме, т.к. наступает после определенного количества делений. Показано, что фибробласты мыши способны удваивать свою численность 14—28 раз, цыпленка —15—35, человека—40—60, черепахи—72—114 раз.
6. Особенности морфологического и функционального строения хромосомы. Гетеро- и эухроматин. Кариотип и идиограмма хромосом человека. Характеристика кариотипа человека в норме и патологии.
Термин хромосома был предложен в 1888 г. немецким морфологом В. Вальдейером, который применил его для обозначения внутриядерных структур эукариотической клетки, хорошо окрашивающихся основными красителями (от греч. хрома — цвет, краска, и сома — тело). К началу XX в. углубленное изучение поведения этих структур в ходе самовоспроизведения клеток, при созревании половых клеток, при оплодотворении и раннем развитии зародыша обнаружило строго закономерные динамические изменения их организации. Это привело немецкого цитолога и эмбриолога Т. Бовери (1902—1907) и американского цитолога У. Сеттона (1902—1903) к утверждению тесной связи наследственного материала с хромосомами, что легло в основу хромосомной теории наследственности. Детальная разработка этой теории была осуществлена в начале XX в. школой американских генетиков, возглавляемой Т. Морганом.
Представление о хромосомах как носителях комплексов генов было высказано на основе наблюдения сцепленного наследования ряда родительских признаков друг с другом при передаче их в ряду поколений.
Изучение химической организации хромосом эукариотических клеток показало, что они состоят в основном из ДНК и белков, которые образуют нуклеопротеиновый комплекс—хроматин, получивший свое название за способность окрашиваться основными красителями.
Все хромосомные белки разделяются на две группы: гистоны и негистоновые белки.
Гистоны представлены пятью фракциями: HI, Н2А, Н2В, НЗ, Н4. Являясь положительно заряженными основными белками, они достаточно прочно соединяются с молекулами ДНК, чем препятствуют считыванию заключенной в ней биологической информации. В этом состоит их регуляторная роль. Кроме того, эти белки выполняют структурную функцию, обеспечивая пространственную организацию ДНК в хромосомах.
Число фракций негистоновых белков превышает 100. Среди них ферменты синтеза и процессинга РНК, редупликации и репарации ДНК. Кислые белки хромосом выполняют также структурную и регуляторную роль. Регуляторная роль компонентов хромосом заключается в «запрещении» или «разрешении» списывания информации с молекулы ДНК.
Хроматин в зависимости от периода и фазы клеточного цикла меняет свою организацию. В интерфазе при световой микроскопии он выявляется в виде глыбок, рассеянных в нуклеоплазме ядра. При переходе клетки к митозу, особенно в метафазе, хроматин приобретает вид хорошо различимых отдельных интенсивно окрашенных телец — хромосом. Хромосомы могут находиться в двух структурно-функциональных состояниях: в конденсированном (спирализованном) и деконденсированном (деспирализованном). В неделящейся клетке хромосомы не видны, обнаруживаются лишь глыбки и гранулы хроматина, так как хромосомы частично или полностью деконденсируются. Это их рабочее состояние. Чем более диффузен хроматин, тем интенсивнее в нем синтетические процессы. Ко времени деления клетки происходит конденсация (спирализация) хроматина и при митозе хромосомы хорошо видны.
Мельчайшими структурными компонентами хромосом являются нуклеопротеидные фибриллы, они видимы лишь в электронный микроскоп. Хромосомные нуклеопротеиды — ДНП — состоят из ДНК и белков, преимущественно гистонов. Молекулы гистонов образуют группы — нуклеосомы. Каждая нуклеосома состоит из 8 белковых молекул. Размер нуклеосомы около 8 нм. С каждой нуклеосомой связан участок ДНК, спирально оплетающий ее снаружи.
В хроматине не вся ДНК связана с нуклеосомами, около 10—13 % ее длины свободно от них.
Существует представление, что хромосома состоит из одной гигантской фибриллы ДНП, образующей мелкие петли, спирали и разнообразные изгибы. По другим представлениям фибриллы ДНК попарно скручиваются, образуя хромонемы (гр. пета — струна), которые входят в комплексы более высокого порядка — также спирально закрученные полухроматиды. Пара полухроматид составляет хроматиду, а пара хроматид — хромосому.
Каким бы ни было тонкое строение хромосомы, от степени скручивания нитчатых структур зависит ее длина. На различных участках одной и той же хромосомы спирализация, компактность ее основных элементов неодинакова, с этим связана различная интенсивность окраски отдельных участков хромосомы.
Участки хромосомы, интенсивно воспринимающие красители, получили название гетерохроматических (состоящих из гетерохроматина), они даже в период между делениями клетки остаются компактными, видимыми в световой микроскоп. Слабо окрашивающиеся участки, деконденсирующиеся в периоды между делениями клетки и становящиеся невидимыми, получили название эухроматических (состоящих из эухроматина).
Предполагается, что эухроматин содержит в себе гены, а гетерохроматин выполняет по преимуществу структурную функцию. Он находится в интенсивно спирализованном состоянии и занимает одни и те же участки в гомологичных хромосомах, в частности составляет участки, прилегающие к центромере и находящиеся на концах хромосом. Потеря участков гетерохроматина может не отражаться на жизнедеятельности клетки. Выделяют факультативный гетерохроматин. Он возникает при спирализации и инактивации двух гомологичных хромосом, так образуется тельце Бара (х — половой хроматин). Его образует одна из двух Х-хромосом у женских особей млекопитающих и человека.
Хромосомы во время деления клетки, в период метафазы имеют форму нитей, палочек и т. д. Строение одной и той же хромосомы на различных участках неоднородно. В хромосомах различают первичную перетяжку, делящую хромосому на два плеча. Первичная перетяжка (центромера) — наименее спирализованная часть хромосомы. На ней располагается кинетохор (гр. kinesis — движение, phoros — несущий), к которому при делении клетки прикрепляются нити веретена деления. Место расположения первичной перетяжки у каждой пары хромосом постоянно, оно обусловливает и форму. В зависимости от места расположения центромеры различают три типа хромосом: метацентрические, субметацентрические и акроцентрические. Метацентрические хромосомы имеют равной или почти равной величины плечи, у субметацентрических плечи неравной величины, акроцентрические имеют палочковидную форму с очень коротким, почти незаметным вторым плечом. Могут возникнуть и телоцентрические хромосомы в результате отрыва одного плеча, у них остается только одно плечо и центромера находится на конце хромосомы. В нормальном кариотипе такие хромосомы не встречаются.
Концы плеч хромосом получили название теломеров, это специализированные участки, которые препятствуют соединению хромосом между собой или с их фрагментами. Лишенный теломеры конец хромосомы оказывается «ненасыщенным», «липким» и легко присоединяет фрагменты хромосом или соединяется с такими же участками. В норме теломеры препятствуют таким процессам и сохраняют хромосому как дискретную индивидуальную единицу, т. е. обеспечивают ее индивидуальность. Некоторые хромосомы имеют глубокие вторичные перетяжки, отделяющие участки хромосом, называемые спутниками. Такие хромосомы в ядрах клеток человека могут сближаться друг с другом, вступать в ассоциации, а тонкие нити, соединяющие спутники с плечами хромосом, при этом способствуют формированию ядрышек. Именно эти участки в хромосомах человека являются ядрышковыми организаторами. У человека вторичные перетяжки имеются на длинном плече 1, 9 и 16 хромосом и на концевых участках коротких плеч 13—15 и 21—22 хромосом.
В плечах хромосом видны более толстые и интенсивнее окрашенные участки — хромомеры, чередующиеся с межхромомернымн нитями. Вследствие этого хромосома может напоминать нитку неравномерно нанизанных бус.
Установлено, что каждый вид растений и животных имеет определенное и постоянное число хромосом. Другими словами, число хромосом и характерные особенности их строения — видовой признак. Эта особенность известна как правило постоянства числа хромосом. Так, в ядрах всех клеток лошадиной аскариды (Paraascaris megalocephala univalenus) находятся по 2 хромосомы, у мухи дрозофилы (Drosophila melanogaster) — по 8, у человека — по 46. Примеры: малярийный плазмодий (2), гидра (32), речной рак (116) и т.д.
Число хромосом не зависит от высоты организации и не всегда указывает на филогенетическое родство: одно и то же число может встречаться у очень далеких друг от друга форм и сильно разниться у близких видов. Однако очень важно, что у всех организмов, относящихся к одному виду, число хромосом в ядрах всех клеток, как правило, постоянна.
Следует обратить внимание на то, что во всех приведенных выше примерах число хромосом четное. Это связано с тем, что хромосомы составляют пары (правило парности хромосом).
У лошадиной аскариды одна пара хромосом, у дрозофилы — 4, у человека — 23. Хромосомы, которые относятся к одной паре, называются гомологичными. Гомологичные хромосомы одинаковы по величине и форме, у них совпадают расположение центромер, порядок расположения хромомер и межхромомерных нитей, а также другие детали строения, в частности, расположение гетерохроматиновых участков. Негомологичные хромосомы всегда имеют отличия. Каждая пара хромосом характеризуется своими особенностями. В этом выражается правило индивидуальности хромосом.
В последовательных генерациях клеток сохраняется постоянное число хромосом и их индивидуальность вследствие того, что хромосомы обладают способностью к авторепродукции при делении клетки.
Таким образом, не только «каждая клетка от клетки», но и «каждая хромосома от хромосомы». В этом выражается правило непрерывности хромосом.
В ядрах клеток тела (т. е. соматических клетках) содержится полный двойной набор хромосом. В нем каждая хромосома имеет партнера. Такой набор называется диплоидным и обозначается 2n. В ядрах половых клеток в отличие от соматических из каждой пары гомологичных хромосом присутствует лишь одна хромосома. Так, в ядрах половых клеток лошадиной аскариды всего одна хромосома, дрозофилы — 4, человека — 23. Все они различны, негомологичны. Такой одинарный набор хромосом называется гаплоидным и обозначается п. При оплодотворении происходит слияние половых клеток, каждая из которых вносит в зиготу гаплоидный набор хромосом, и восстанавливается диплоидный набор: п + п = 2n.
При сравнении хромосомных наборов из соматических клеток мужских и женских особей, принадлежащих одному виду, обнаруживалось отличие в одной паре хромосом. Эта пара получила название половых хромосом, или гетерохромосом. Все остальные пары хромосом, одинаковые у обоих полов, имеют общее название аутосом. Так, у дрозофилы 3 пары аутосом и одна пара гетерохромосом.
ПОНЯТИЕ О КАРИОТИПЕ. Исследованиями цитологов установлен факт специфичности хромосомного набора клеток организмов одного вида. Специфичность проявляется в постоянстве числа хромосом, их относительных размеров, формы, деталей строения. Хромосомный комплекс клеток конкретного вида растений и животных с присущими ему морфологическими особенностями, называется кариотипом. Важнейшим показателем кариотипа служит число хромосом.
Для соматических клеток многоклеточных организмов характерен диплоидный хромосомный набор. В нем каждая хромосома имеет парного себе гомологичного партнера, повторяющего в деталях размеры и особенности ее морфологии. Таким образом, в хромосомном наборе соматических клеток выделяют гомологичные (из одной пары) и негомологичные (из разных пар) хромосомы.
Половые клетки отличаются вдвое меньшим — гаплоидным числом хромосом.
Хромосомному комплексу свойственны половые различия. Наборы хромосом самца и самки отличаются по одной паре. Поскольку эти хромосомы участвуют в определении пола организмов, они называются половыми (гетерохромосомами). Остальные пары представлены аутосомами и неразличимы по своей структуре у самца и самки.
Для изучения кариотипа человека обычно используют клетки костного мозга, культуры фибробластов или лейкоцитов периферической крови, так как эти клетки легце всего получить. При приготовлении препарата хромосом к культуре клеток добавляют колхицин, останавливающий деление клеток на стадии метафазы. Затем клетки обрабатывают гипотоническим раствором, отделяющим хромосомы друг от друга, после чего их фиксируют и окрашивают.
Благодаря такой обработке каждая хромосома четко видна в световом микроскопе. Для индивидуальной идентификации хромосом используют следующие признаки: размер, положение первичной перетяжки, наличие вторичных перетяжек и спутников. Результат представляется в виде идиограммы, на которой хромосомы располагаются в порядке убывания размеров. Составление идиограмм, как и сам термин, были предложены советским цитологом Навашиным С.Г.
(8) Размножение, или репродукция,— одно из основных свойств, характеризующих жизнь. Под размножением понимается способность организмов производить себе подобных. Явление размножения тесно связано с одной из черт, характеризующих жизнь,— дискретностью. Как известно, целостный организм состоит из дискретных единиц — клеток. Жизнь почти всех клеток короче жизни особи, поэтому существование каждой особи поддерживается размножением клеток. Каждый вид организмов также дискретен, т. е. состоит из отдельных особей. Каждая из них смертна. Существование вида поддерживается размножением (репродукцией) особей. Следовательно, размножение — необходимое условие существования вида и преемственности последовательных генераций внутри вида. В основе классификации форм размножения лежит тип деления клеток: митотический (бесполое) и мейоти-ческий (половое).
Бесполое размножение. У одноклеточных эукариот это — деление, в основе которого лежит митоз, у прокариот — разделение нуклеоида, а у многоклеточных организмов — вегетативное (лат. vegetatio — расти) размножение, т. е. частями тела или группой соматических клеток.
Бесполое размножение одноклеточных организмов. У одноклеточных растений и животных различают следующие формы бесполого размножения: деление, эндогония, множественное деление (шизогония) и почкование.
Деление характерно для одноклеточных (амебы, жгутиковые, инфузории). Сначала происходит митотическое деление ядра, а затем в цитоплазме возникает все углубляющаяся перетяжка. При этом дочерние клетки получают равное количество информации. Органоиды обычно распределяются равномерно. В ряде случаев обнаружено, что делению предшествует их удвоение. После деления дочерние особи растут и, достигнув величины материнского организма, переходят к новому делению.
Эндогония — внутреннее почкование. При образовании двух дочерних особей — эндодиогонии — материнская дает лишь двух потомков (так происходит размножение токсоплаз-мы), но может быть множественное внутреннее почкование, что приведет к шизогонии.
Шизогония, или множественное деление,— форма размножения, развившаяся из предыдущей. Она тоже встречается у одноклеточных организмов, например у возбудителя малярии — малярийного плазмодия. При шизогонии происходит многократное деление ядра без цитокинеза, а затем и вся цитоплазма разделяется на частички, обособляющиеся вокруг ядер. Из одной клетки образуется много дочерних. Эта форма размножения обычно чередуется с половой.
Почкование заключается в том, что на материнской клетке первоначально образуется небольшой бугорок, содержащий дочернее ядро, или нуклеоид. Почка растет, достигает размеров материнской особи и затем отделяется от нее. Эта форма размножения наблюдается у бактерий, дрожжевых грибов, а из одноклеточных животных — у сосущих инфузорий.
Спорообразование встречается у животных, относящихся к типу простейших, классу споровиков. Спора — одна из стадий жизненного цикла, служащая для размножения, она состоит из клетки, покрытой оболочкой, защищающей от неблагоприятных условий внешней среды. Некоторые бактерии после полового процесса способны образовывать споры. Споры бактерий служат не для размножения, а для переживания неблагоприятных условий и по своему биологическому значению отличаются от спор простейших и многоклеточных растений.
Вегетативное размножение многоклеточных животных. При вегетативном размножении у многоклеточных животных новый организм образуется из группы клеток, отделяющейся от материнского организма. Вегетативное размножение встречается лишь у наиболее примитивных из многоклеточных животных: губок, некоторых кишечнополостных, плоских и кольчатых червей.
У губок и гидры за счет размножения группы клеток на теле образуются выпячивания (почки). В почку входят клетки экто- и энтодермы. У гидры почка постепенно увеличивается, на ней формируются щупальца, и, наконец, она отделяется от материнской особи. Ресничные и кольчатые черви делятся перетяжками на несколько частей; в каждой из них восстанавливаются недостающие органы. Так может образоваться цепочка особей. У некоторых кишечнополостных встречается размножение стробиляцией, заключающейся в том, что полипоидный организм довольно интенсивно растет и по достижении известных размеров начинает поперечными перетяжками делиться на дочерние особи. В это время полип напоминает стопку тарелок. Образовавшиеся особи — медузы отрываются и начинают самостоятельную жизнь. У многих видов (например, кишечнополостных) вегетативная форма размножения чередуется с половой.
Особой формой вегетативного размножения следует признать полиэмбрионию, при которой эмбрион делится на несколько частей, каждая из которых развивается в самостоятельный организм. Полиэмбриония распространена у ос (наездники), ведущих паразитический образ жизни в личиночном состоянии, из млекопитающих — у броненосца. К этой категории явлений относится образование однозиготных близнецов у человека и других млекопитающих.
Половое размножение. Половое размножение характеризуется наличием полового процесса, который заключается обычно в слиянии двух клеток — гамет. Формированию гамет у многоклеточных предшествует особая форма деления клеток — мейоз.
В результате мейоза в половых клетках находится не диплоидный, как в соматических клетках, а гаплоидный набор хромосом. Поэтому в жизненном цикле организмов, размножающихся половым способом, имеется две фазы — гаплоидная и диплоидная. Продолжительность этих фаз у различных групп организмов не одинакова: у грибов, мхов и некоторых простейших преобладает гаплоидная, у высших растений и многоклеточных животных — диплоидная. Биологическое значение мейоза описано ниже.
Разнообразные формы полового процесса у одноклеточных организмов можно объединить в две группы: конъюгацию, при которой специальные половые клетки (половые особи) не образуются, и гаметическую копуляцию, когда формируются половые элементы и происходит их попарное слияние.
Конъюгацая — своеобразная форма полового процесса, существующая у инфузорий. Инфузории — животные типа простейших. Характерной чертой их является наличие двух ядер: большого — макронуклеуса и малого— микронуклеуса. Инфузории обычно размножаются делением надвое. При этом микронуклеус делится митотически. При половом процессе — конъюгации — инфузории сближаются попарно, между ними образуется протоплазматический мостик. Одновременно в ядерном аппарате каждого из партнеров совершаются сложные процессы: макронуклеус растворяется, а из мик
ронуклеуса в результате ряда перестроек в конце концов формируются стационарное и мигрирующее ядра. Каждое из них содержит гаплоидный набор хромосом. Мигрирующие ядра переходят в цитоплазму партнера. В каждом из них стационарное и мигрирующее ядра сливаются, образуя так называемый синкарион (тр. syn — вместе, karyon — ядро), содержащий диплоидный набор хромосом. После ряда сложных перестроек из синка-риона формируются обычные макро- и микронуклеусы.
После конъюгации инфузории расходятся; каждая из них сохраняет самостоятельность, но благодаря обмену кариоплазмой наследственная информация каждой особи изменяется, что, как и в других случаях полового процесса, может привести к появлению новых комбинаций свойств и признаков.
Для бактерий характерно размножение почкованием, но обнаружен и половой процесс. У некоторых видов бактерий существуют особи, которые можно назвать женскими (реципиентными) и мужскими (донорскими). Между такими особями периодически осуществляется конъюгация. Она резко отличается от конъюгации инфузорий. У бактерий две особи образуют между собой протоплазматический мостик, через который часть нити ДНК переходит из донорской клетки в реципиентную. Явление конъюгации у бактерий также приводит к комбинативной изменчивости.
Образование гамет и гаметическая копуляция. Копуляцией (лат. copulatio — совокупление) называется половой процесс у одноклеточных организмов, при котором две особи приобретают половые различия, т. е. превращаются в гаметы и полностью сливаются, образуя зиготу. В процессе эволюции степень различия гамет нарастает. На первом этапе полового размножения гаметы еще не наблюдается морфологической дифференцировки, т. е. имеет меcто изогамия. Примером может служить размножение
раковинной корненожки полистомеллы (Ро1уstomella) и жгутиконосца поли-томы (Ро1уtoma). У этих одноклеточных животных ядро делится мейо-зом, три гаплоидные ядра лизируются, а клетка, приобретая пару жгутиков, становится подвижной изогаметой.
Дальнейшее усложнение процесса связаное с дифференцировкой гамет на крупные и мелкие клетки, т. е. появлением анизогамии (гр. anisos— неравный). Наиболее примитивная форма ее существует у некоторых колониальных жгутиконосцев. У Pandorina morum образуются как большие, так и малые гаметы, причем и те, и другие подвижны. Более того, сливаться попарно могут не только большая гамета с малой, но и малая с малой, однако большая гамета с большой никогда не сливается. Следовательно, у пандорины наряду с появлением анизогамии еще сохраняется изогамия. У другого колониального жгутиконосца Eudarina elegans и хламидомонад макро- и микрогаметы еще подвижны, но сливаются лишь разные гаметы, т. е. проявляется исключительно анизогамия.
Наконец, у вольвокса (Volvox globator) большая гамета становится неподвижной; она во много раз крупнее мелких подвижных гамет. Такая форма анизогамии, когда гаметы резко различны, получила название овогамии. У многоклеточных животных при половом размножении имеет место лишь овогамия.
Развитие гамет у многоклеточных животных происходит в половых железах — гонадах (гр. gone — семя). Различают два типа половых клеток: мужские (сперматозооны) и женские (яйцеклетки). Сперматозооны развиваются в семенниках, яйцеклетки — в яичниках.
Если мужские и женские половые клетки развиваются в одной особи, такой организм называется гермафро-дитным. Гермафродитизм свойствен многим животным, стоящим на сравнительно низких ступенях эволюции органического мира: плоским и кольчатым червям, моллюскам. Как патологическое состояние он может встречаться и в других группах животных и у человека. У человека это обычно следствие нарушений эмбрионального развития. Описаны случаи и мозаи-цизма, когда в одних соматических клетках набор хромосом XX, в других — ХY.
При естественном гермафродитизме мужские и женские половые железы могут функционировать одновременно на протяжении всей жизни данной особи, например у сосальщиков, ленточных и кольчатых червей. В таких случаях организмы, как правило, имеют ряд приспособлений, препятствующих самооплодотворению.
У некоторых моллюсков половая железа периодически продуцирует то яйцеклетки, то сперматозооны. Это зависит как от возраста особи, так и от условий существования. Например, у устриц это может быть обусловлено преобладанием белкового или углеводного питания.
Половые клетки развиваются из первичных половых клеток, обособляющихся на ранних стадиях зародышевого развития; у аскариды, ракообразных, насекомых и лягушки — уже в процессе дробления, у пресмыкающихся и птиц — на стадии гаструлы, у млекопитающих и человека — во время раннего органогенеза. Первичные половые клетки имеют ряд морфологических и биохимических особенностей в отличие от соматических кле- ток. Если у зародыша разрушить первичные половые клетки, то гаметы у него не формируются.
(9) Гаметогенез. Сперматозооны обладают способностью к движению, чем в известной мере обеспечивается возможность встречи гамет. По внешней морфологии и малому количеству цитоплазмы сперматозооны резко отличаются от всех других клеток, но все основные органоиды в них имеются.
Типичный сперматозоон имеет головку, шейку и хвост. На переднем конце головки расположена акросома, состоящая из видоизмененного комплекса Гольджи. Основную массу головки занимает ядро. В шейке находятся центриоль и спиральная нить, образованная митохондриями.
При исследовании сперматозоонов под электронным микроскопом обнаружено, что протоплазма головки его имеет не коллоидное, а жидкокристаллическое состояние. Этим достигается устойчивость сперматозоонов к неблагоприятным влияниям внешней среды. Например, они в меньшей степени повреждаются ионизирующей радиацией по сравнению с незрелыми половыми клетками.
Размеры сперматозоонов всегда микроскопические. Наиболее крупные они у тритона — около 500 мкм, у домашних животных (собака, бык, лошадь, баран) — от 40 до 75 мкм. Длина сперматозоонов человека колеблется в пределах 52—70 мкм. Все сперматозооны несут одноименный (отрицательный) электрический заряд, что препятствует их склеиванию. Число сперматозоонов, образующихся у жи-вотнчх, колоссально. Например, при половом акте собака выделяет их около 60 млн., баран — до 2 млрд. жеребец около 10 млрд., человек — около 200 млн.
Для некоторых животных характерны атипичные сперматозооны, строение которых весьма разнообразно. Например, у ракообразных они обладают выростами в виде лучей или отростков, у круглых червей имеют форму шаровидных или овальных телец и т. д.
Процесс формирования половых клеток (гамет) известен под общим названием гаметогенсза. Он характеризуется рядом весьма важных биологических процессов и протекает несколько по-разному при созревании сперматозоонов (сперматогенез) и яйцеклеток (овогенез).
Гаметогенез. Сперматогенез. Семенник состоит из многочисленных канальцев. На поперечном разрезе через
каналец видно, что в нем имеется несколько слоев клеток. Они представляют собой последовательные стадии развития сперматозоонов.
Наружный слой (зона размножения) составляют сперматогонии — клетки округлой формы; у них относительно большое ядро и значительное количество цитоплазмы. В период эмбрионального развития и после рождения до полового созревания сперматогонии делятся путем митоза, благодаря чему увеличиваются число этих клеток и сам семенник. Период интенсивного деления сперматогонии называется периодом размножения (рис. 3.4). После наступления половой зрелости часть сперматогониев также продолжает делиться митотически и образовывать такие же клетки, но некоторые из них перемещаются в следующую зону роста, расположенную ближе к просвету канальца. Здесь происходит значительное возрастание размеров клеток за счет увеличения количества цитоплазмы. В этой стадии они называются первичными сперматоцитами.
Третий период развития мужских гамет называется периодом созревания. В этот период происходят два быстро наступающих одно вслед за другим деления. Из каждого первичного сперматоцита сначала образуются два вторичных сперматоцита, а затем четыре сперматиды, имеющие овальную форму и значительно меньшие размеры. Деление клеток во время периода созревания сопровождается перестройкой хромосомного аппарата (происходит мейоз; см. ниже). Сперматиды перемещаются в зону, ближайшую к просвету канальцев, где из них формируются сперматозооны.
У большинства диких животных сперматогенез происходит лишь в определенные периоды года. В промежутках между ними в канальцах семенников содержатся лишь сперматогонии. Но у человека и большинства домашних животных сперматогенез происходит в течение всего года.
Овогенез. Фазы овогенеза сопоставимы с таковыми при сперматогенезе. В этом процессе также имеется период размножения, когда интенсивно делятся овогонии — мелкие клетки с относительно крупным ядром и небольшим количеством цитоплазмы. У млекопитающих и человека этот период заканчивается еще до рождения. Сформировавшиеся к этому времени первичные овоциты сохраняются далее без изменений многие годы. С наступлением половой зрелости периодически отдельные овоциты вступают в период роста клетки, увеличиваются, в них накапливаются желток, жир, пигменты. В цитоплазме клетки, в ее органоидах и мембранах происходят сложные морфологические и биохимические преобразования. Каждый овоцит окружается мелкими фоликулярными клетками, обеспечивающими его питание.
Далее наступает период созревания, в процессе которого происходят два последовательных деления, связанных с преобразованием хромосомного аппарата (мейоз). Кроме того, эти деления сопровождаются неравномерным разделением цитоплазмы между дочерними клетками. При делении первичного овоцита образуется одна крупная клетка — вторичный овоцит, содержащая почти вся цитоплазму, и маленькая клетка, получившая название первичного полоцита.
При втором делении созревания цитоплазма снова распределяется неравномерно. Образуется один крупный вторичный овоцит и вторичный полоцит. В это время первичный полоцит также может разделиться на две клетки. Таким образом, из одного первичного овоцита образуются один вторичный овоцит и три полоцита (редукционные тельца). Далее из вторичного овоцита формируется яйцеклетка, а полоциты рассасываются или сохраняются на поверхности яйца, но не принимают участия в дальнейшем развитии. Неравномерное распределение цитоплазмы обеспечивает яйцеклетке получение значительного количества цитоплазмы и питательных веществ, которые потребуются в будущем для развития зародыша.
У млекопитающих и человека периоды размножения и роста яйцеклеток проходят в фолликулах. Зрелый фолликул заполнен жидкостью, внутри него находится яйцеклетка. Во время овуляции стенка фолликула лопается, яйцеклетка попадает в брюшную полость, а затем, как правило, в маточные трубы. Период созревания яйцеклеток протекает в трубах, здесь же происходит оплодотворение.
У многих животных овогенез и созревание яйцеклеток совершаются лишь в определенные сезоны года. У женщин обычно ежемесячно созревает одна яйцеклетка, а за весь период половой зрелости — около 400. Для человека имеет существенное значение тот факт, что первичные овоциты формируются еще до рождения и затем сохраняются всю жизнь и лишь постепенно некоторые из них начинают переходить к созреванию и дают яйцеклетки. Это значит, что различные неблагоприятные факторы, которым подвергается в течение жизни женский организм, могут сказаться на их дальнейшем развитии; ядовитые вещества (в том числе никотин и алкоголь), попадающие в организм, могут про никнуть в овоциты и в дальнейшем зызвать нарушения нормального развития будущего потомства.
Мейоз. Как известно, в ядрах соматических клеток все хромосомы парные, набор хромосом двойной (2n), диплоидный. В процессе созревания половых клеток происходит редукционное деление (мейоз), при котором число хромосом уменьшается, становится одинарным (n), гаплоидным. Мейоз (гр. meiosis - уменьшение) происходит во время гаметогенеза. Этот процесс совершается во время двух следующих одно за другим делений периода созревания, называемых соответственно первым и вторым мейотическими делениями. Каждое из этих делений имеет фазы, аналогичные митозу: в интерфазе I (по-видимому, еще в период роста) происходит удвоение количества хромосомного материала путем редупликации молекул ДНК.
Из всех фаз наиболее продолжительна и сложна по протекающим в ней процессам профаза I. В ней различают 5 последовательных стадий.
Лептонема — стадия длинных, тонких, слабо спирализованных хромосом, на которых видны утолщения — хромомеры. Зигонема — стадия попарного соединения гомологичных хромосом, при котором хромомеры одной гомологичной хромосомы точно прикладываются к соответствующим хромомерам другой (это явление называется конъюгацией, или синапсисом). Пахинема — стадия толстых нитей. Гомологичные хромосомы соединены в пары — биваленты. Число бивалентов соответствует гаплоидному набору хромосом. На этой стадии каждая из хромосом, входящих в бивалент, состоит уже из двух хроматид, поэтому каждый бивалент включает в себя четыре хроматн-ды. В это время конъюгирующие хромосомы переплетаются, что приводит к обмену участками хромосом (происходит так называемый перекрест, или кроссинговер). Диплонема — стадия, когда гомологичные хромосомы начинают отталкиваться друг от друга, но в ряде участков, где происходит кроcсинговер, они продолжают быть еще связанными. Диакинез — стадия, на которой отталкивание гомологичных хромосом продолжается, но они еще остаются соединенными в биваленты своими концами, образуя характерные фигуры — кольца и кресты (хиазмы). На этой стадии хромосомы максимально спирализованы, укорочены и утолщены. Непосредственно после диакинеза ядерная оболочка растворяется.
В прометафазе I спирализация хромосом достигает наибольшей степени. Они перемещаются в области экватора. В метафазе I биваленты располагаются в направлении к противоположным полюсам и отталкиваются друг от друга. В анафазе I начинают расходиться к полюсам не хроматиды, а целые гомологичные хромосомы каж дои пары, так как в отличие от митоза центромера не делится и хроматиды не разъединяются. Этим первое мейотическое деление принципиально отличается от митоза. Деление заканчивается телофазой I.
Таким образом, во время первого ме-йотического деления происходит расхождение гомологичных хромосом. В каждой дочерней клетке уже содержится гаплоидное число хромосом, но содержание ДНК еще равно диплоидному их набору. Вслед за короткой интерфазой, во время которой синтеза ДНК не происходит, клетки вступают во второе мейотическое деление.
Прометафаза II продолжается недолго. Во время метафазы II хромосомы выстраиваются по экватору, центромеры делятся. В анафазе II сестринские хроматиды направляются к противоположным полюсам. Деление заканчивается телофазой II. После этого деления хроматиды, попавшие в ядра дочерних клеток, называются хромосомами.
Итак, при мейозе гомологичные хромосомы соединяются в пары, затем в конце первого мейотического деления расходятся по одной в дочерние клетки. Во время второго мейотического деления гомологичные хромосомы расщепляются и расходятся в новые дочерние клетки. Следовательно, в результате двух последовательных ме-йотических делений из одной клетки с диплоидным набором хромосом образуются четыре клетки с гаплоидным набором хромосом. В зрелых гаметах число хромосом и количество ДНК вдвое меньше, чем в соматических клетках.
При образовании как мужских, так и женских половых клеток происходят принципиально одни и те же процессы, хотя в деталях они несколько различаются.
Очень существенным отличием мейоза при овогенезе является наличие специальной стадии — диктиотены, отсутствующей при сперматогенезе. Она наступает вслед за диплонемой. На этой стадии мейоз в овоцитах прерывается на многие годы и переход к диа-кинезу наступает лишь при созревании яйцеклетки.
Значение мейотического деления заключается в следующем: 1. Это тот механизм, который обеспечивает поддержание постоянства числа хромосом. Если бы не происходило редукции числа хромосом при гаметогенезе, то из поколения в поколение возрастало бы их число и был бы утрачен один из существенных признаков
каждого вида — постоянство числа хромосом.
2. При мейозе образуется большое количество различных новых комбинаций негомологичных хромосом. Ведь в диплоидном наборе они двойного происхождения: в каждой гомологичной паре одна из хромосом от отца, другая — от матери. При мейозе хромосомы отцовского и материнского происхождения образуют в сперматозоонах и яйцеклетках большое количество новых сочетаний, а именно 2n, где п — число пар хромосом. Следовательно, у организма, имеющего три пары хромосом, этих сочетаний окажется 23, т. е. 8; у дрозофилы, имеющей 4 пары хромосом, их будет 24. т. е. 16, а у человека — 223, что составляет 8388608.
3. В процессе кроссинговера также происходит рекомбинация генетического материала. Практически все хромосомы, попадающие в гаметы, имеют участки, происходящие как от первоначально отцовских, так и от первоначально материнских хромосом. Этим достигается еще большая степень перекомбинации наследственного материала. В этом одна из причин изменчивости организмов, дающей материал для отбора.
(10) Оплодотворение. Это соединение двух гамет, в результате чего образуется оплодотворенное яйцо, или зигота (гр. zygota — соединенная в пару) — начальная стадия развития нового организма.
Оплодотворение влечет за собой два важных следствия: активацию яйца, т. е. побуждение к развитию, и синка-рногамию, т. е. образование диплоидного ядра зиготы в результате слияния гаплоидных ядер половых клеток, несущих генетическую информацию двух родительских организмов.
Встрече гамет способствует то, что яйцеклетки растений и животных выделяют в окружающую среду химические вещества — гамоны, активизирующие сперматозооны. Возможно, что активизирующие вещества выделяются и клетками женских половых путей млекопитающих. Установлено, что сперматозооны млекопитающих могут проникнуть в яйцеклетку только в том случае, если находились в женском половом тракте не менее 1 ч.
У спермиев ряда низших растений обнаружен положительный хемотаксис к веществам, выделяемым яйцеклеткой. Убедительных доказательств хемотаксиса у сперматозоонов животных не существует. Они двигаются беспорядочно и с яйцеклеткой сталкиваются случайно.
В оболочке яйцеклетки некоторых животных существует крошечное отверстие — микропиле, через которое проникает сперматозоон. У большинства видов микропиле отсутствует, проникновение сперматозоона осуществляется благодаря акросомной реакции, обнаруженной с помощью электронной микроскопии. Расположенная на переднем конце сперматозоона ак-росомная область окружена мембраной. При контакте с яйцом оболочка акросомы разрушается. Из нее выбрасывается акросомная нить, выделяются фермент, растворяющий оболочку яйцеклетки, и фермент гиалуронидаза, разрушающий фолликулярные клетки, окружающие яйцо. Акросомная нить проникает через растворенную зону яйцевых оболочек и сливается с мембраной яйцеклетки. В этом месте из цитоплазмы яйцеклетки образуется воспринимающий бугорок. Он захватывает ядро, центриоли и митохондрии сперматозоона и увлекает их вглубь яйца. Плазматическая мембрана сперматозоона встраивается в поверхностную мембрану яйца, образуя мозаичную наружную мембрану зиготы.
Проникновение сперматозоона в яйцеклетку изменяет ее обмен веществ, показателем чего является ряд морфологических и физиологических преобразований. Повышается проницаемость клеточной мембраны, усиливается поглощение из окружающей среды фосфора и калия, выделяется кальций, увеличивается обмен углеводов, активируется синтез белка. У ряда животных возрастает потребность в кислороде. Так, у морского ежа в первую же минуту после оплодотворения поглощение кислорода повышается в 80 раз. Меняются коллоидные свойства протоплазмы. Вязкость увеличивается в 6—8 раз.
В наружном слое яйца изменяются эластичность и оптические свойства. На поверхности отслаивается оболочка оплодотворения; между ней и поверхностью яйца образуется свободное, наполненное жидкостью, пространство. Под ним образуется оболочка, которая обеспечивает скрепление клеток, возникающих в результате дробления яйца. После образования оболочки оплодотворения другие сперматозооны уже не могут проникнуть в яйцеклетку.
Показателем изменения обмена веществ является и то, что у ряда видов животных созревание яйца заканчивается только после проникновения в него сперматозоона. У круглых червей и моллюсков
лишь в оплодотворенных яйцеклетках выделяется вторичный полоцит. У человека сперматозооны проникают в яйцеклетки, находящиеся еще в периоде созревания. Первичный полоцит выделяется через 10 ч, вторичный — только через 1 сутки после проникновения сперматозоона.
Кульминационным моментом в процессе оплодотворения является слияние ядер. Ядро сперматозоона (мужской пронуклеус) в цитоплазме яйца набухает и достигает величины ядра яйцеклетки (женского пронуклеуса). Одновременно мужской пронуклеус поворачивается на 180° и центросомой вперед движется в сторону женского пронуклеуса; последний также перемещается ему навстречу. После встречи ядра сливаются. В результате синка-риогамии восстанавливается диплоидный набор хромосом. После образования синкариона яйцо приступает к дроблению.
Изучение физиологии оплодотворения позволяет понять роль большого числа сперматозоонов, участвующих в оплодотворении. Установлено, что если при искусственном осеменении кроликов в семенной жидкости содержится менее 1000 сперматозоонов, оплодотворения не наступает. Точно так же не происходит оплодотворения при введении очень большого числа сперматозоонов (более 100 млн). Это объясняется в первом случае недостаточным, а во втором — избыточным количеством ферментов, необходимых для проникновения сперматозоонов в яйцеклетку.
Разработаны методики искусственного оплодотворения яйцеклеток человека вне организма и в ряде случаев это осуществлялось по медицинским показаниям. Накануне овуляции хирургическим путем яйцеклетку извлекают из яичника. Ее помещают в специально разработанную химическую среду со сперматозоонами, где и происходит слияние половых клеток. Зародыш на стадии 8—16 бластомеров имплантируется в матку женщины и нормально развивается.
Моноспермия и полиспермия. В яйцеклетку проникает, как правило, один сперматозоон (моноспермия). Однако у насекомых, рыб, птиц и некоторых других животных в цитоплазму яйцеклетки их может попасть несколько. Это явление получило название полиспермии. Роль полиспермии не совсем ясна, но установлено, что ядро лишь одного из сперматозоонов (мужской пронуклеус) сливается с женским пронуклеусом. Следовательно, в передаче наследственной информации принимает участие только этот сперматозоон. Ядра других подвергаются разрушению.
Партеногенез. Особую форму полового размножения представляет собой партеногенез (гр. parthenos — девственница, genos — рождение) т. е. развитие организма из неоплодотворенных яйцевых клеток. Эта форма размножения была обнаружена в середине XVIII в. швейцарским натуралистом Ш. Бонне (1720—1793). В настоящее время известен не только естественный, но и искусственный партеногенез.
Естественный партеногенез существует у ряда растений, червей, насекомых, ракообразных. У некоторых животных любое яйцо способно развиваться как без оплодотворения, так и после него. Это так называемый факультативный партеногенез. Он встречается у пчел, муравьев, коловраток, у которых из оплодотворенных яиц развиваются самки, а из неоплодотворенных — самцы. У этих животных партеногенез возник как приспособление для регулирования численного соотношения полов.
При облигатном, т. е. обязательном, партеногенезе яйца развиваются без оплодотворения. Этот вид партеногенеза известен, например, у кавказской скальной ящерицы. У многих видов партеногенез носит циклический характер. У тлей, дафний, коловраток в летнее время существуют лишь самки, размножающиеся партеногенетически, а осенью партеногенез сменяется размножением с оплодотворением (это явление получило название гетерогении). Облигатный и циклический партеногенез исторически развивался у тех видов животных, которые погибали в большом количестве (тли, дафнии) или у которых была затруднена встреча особей различного пола (скальные ящерицы). Вид кавказской скальной ящерицы сохранился лишь благодаря появлению партеногенеза, так как встреча двух особей, обитающих на скалах, отделенных глубокими ущельями, затруднена. В настоящее время все особи этого вида представлены лишь самками, размножающимися партеногенетически.
Установлено существование партеногенеза у птиц. У одной из пород индеек многие яйца развиваются партеногенетически; из них появляются только самцы.
В ядрах соматических клеток особей, развившихся из неоплодотворенных яиц, в ряде случаев имеется гаплоидный набор хромосом (таковы самцы коловраток), в других — диплоидный (тли, дафнии). Широко распространен партеногенез у личиночных стадий сосальщиков и других паразитов, что обеспечивает им интенсивное размножение и выживание несмотря на массовую гибель на различных этапах жизненного цикла.
Искусственный партеногенез исследовал А. А. Тихомиров. Он добился развития неоплодотворенных яиц тутового шелкопряда, раздражая их тонкой кисточкой или обрабатывая в течение нескольких секунд серной кислотой.
Тот факт, что дробление яйца начинается только после его оплодотворения, получил объяснение благодаря опытам с искусственным партеногенезом. Они показали, что для развития яйца необходима активация. Она является следствием тех сдвигов в обмене веществ, которые сопутствуют оплодотворению. В естественных условиях эти сдвиги происходят после проникновения сперматозоона в яйцеклетку, но в эксперименте могут быть вызваны разнообразными воздействиями: химическими, механическими, электрическими, термическими и др. Все они, так же, как проникновение сперматозоона, влекут за собой обратимые повреждения протоплазмы яйцеклетки, что изменяет метаболизм и оказывает активирующее воздействие.
Оказалось, что сравнительно легко поддаются активации яйца млекопитающих. Извлеченные из тела неоплодотворенные яйца кролика были активированы воздействием пониженной температуры. После пересадки в матку другой крольчихи они развились в нормальных крольчат. Предпринимались опыты по активированию неоплодотворенного яйца человека; получены ранние стадии развития зародыша.
Б. Л. Астауров (1904—1974) в 1940-1960 гг. разработал промышленный способ получения партеногенетическо-го потомства у тутового шелкопряда.
Половой диморфизм. Под половым диморфизмом понимаются различия между самцами и самками в строении тела, окраске, инстинктах и ряде других признаков. Половой диморфизм проявляется уже на ранних ступенях эволюции. У круглых червей самки крупнее самцов. У многих из них, например у аскариды, самец имеет спикулы и загнутый в брюшную сторону задний конец тела.
У представителей всех классов членистоногих половой диморфизм ярко выражен. Для большинства представителей этого типа характерно то, что самки крупнее самцов. Самцы и самки бабочек, как правило, различно окрашены. Самцы у жуков (например, жук-носорог, жук-олень и др.) обладают специальными органами.
Хорошо выражен половой диморфизм у многих видов позвоночных. У некоторых видов рыб он проявляется в величине, особенностях строения тела и окраске. Из земноводных он ярко выражен у тритонов. Самцы этих животных в брачный период имеют яркую окраску брюха и зубчатый гребень на спине.
У большинства видов птиц самцы существенно отличаются от самок, особенно в брачный период. Так, самец болотного кулика турухтана в обычном оперении мало отличается от самки, но весной в его оперении появляется украшение, резко отличающее его от самки и характеризующееся удивительным разнообразием как формы, так и окраски.
Выражен половой диморфизм и у человека. В среднем рост, массивность костей скелета и мускулатуры, величина черепа у мужчин больше, чем у женщин. При одинаковой длине корпуса длина конечностей (особенно ног) у женщин меньше, чем у мужчин, у женщин меньше ширина плеч и больше ширина таза. Для мужчин характерна растительность на лице, низкий тембр голоса, выступающий вперед щитовидный хрящ гортани (кадык). Для женщин типично развитие грудных желез и большее развитие подкожной жировой клетчатки. У мужчин в таком же объеме крови, как у женщин, выше содержание гемоглобина и число эритроцитов. Имеются отличия и в ряде других признаков.
Половой диморфизм явился следствием особой формы естественного отбора, названного Ч. Дарвиным половым отбором. Предпосылкой действия полового отбора было различие в опознавательных признаках самца и самки, чем облегчалась встреча разнополых особей одного вида и препятствовалось скрещивание с представителями других видов.
Признаки, по которым один пол отличается от другого, принято делить на первичные и вторичные. К первичным относятся половые железы, все остальные признаки полового диморфизма — вторичные. У насекомых эти признаки определяются генотипом, у большинства высших беспозвоночных и всех позвоночных связаны с эндокринной системой.
Паразитическое ракообразное саккулина, поселяясь в организме краба, приводит своего .хозяина в состояние, получившее название паразитической кастрации, при которой разрушается половая железа. В результате самец внешне становится сходным с самкой. У самцов лягушек на большом пальце передних конечностей имеется утолщение — «брачная мозоль». Однако у кастрированных особей это образование не развивается. Если же кастрату пересадить семенник или только инъецировать мужской половой гормон, то мозоль появляется.
М. М. Завадовский (1891—1957) провел интересные опыты на курах. После кастрации петухов (удаление половых желез) гребень перестает расти, бледнеет и сморщивается, исчезает бородка, утрачивается способность петь, теряется половой инстинкт, но сохраняется характерное для петухов яркое оперение. Кастрированная курица ли: шается полового инстинкта, а после линьки приобретает петушиное оперение. При пересадке кастрату (независимо от того, был ли он прежде самцом или самкой) семенника у него развиваются все признаки петуха, а если пересажен яичник — то курицы.
Из этих демонстративных опытов видно, что не все вторичные половые признаки обусловлены половыми гормонами. Следует различать зависимые и независимые вторичные половые признаки. Зависимыми от мужского полового гормона у петуха оказались гребень, бородка, голос, поведение, независимым признаком — яркая окраска оперения. У курицы скромное оперение и особенности поведения являются зависимыми от половых гормонов признаками.
О влиянии половых желез на развитие вторичных половых признаков у человека можно судить на основании многочисленных наблюдений.
Известно, что кастрированный (т. е. лишенный половых желез) мужчина приобретает внешнее сходство с женщиной. Это выражается в характере оволосения, отсутствии растительности на лице, отложении жира на груди и в области таза и т. д. Если операция произведена в раннем детстве, то тембр голоса не меняется. Половое влечение у кастратов отсутствует.
Особенности полового поведения животных обычно обусловлены гормонами половых желез и наиболее выражены в брачный период; таковы токование птиц, «турнирные бои» самцов птиц и млекопитающих, ухаживание самцов за самками.
У человека после наступления полового созревания появляются вторичные половые признаки и половое влечение. Но у человека в отличие от животных биологический пол еще не превращает индивида в мужчину или женщину и не обеспечивает соответствующего полового поведения. Для этого требуется еще чтобы человек осознал свою половую принадлежность и усвоил соответствующее своему полу поведение. В этом заключается одна из важнейших сторон формирования личности. Ребенок обычно к 1,5— 2 годам знает свой пол и в дальнейшем в соответствии с этим направляет свое поведение. По мере полового созревания возникают сексуальные интересы, но на все поведение опять-таки большую формирующую роль оказывает социальная среда.
Биологические особенности репродукции человека. Способность к репродукции становится возможной после полового созревания. Признаком наступления полового созревания у человека являются первые поллюции (непроизвольное выделение сперматозоонов) у мальчиков и первые менструации у девочек. Половая зрелость наступает у лиц женского пола в возрасте 16—18 лет, мужского — в 18—20 лет. Сохраняется способность к репродукции у женщин до 40—45 лет (в редких случаях — дольше), а у мужчин до старости, возможно в течение всей жизни.
Продукция гамет у представителей обоих полов совершенно различна: зрелый семенник непрерывно вырабатывает огромное количество сперматозоонов; половозрелый яичник периодически (один раз в лунный месяц) выделяет зрелую яйцеклетку, созревающую из числа овоцитов, которые закладываются на ранних этапах онтогенеза и запасы которых убывают в течение жизни женщины. Значение того, что овоциты закладываются еще до рождения, состоит в том, что потомство, появляющееся к концу репродуктивного периода, развивается из овоцитов, в которых за длительный срок жизни женщины могли возникнуть генетические дефекты. Следствием этого является то, что у пожилых матерей относительно чаще рождаются дети с врожденными дефектами. Необходимо подчеркнуть, что основную опасность представляет не сам возраст матери, а мутагенные факторы и факторы, влияющие на развитие плода.
У человека, как и у других организмов, имеющих внутреннее оплодотворение, мужские половые клетки при половом акте (коитусе) вводятся в половые органы женщины. Во время извержения семенной жидкости (эякуляция) у человека выделяется около 200 млн. сперматозоонов, но только один из них оплодотворяет яйцеклетку. Встреча женских и мужских гамет происходит в верхних отделах маточных труб. Потребность в колоссальном количестве сперматозсонов объясняется случайным, ненаправленным их движением, непродолжительной жизнеспособностью, массовой гибелью при продвижении по женским половым путям. В результате этого верхних отделов маточной трубы достигает лишь около 100 сперматозоонов. Перемещение их осуществляется благодаря собственной подвижности, а также в результате мышечных сокращений стенок полового тракта и направленного движения ресничек слизистой оболочки маточных труб. Спермато-зооны в женских половых путях сохраняют способность к оплодотворению в течение 1—2 суток, яйцеклетки — на протяжении суток после овуляции. Оплодотворение осуществляется обычно в течение первых 12 ч после овуляции. В процессе проникновения сперматозоона через барьер фолликулярных клеток, окружающих яйцеклетку и ее оболочку, большую роль играет акросомная реакция. Вслед за проникновением сперматозоона в яйцеклетку образуется оболочка оплодотворения, препятствующая проникновению других сперматозоонов. Зигота опускается по маточным трубам и на восьмые — десятые сутки зародыш внедряется в стенку матки. Если оплодотворение не наступило, яйцеклетка удаляется из организма.
(11) ВВЕДЕНИЕ В ГЕНЕТИКУ. В последовательных поколениях возникают особи, подобные друг яругу по морфологическим, физиологическим, биологическим и другим признакам, что обусловливается наследственностью — фундаментальной характеристикой живых форм, под которой понимают их свойство обеспечивать структурную и функциональную преемственность между поколениями. Поскольку структурные, функциональные и иные признаки организма формируются в процессе онтогенеза, наследственность является также механизмом передачи в ряду поколений способности к процессу индивидуального развития, типичному для особей конкретного биологического вида. Каждый вид организмов сохраняет в ряду поколений характерные черты строения и физиологии: утка выводит утят, пшеница воспроизводит пшеницу, человек рождает человека. Особо важная роль в обеспечении свойства структурно-функциональной преемственности между поколениями принадлежит хромосомам. Соответственно этому в качестве главной формы выделяют хромосомную или ядерную наследственность. Передачапотомку некоторых признаков и свойств происходит при помощи наследственных задатков цитоплазмы. Это дает право говорить о цитоплазматической или внеядерной наследственности. Принципиальных различий между механизмами хромосомной и цитоплазматической наследственности не существует — обе формы основываются на передаче в ряду поколений дискретных единиц наследственности генов.
Организмы дочернего и родительского поколений, как правило, не бывают точными копиями друг друга вследствие и з-менчивости, которая, как и наследственность, служит фундаментальной характеристикой живого. Изменчивость проявляется в изменении от особи к особи или между особями разных поколений наследственных задатков (генов), их сочетаний, индивидуального развития. Закономерности наследственности и изменчивости, биологические механизмы, их обеспечивающие, изучает генетика.
Наследственность и изменчивость тесно связаны с размножением и индивидуальным развитием и служат необходимыми предпосылками процесса эволюции. Благодаря изменчивости существует разнообразие живых форм и, следовательно, возможность освоения различных сред обитания, «всюдность жизни» (В. И. Вернадский). Наследственность сохраняет эволюционный опыт биологического вида в поколениях.
Первые генетические представления формировались в связи с сельскохозяйственной и медицинской деятельностью людей. Исторические документы свидетельствуют, что уже 6000 лет назад в животноводстве составлялись родословные (рис. 27). Наблюдения о наследуемых патологических признаках, например повышенной кровоточивости у лиц мужского пола, отражены в религиозных документах, в частности, в Талмуде (4—5 век до н. э.). Развитие племенного дела и семеноводства во второй половине XIX века, опубликование Ч. Дарвином учения о происхождении видов стали стимулами к изучению явлений наследственности и изменчивости. Совершается ряд открытий, занявших в последующем важное место в системе генетических знаний. Так, описывается непрямое деление соматических клеток, обращается внимание на особые ядерные структуры хромосомы, устанавливается постоянство их числа и индивидуальных морфологических черт в клетках организмов одного вида, а также редукция числа хромосом
вдвое при образовании половых клеток. В 1865 г. Г. Мендель опубликовал работу «Опыты над растительными гибридами», в которой сформулировал ряд фундаментальных генетических законов.
Официальной датой рождения генетики считают 1900 г., когда были опубликованы данные Г. де Фриза, К. Корренса и К. Чермака, фактически переоткрывших закономерности наследования признаков, установленные Г. Менделем, и сделавшие их достоянием науки. Первые десятилетия XX века оказались исключительно плодотворными в развитии основных положений и направлений генетики. Было сформулировано представление о мутациях (Г. де Фриз), популяциях и чистых линиях организмов (В. Иоганнсен), хромосомная теория наследственности (Т. Г. Морган), открыт закон гомологичных рядов (Н. И. Вавилов), получены данные о том, что рентгеновские лучи вызывают наследственные изменения (Г. С. Филиппов, Г. Меллер). Высказывается предположение о том, что химическую основу гена составляют биологические макромолекулы (Н. К. Колыши), указывается на связь между генами и ферментами (А. Гаррод). Была начата разработка основ генетики популяций организмов (Г. Гарди, В. Вайнберг, С. С. Четвериков). Устанавливается наследственная природа и проводится Клинический анализ некоторых наследственных заболеваний. Разрабатывается методика медико-генетического консультирования населения (С. Н. Дадиденксш).
Решающее значение для развития генетики на настоящем этапе имеют открытие «вещества наследственности» — ДНК, расшифровка биологического кода, описание механизма биосинтеза белка.
Основные направления генетики человека. Исторически интерес медицины к генетике формировался первоначально в связи с наблюдениями за наследуемыми патологическими признаками. Во второй половине XIX века английский биолог Ф. Гальтон выделил наследственность человека как самостоятельный предмет исследования. Он же предложил ряд специальных методов генетического анализа — генеалогический, близнецовый, статистический. Изучение закономерностей наследования нормальных и патологических признаков и сейчас занимает ведущее место в генетике человека. При этом предметом непосредственного изучения служат как качественные (дискретные), так и количественные показатели организма. Долгое время маркерами в исследованиях генетических закономерностей были морфологические или клинические признаки. Обнаружение взаимосвязи между генами и ферментами привело к созданию биохимической и молекулярной генетики. Тот факт, что белок является первичным продуктом функциональной активности гена, обусловило интенсивное развитие этого направления в наши дни. Аналогично объясняется прогресс иммуногенетики, изучающей генетические основы иммунных реакций организма человека. Выяснение первичного биохимического нарушения, приводящего через ряд промежуточных этапов к наследственному заболеванию, облегчает поиск путей коррекции соответствующих клинических проявлений. Так, заболевание фенилкетонурия, обусловленное недостаточным синтезом фермента фенилаланингидроксилазы и, следовательно, нарушенным обменом аминокислоты фенилаланина, поддается лечению, если из пищи исключить эту аминокислоту.
Наряду с наследственными болезнями выявлены заболевания с наследственным предрасположением (сахарный диабет, язвенная и гипертоническая болезни, некоторые формы психических болезней). Изучение соотносительной роли генетических факторов и факторов среды в развитии заболеваний с наследственным предрасположением представляет собой один из ведущих разделов меди ц и некой генетики.
Наследственные болезни и заболевания с генетической предрасположенностью зависят от наличия неблагоприятных аллелей генов или их сочетаний. Популяционная генетика изучает распределение аллелей отдельных генов в группах людей, закономерности изменения этого распределения во времени и по территории, причины неравномерного распределения аллелей. Это позволяет прогнозировать число некоторых наследственных заболеваний в поколениях и целенаправленно планировать медицинские мероприятия. Так, аллель, обусловливающий развитие фенилкетонурии, о которой шла речь выше, встречается существенно чаще в генотипах ирландцев и шотландцев, чем англичан. При этом предки многих семей, например из юго-восточной Англии, в которых наблюдаются больные фенилкетонурией, - также выходцы из Ирландии и Шотландии. Большая или меньшая заболеваемость болезнью с наследственным предрасположением (степень риска) в различных группах людей также может зависеть от неравномерного распределения в популяциях тех или иных аллелей. К развитию ишемической болезни сердца предрасполагает, например, повышенное содержание в крови холестерина. Этот признак контролируется доминантным аллелем определенного гена. У лиц с названным аллелем рано (до 30 лет) появляются приступы стенокардии, к 50-ти годам у них развивается ишемическая болезнь сердца и около половины подобных больных к 60-ти годам погибает.
В эукариотических клетках гены распределены между хромосомами. Разработка методов хромосомного анализа, изучение структурно-функциональных характеристик хромосом, их картирование по присутствию генов, выяснение роли отдельных хромосом в индивидуальном развитии составляют задачи цитогенетики. Достижения цито-генетики используются для диагностики и изучения хромосомных болезней, которые представляют собой пороки развития вследствие изменений в клетках числа хромосомных наборов, количества хромосом или их структуры.
Изменения в генетическом материале могут возникнуть под воздействием факторов окружающей среды, которые необходимо исследовать на мутагенное действие. Важными разделами этого направления являются радиационная генетика и исследования по мутагенному действию химических соединений. Значение последнего раздела видно из того факта, что около 10% веществ, ежегодно поступающих в обращение в виде средств борьбы с насекомыми, промышленных соединений, лекарств, пищевых добавок, способны вызывать в клетках человека мутации.
Индивидуальные и групповые особенности реакций людей, различающихся генетически, на терапевтические воздействия изучает фармакогенетика. Она вскрывает наследственные факторы изменчивости, эффективности и выраженности побочных действий лекарств у разных лиц.
Наряду с проблемами генетики человека существенный вопрос для медицины представляют генетические вопросы биологии возбудителей инфекционныхзаболеваний вирусов, бактерий. Важное место занимают проблемы изменчивости и разнообразия штаммов (разновидностей) возбудителей, выработки иммунитета, устойчивости к антибиотикам и другим лекарственным препаратам. Изучение генетики микроорганизмов имеет большое значение в микробиологической промышленности для организации производства биохимических продуктов путем синтеза их подходящими штаммами бактерий.
(13) Особенности генетики человека. Исследование генетики человека связано с большими трудностями, причины которых связаны с невозможностью экспериментального скрещивания, медленной сменой поколений, малым количеством потомков в каждой семье. Кроме того, в отличие от классических объектов, изучаемых в общей генетике, у человека сложный кариотип, большое число групп сцепления. Однако, несмотря на все эти затруднения, генетика человека успешно развивается.
Невозможность экспериментального скрещивания компенсируется тем, что исследователь, наблюдая обширную человеческую популяцию, может выбрать из тысяч брачных пар те, которые необходимы для генетического анализа. Метод гибридизации соматических клеток позволяет экспериментально изучать локализацию генов в хромосомах, проводить анализ групп сцепления.
При изучении генетики человека используются следующие методы: генеалогический, близнецовый, популяционно-статистический, дерматоглифический, биохимический, цитогенетический, гибридизации соматических клеток и методы моделирования.
У человека установлены все 24 теоретически возможные группы сцепления генов; из них 22 локализованы в аутосомах, в каждой из которых содержится по нескольку сот генов. Более 100 генов локализовано в половых хромосомах.
У млекопитающих, в том числе и человека, Х-, и Y-хромосомы имеют гомологичный участок, в котором происходит их синапсис и возможен крое-синговер. Все гены, локализованные в половых хромосомах человека, можно разделить на три группы в зависимости от того, в каких участках половых хромосом они находятся.
Первая группа — сцепленная с полом. В нее входят гены, локализованные в той части Х-хромосомы, которая не имеет гомологичного участка в Y-хромосоме. Они полностью сцеплены с полом, передаются исключительно через Х-хромосому. К их числу относятся рецессивные гены гемофилии, дальтонизма, атрофии зрительного нерва и др. Доминантные гены из этого участка одинаково проявляются у обоих полов, рецессивные же — у женщин только в гомозиготном, а у мужчин — и в гемизнготном состоянии.
Вторую группу составляет небольшое число генов, расположенных в непарном участке Y-хромосомы. Они могут встречаться только у лиц мужского пола и передаются от отца к сыну. К ним относятся: волосатость ушей, ихтиоз (кожа в виде рыбьей чешуи), перепончатые пальцы на ногах.
Третья группа — гены, расположенные в парном сегменте половых хромосом, т. е. гомологичном для Х-и У-хромосом. Их называют неполно или частично сцепленными с полом. Они могут передаваться как с Х-, так и с Y-хромосомой и переходить из одной в другую в результате кроссинговера.
Методы изучения наследственности у человека. Генеалогический метод. Этот метод основан на прослеживании какого-либо нормального или патологического признака в ряде поколений с указанием родственных связей между членами родословной. Генеалогия в широком смысле слова — родословная человека.
Генеалогический метод был введен в науку в конце XIX в. Ф. Гальтоном. Суть его состоит в том, чтобы выяснить родственные связи и проследить наличие нормального или патологического признака среди близких и дальних родственников в данной семье.
Сбор сведений начинается от пробанда. Пробандом называется лицо, родословную которого необходимо составить. Им может быть больной или здоровый человек — носитель какого-либо признака или лицо, обратившееся за советом к врачу-генетику. Братья и сестры пробанда называются сибсами. Обычно родословная составляется по одному или нескольким признакам. Метод включает два этапа: сбор сведений о семье и генеалогический анализ. Генеалогический метод является основным связующим звеном между теоретической генетикой человека и применением ее достижений в медицинской практике.
Хотя генеалогический метод является одним из самых давних, его возможности далеко не исчерпаны благодаря использованию новых, более совершенных методов анализа фенотипа, выявлению гетерозиготных носителей, учету влияния факторов среды и т. п.
Для составления родословной проводят краткие записи о каждом члене родословной с точным указанием его-родства по отношению к пробанду. Затем делают графическое изображение родословной; для составления схемы приняты стандартные символы.
Генеалогический метод тем информативнее,- чем больше имеется достоверных сведений о здоровье родственников больного.
После составления родословной начинается второй этап — генеалогический анализ, целью которого является установление генетических закономерностей. Вначале требуется установить, имеет ли признак наследственный характер. Если какой-либо признак встречался в родословной несколько раз, то можно думать о его наследственной природе. Однако это может быть и не так.
В случае обнаружения наследственного характера признака необходимо установить тип наследования: доминантный, рецессивный, сцепленный с полом.
Основные признаки аутосомно-доми-наитного наследования следующие: проявление признака в равной мере у представителей обоих полов, наличие больных во всех поколениях (по вертикали) и при относительно большом количестве сибсов и по горизонтали (у сестер и братьев пробанда). У гетерозиготного родителя вероятность рождения больного ребенка (если второй родитель здоров) составляет 50 %. Следует учесть, что и при доминантном типе наследования может быть пропуск в поколениях за счет слабо выраженных, «стертых» форм заболевания (малая экспрессивность мутантного гена) или за счет его низкой пенетрантности (когда у носителя данного гена признак отсутствует).
Основные признаки рецессивного наследования: относительно небольшое число больных в родословной, наличие больных «по горизонтали» (болеют сибсы — родные, двоюродные). Родители больного ребенка чаще фенотипически здоровы, но являются гетерозиготными носителями рецессивного гена. Вероятность рождения больного ребенка составляет 25 %. При проявлении рецессивных заболеваний нередко встречается кровное родство родителей больных. Следует иметь в виду, что наличие отдаленного родства бывает неизвестно членам семьи. Приходится учитывать косвенные соображения, например, происхождение из одного и того же малонаселенного пункта или принадлежность к какой-либо изолированной этнической или социальной группе.
Рецессивный признак проявляется тогда, когда в генотипе имеются оба рецессивных аллеля. Кроме описанного варианта, когда родители имеют генотипы Аа и Аа, возможны и другие варианты исходных генотипов. Оба родителя — рецессивные гомозиготы; в этом случае (безусловно, редком) все дети будут больны. Один из родителей болен, а другой — здоров, но имеет в генотипе мутантный ген в гетерозиготном состоянии (аа и Аа). В этом случае наблюдается симуляция доминантного наследования (теоретически возможное расщепление 1:1). Однако наиболее часто наблюдаются варианты рождения больного ребенка у фенотипически нормальных родителей и наличие больных по боковым линиям родословной.
Существует тип наследования, сцепленного с полом. Заболевания, обусловленные геном, локализованным в Х-хромосоме, могут быть как доминантными, так и рецессивными. При доминантном Х-сцепленном наследовании заболевание одинаково проявляется как у мужчин, так и у женщин и в дальнейшем может передаваться потомству. В этом случае женщина может передать этот ген половине дочерей и половине сыновей (ее генотип — ХАХа, вероятность передачи Х-хромосомы с доминантным мутантным геном — 50 %). Мужчина же передает этот ген с Х-хромосомой всем дочерям. Понятно, что сыновья, имеющие в генотипе только одну материнскую Х-хромосому, этот ген от отца унаследовать не могут. Примером такого заболевания является особая форма рахита, устойчивого к лечению кальциферолами (вит. D).
Близнецовый метод. Это один из наиболее ранних методов изучения генетики человека, однако он не утратил своего значения и в настоящее время. Близнецовый метод был введен Ф. Гальтоном, который выделил среди близнецов две группы: однояйцовые (монозиготные) и двуяйцовые (ди-зиготные). Как правило, у человека рождается один ребенок, но в среднем один случай на 84 новорожденных составляют двойни. Около одной трети их числа — монозиготные близнецы. Они развиваются из разъединившихся бластомеров одной оплодотворенной яйцеклетки и, следовательно, имеют одинаковый генотип. Монозиготные близнецы при нормальном эмбриональном развитии всегда одного пола.
Дизиготные близнецы рождаются чаще (2/3 общего количества двоен), они развиваются из двух одновременно созревших и оплодотворенных яйцеклеток. Такие близнецы могут быть и однополые, и разнополые. Если изучаемый пригнан проявляется у обоих близнецов пары, их называют конкчрдаятными (лат. сопсогйаге — быть согласным, сходным). Конкорда нтность — это процент сходства по изучаемому признаку. Отсутствие признака у одного из близнецов — дискордантность.
В настоящее время для более точного определения зиготности кроме морфологических признаков используют исследование групп крови (по системе АВО, К,h, MN) и белков плазмы крови.
Близнецовый метод используется в генетике человека для того, чтобы оценить степень влияния наследственности и среды на развитие какого-либо нормального или патологического признака. Поскольку у монозиготных близнецов одинаковые генотипы, то имеющееся несходство вызывается условиями среды в период либо внутриутробного развития, либо формирования организма после рождения.
Для оценки роли наследственности в развитии того или иного признака производят расчет по формуле: Н= (% сходства ОБ - % сходства ДБ) / (100 - % сходства ДБ). Где Н – коэф.нас-ти, ОБ – однояй.близ., ДБ – двуяй.близ.
При Н, равном единице, признак полностью определяется наследственным компонентом; при Н, равном нулю, определяющую роль играет влияние среды. Коэффициент, близкий к 0,5, свидетельствует о примерно одинаковом влиянии наследственности и среды на формирование признака.
Метод дерматоглифики. Дерматоглифика (гр. derma — кожа, gliphe — рисовать) — это изучение рельефа кожи на пальцах, ладонях и подошвенных поверхностях стоп. В отличие от других частей тела здесь имеются эпидермальные выступы — гребни, которые образуют сложные узоры. В 1892 г. Ф. Гальтон предложил классификацию этих узоров, позволившую использовать этот метод для идентификации личности в криминалистике. Таким образом, выделился один из разделов дерматоглифики — дактилоскопия (изучение узоров на подушечках пальцев). Другие разделы дерматоглифики — пальмоскопия (рисунки на ладонях) и плантоскопия (изучение дерматоглифики подошвенной поверхности стопы).
Дактилоскопия. Гребни на коже пальцев рук соответствуют сосочкам дермы (от лат. papilla — сосочек), поэтому их называют также папиллярными линиями, рельеф этих выступов повторяет пласт эпидермиса. Межсосочковые углубления образуют бороздки. На поверхности гребней открываются выводные протоки потовых желез, а в толще соединительнотканного сосочка находятся чувствительные нервные окончания. Поверхность, покрытая гребневой кожей, отличается высокой тактильной чувствительностью.
Дерматоглифические исследования имеют важное значение в определении зиготности близнецов, в диагностике некоторых наследственных заболеваний, в судебной медицине, в криминалистике для идентификации личности. Папиллярные линии на пальцевых подушечках образуют токи различного направления. Узоры обычно изучают на отпечатках, сделанных на бумаге после смазывания кожи типографской краской. Детальное исследование узора проводят с помощью лупы. Папиллярные линии разных токов никогда не пересекаются, но могут сближаться в определенных пунктах, образуя трирадиусы, или дельты. На пальцевых подушечках различают линии центрального узора и линии рамки, которые окаймляют центральный узор. Выдел.3 основ.типа: дуги А (англ. аrch — дуга); петли L (англ. 1оор — петля) и завитковые узоры W (англ. wor1— завиток). Дуговые узоры встречаются реже остальных (6 %), в этом узоре имеется лишь один поток папиллярных линий.
Петлевые узоры являются наиболее распространенными (около 60 %). Это замкнутый с одной стороны узор. Петли имеют одну дельту. Если петля открывается в сторону лучевой кости, она называется радиальной, если в сторону локтевой кости,—ульнарной (Lr; Lu).
Завитковые узоры занимают среднее место по распространенности (34 %). Они имеют вид концентрических кругов, овалов, спиралей, снизу и сверху центральная часть узора окаймлена двумя потоками линий. Завитки имеют две дельты.
Пальмоскопия. Ладонный рельеф очень сложный, в нем выделяют ряд полей, подушечек и ладонных линий. Центральную ладонную ямку окружают шесть возвышений — подушечек. У основания большого пальца — тенар, у противоположного края ладони — гипотенар, против межпальцевых промежутков находятся четыре межпальцевые подушечки. У основания II, III, IV и V пальцев находятся пальцевые трирадиусы – точки, где сходятся три разнонаправленных тока папиллярных линий.
У правшей более сложные узоры встречаются на правой руке, у левшей — на левой, У женщин частота завитковых узоров ниже, чем у мужчин, меньше гребневой счет, а частота петлевых и дуговых — выше. На подошвенной поверхности стоп также имеются кожные узоры. Их изучение составляет предмет плантоскопии.
Биохимические методы. Эти методы используются для диагностики болезней обмена веществ, причиной которых является изменение активности определенных ферментов. С помощью биохимических методов открыто около 500 молекулярных болезней, являющихся следствием проявления мутантных генов. При различных типах заболеваний удается либо определить сам аномальный белок-фермент, либо промежуточные продукты обмена.
Применяют также микробиологические тесты, они основаны на том, что некоторые штаммы бактерий могут расти только на средах, содержащих определенные аминокислоты, углеводы. Удалось получить штаммы по веществам, являющимся субстратами
или промежуточными метаболитами у больных при нарушении обмена. Если в крови или моче есть требуемое для роста вещество, то в чашке Петри вокруг фильтровальной бумаги, пропитанной одной из этих жидкостей, наблюдается активное размножение микробов, чего не бывает в случае анализа у здорового человека. Разрабатываются различные варианты микробиологических методов.
Популяционно-статистический метод позволяет изучать распространение отдельных генов в человеческих популяциях. Одним из наиболее простых и универсальных математических методов является метод, предложенный Г. Харди и В. Вайнбергом (см. гл. 11). Имеется и ряд других специальных математических методов. В результате становится возможным определить частоту генов в различных группах населения, частоту гетерозиготных носителей ряда наследственных аномалий и болезней.
Исследуемые популяции могут различаться по биологическим признакам, географическим условиям жизни, экономическому состоянию. Изучение распространенности генов на определенных территориях показывает, что в этом отношении их можно разделить на две категории: 1) имеющие универсальное распространение (к их числу относится большинство известных генов); примером могут служить рецессивные гены фенилкетоиурии; 2) встречающиеся локально, преимущественно в определенных районах (ген серповидноклеточной анемии).
Популяционно-статистический метод позволяет определить генетическую структуру популяций (соотношение между частотой гомозигот и гетерозигот). Новые возможности для проведения генетического анализа открывает применение электронно-вычислительной техники. Знание генетического состава популяций населения имеет большое значение для социальной гигиены и профилактической медицины.
Цитогенетическпй метод. Принципы цитогенетических исследований сформировались в течение 20—30-х годов на классическом объекте генетики — дрозофиле и на некоторых расте ниях. Метод основан на микроскопическом исследовании хромосом.
Нормальный кариотнп человека включает 46 хромосом, из них 22 пары аутосом и 2 половые хромосомы. Это удалось шведским ученым Д. Тийо и А. Левану. К этому времени в лаборатории успешно
производили культивирование клеток человека (клетки костного мозга, культуры фибробластов или лейкоцитов периферической крови, стимулированных к делению фитогемагглютинином). Важнейшая задача состоит в умении различать индивидуальные хромосомы в данной метафазной пластинке. Непосредственно, путем визуального наблюдения под микроскопом это сделать трудно, поэтому обычно делают микрофотографии, а затем вырезают отдельные хромосомы и располагают их в порядке убывающей величины (построение кариограммы).
Для идентификации хромосом применяют количественный морфометриче-ский анализ. С этой целью проводят измерение длины хромосомы в микрометрах. Определяют также соотношение длины короткого плеча к длине всей хромосомы (центромерный индекс).
В настоящее время разработано несколько методов выявления структурной неоднородности по длине хромосом человека. Основу всех методов составляют произведенные на препаратах процессы денатурации и ренатурации ДНК хромосом. Если после денатурации ДНК, вызванной нагреванием и некоторыми другими факторами, провести затем ее ренатурацию— восстановление исходной двунитчатой структуры, а затем окрасить хромосомы красителем Гимзы, то в них выявляется четкая дифференцировка на темноокра-шенные и светлые полосы — диски. Последовательность расположения этих дисков, их рисунок строго специфичен для каждой хромосомы. В результате различных вариантов метода удается выявить центромерный и околоцентромер ный гетерохроматин (С-диски), диски, расположенные по длине хромосом (собственно Гимзы-диски, G-диски).
Если нарушения касаются половых хромосом, то диагностика упрощается. В этом случае проводится не полное кариотипирование, а применяется метод исследования полового хроматина в соматических клетках.
Половой хроматин — это небольшое дисковидное тельце, интенсивно окрашивающееся гематоксилином и другими основными красителями. Оно обнаруживается в интерфазных клеточных ядрах млекопитающих и человека, непосредственно под ядерной мембраной.
Впоследствии было уточнено, что половой хроматин имеется в большинстве клеточных ядер самок (60—70 %), у самцов его обычно нет, либо встречается очень редко (3—5 %).
Половой хроматин можно определить и на мазках крови, в ядрах нейтрофилоцитов эти тельца имеют характерный вид барабанных палочек, отходящих от сложно-дольчатого ядра этих лейкоцитов. В норме у женщин эти структуры обнаруживаются в 3— 7 % нейтрофилоцнтов, а у мужчин они вообще отсутствуют.
Методы гибридизации соматических клеток. Соматические клетки содержат весь объем генетической информации. Это дает возможность изучать многие вопросы генетики чело-
века, которые невозможно исследовать на целом организме. Благодаря методам генетики соматических клеток человек стал как бы одним из экспериментальных объектов. Соматические клетки человека получают из разных органов (кожа, костный мозг, клетки крови, ткани эмбрионов). Чаще всего используют клетки соединительной ткани (фибробласты) и лимфоциты крови. Культивирование клеток вне
организма позволяет получить достаточное количество материала для исследования, что не всегда можно взять у человека без ущерба для здоровья.
В 1960 г. французский биолог Ж. Барский, выращивая вне организма в культуре ткани клетки двух линий мышей, обнаружил, что некоторые клетки по своим морфологическим и биохимическим признакам были промежуточными между исходными родительскими клетками. Эти клетки оказались гибридными.
Гибридизация соматических клеток проводится в широких пределах не только между разными видами, но и типами: человек х мышь, человек х комар, мышь х курица и т. п. В зависимости от целей анализа исследование проводят на гетерокарионах или синкарионах. Синкарионы обычно удается получить при гибридизации в пределах класса. Это истинные гибридные клетки, так как в них произошло объединение двух геномов. Происходит постепенная элиминация хромосом того организма, клетки которого имеют более медленный темп размножения.
Применение метода генетики соматических клеток дает возможность изучать механизмы первичного действия генов и взаимодействия генов.
Методы моделирования. Теоретическую основу биологического моделирования в генетике дает закон гомологических рядов наследственной изменчивости, открытый Н. И. Вавиловым, согласно которому генетически близкие виды и роды характеризуются сходными рядами наследственной изменчивости. Исходя из этого закона, можно предвидеть, что в пределах класса млекопитающих (и даже за его пределами) можно обнаружить многие мутации, вызывающие такие же изменения фенотипических признаков, как и у человека. Для моделирования определенных наследственных аномалий человека подбирают и изучают мутантные линии животных, имеющих сходные нарушения.
Многие мутантные линии животных путем возвратного скрещивания переведены в генетически близкие, в результате получены линии, различающиеся только по аллелям одного ло-куса. Это дает возможность уточнить механизм развития данной аномалии. Безусловно, у человека могут быть свойственные только ему заболевания и в результате взаимодействия генов у человека фенотипический эффект может значительно изменяться. Мутантные линии животных не являются точным воспроизведением наследственных болезней человека.
(14) Моногибридное скрещивание. Правило единообразия гибридов первого поколения. В опытах Менделя при скрещивании сортов гороха, имеющих желтые и зеленые семена, все потомство (т. е. гибриды первого поколения) оказалось с желтыми семенами.
Обнаруженная закономерность по -лучила название правила единообразия гибридов первого поколения. Признак, проявляющийся в первом поколении, получил название доминантного (лат. ёогшпапз — господствовать), не проявляющийся, подавленный — рецессивного (лат. recessus — отступление).
Опыты показали, что рецессивный аллель проявляется только в гомозиготном состоянии, а доминантный — как в гомозиготном, так и в гетерозиготном.
Гены расположены в хромосомах. Следовательно, в результате мейоза гомологичные хромосомы (а с ними аллельные гены) расходятся в различные гаметы. Но так как у гомозиготы оба аллеля одинаковы, все гаметы несут один и тот же ген. Таким образом, гомозиготная особь дает один тип гамет.
Следовательно, первый закон Менделя, или закон единообразия гибридов первого поколения, в общем виде можно сформулировать так: при скрещивании гомозиготных особей, отличающихся друг от друга по одной паре альтернативных признаков, все потомство в первом поколении единообразно как по фенотипу, так и по генотипу.
Правило расщепления. При скрещивании однородных гибридов первого поколения между собой (самоопыление или родственное скрещивание) во втором поколении появляются особи как с доминантными, так и с рецессивными признаками, т. е. наблюдается расщепление.
Обобщая фактический материал, Мендель пришел к выводу, что во втором поколении происходит расщепление признаков в определенных частотных соотношениях, а именно: 75 % особей имеют доминантные признаки, а 25 % — рецессивные. Эта закономерность получила название второго правила Менделя, или правила расщепления.
Согласно второму правилу Менделя, используя современные термины, можно сделать вывод, что: 1) аллельные гены, находясь в гетерозиготном состоянии, не изменяют друг друга; "} при созревании гамет у гибридов образуется приблизительно равное число гамет с доминантными и рецессивными аллелями; 3) при оплодотворении мужские и женские гаметы, несущие доминантные и рецессивные аллели, свободно комбинируются.
При скрещивании двух гетерозигот (Аа), у каждой из которых образуется два типа гамет — половина с доми-нантным аллелем (А), половина с рецессивным аллелем (а), следует ожидать четыре возможных сочетания.
Таким образом, второе правило Менделя формулируется так: при скрещивании двух гетерозиготных особей, т. е. гибридов, анализируемых по одной альтернативной паре признаков, в потомстве наблюдается расщепление по фенотипу в соотношении 3:1 и по генотипу 1:2:1.
Гипотеза «чистоты гамет», Правило расщепления показывает, что хотя у гетерозйгот проявляются лишь доминантные признаки, однако рецессивный ген не утрачен, более того, он не изменился.
Следовательно, аллельные гены, находясь в гетерозиготном состоянии, не сливаются, не разбавляются, не изменяют друг друга. Эту закономерность Мендель назвал гипотезой «чистоты гамет». В дальнейшем эта гипотеза получила цитологическое обоснование. Вспомним, что в соматических клетках диплоидный набор хромосом. В одинаковых местах (локусах) гомологичных хромосом находятся аллельные гены. Если это гетерозиготная особь, то в одной из гомологичных хромосом расположен доминантный аллель, в другой.— рецессивный. При образовании половых клеток происходит мейоз и в каждую из гамет попадает лишь одна из гомологичных хромосом. В гамете может быть лишь один из аллельных генов. Гаметы остаются «чистыми», они несут только какой-то один из аллелей, определяющий развитие одного из альтернативных признаков.
Доминантные и рецессивные признаки в наследственности человека. В генетике человека известно много как доминантных, так и рецессивных признаков. Одни из них имеют нейтральный характер и обеспечивают полиморфизм в человеческих популяциях, другие приводят к различным патологическим состояниям. Но при этом следует иметь в виду, что доминантные патологические признаки как у человека, так и у других организмов, если они заметно снижают жизнеспособность, сразу же будут отметены отбором, так как носители их не смогут оставить потомства.
Наоборот, рецессивные гены, даже заметно снижающие жизнеспособность, могут в гетерозиготном состоянии длительно сохраняться, передаваясь из поколения в поколение, и проявляются лишь у гомозигот.
Анализирующее скрещивание. Генотип организма, имеющего рецессивный признак, определяется по его фенотипу. Такой организм обязательно должен быть гомозиготным по рецессивному гену, так как в случае гетерозиготности у него был бы доминантный признак. Проявляющие доминантные признаки гомозиготная и гетерозиготная особи по фенотипу неотличимы. Для определения генотипа в опытах на растениях и животных производят анализирующие скрещивания и узнают генотип интересующей особи по потомству. Анализирующее скрещивание заключается в том, что особь, генотип которой неясен, но должен быть выяснен, скрещивается с рецессивной формой. Если от такого скрещивания все потомство окажется однородным, значит анализируемая особь гомозиготна, если же произойдет расщепление, то она гетерозиготна.
Неполное доминирование. В своих опытах Мендель имел дело с примерами полного доминирования, поэтому гетерозиготные особи в его опытах оказались неотличимы от доминантных гомозигот. Но в природе наряду с полным доминированием часто наблюдается неполное, т. е. гетерозиго-ты имеют иной фенотип.
Свойством неполного доминирования обладает ряд генов, вызывающих наследственные аномалии и болезни человека. Например, так наследуются серповидноклеточная анемия (о ней подробнее будет сказано ниже), атаксия Фридрейха, характеризуемая прогрессирующей потерей координации произвольных движений. По типу неполного доминирования наследуется цистинурия. У гомозиготно рецессивным аллелям этого гена в почках образуются цистиновые камни, а у гетерозйгот обнаруживается лишь повышенное содержание цистина в моче. У гомозигот по гену пильгеровой анемии отсутствует сегментация в ядрах лейкоцитов, а у гетерозйгот сегментация есть, но она все же необычная.
Отклонения от ожидаемого расщепления, связанные с летальными генами. В ряде случаев расщепление во втором поколении может отличаться от ожидаемого в связи с тем, что гомозиготы по некоторым генам оказываются нежизнеспособными.
Подобный тип наследования характерен, например, для серых каракульских овец, у которых при скрещивании между собой наблюдается расщепление в соотношении 2:1. Оказалось, что ягнята, гомозиготные по доминантному аллелю серой окраски, гибнут из-за недоразвития пищеварительной системы. У человека аналогично наследуется доминантный ген брахидактилии (укороченные пальцы). Признак проявляется в гетерозиготном состоянии, а у гомозигот этот ген приводит к гибели зародышей на ранних стадиях развития.
Полигибридное скрещивание. Дигпбридное скрещивание как пример полигибридного скрещивания. При полигибридном скрещивании родительские организмы анализируются по нескольким признакам. Примером полигибридного скрещивания может служить дигибридное, при котором у родительских организмов принимаются во внимание отличия по двум парам признаков. Первое поколение гибридов в этом случае оказывается однородным, проявляются только доминантные признаки, причем доминирование не зависит от того, как признаки были распределены между родителями.
Правило независимого комбинирования признаков. Изучая расщепление при дигибридном скрещивании, Мендель обнаружил, что признаки наследуются независимо друг от друга. Эта закономерность, известная как правило независимого комбинирования признаков, формулируется следующим образом: при скрещивании гомозиготных особей, отличающихся двумя (или более) парами альтернативных признаков, во втором поколении F2) наблюдается независимое наследование и комбинирование признаков, если гены, определяющие их, расположены в различных гомологичных хромосомах. Это возможно, так как при мейозе распределение (комбинирование) хромосом в половых клетках при их созревании идет независимо, что может привести к появлению потомков, несущих признаки в сочетаниях, не свойственных родительским и прародительским особям.
В более общей форме, при любых скрещиваниях, расщепление по фенотипу происходит по формуле (3 + 1)n, где п — число пар признаков, принятых во внимание при скрещивании.
Взаимодействие генов: 1) одной аллельной пары (неполное доминир., полное дом., сверхдом., кодом.); 2) разных ал.пар (комплемент.действие, эпистаз, полимерия).
Доминирование проявляется в тех случаях, когда один аллель гена полностью скрывает присутствие другого аллеля. Однако, по-видимому, чаще всего присутствие рецессивного аллеля как-то сказывается, и обычно приходится встречаться с различной степенью неполного доминирования. Это объясняется тем, что доминантный аллель отвечает за активную форму белка-фермента, а рецессивные аллели часто детерминируют те же белки-ферменты, но со сниженной ферментативной активностью. Это явление иреализуется у гетерозиготных форм в виде неполного доминирования.
Сверхдоминирование заключается в том, что у доминантного аллеля в гетерозиготном состоянии иногда отмечается более сильное проявление, чем в гомозиготном состоянии.
Кодоминирование — проявление в гетерозиготном состоянии признаков, детерминируемых обоими аллелями. Например, каждый из ал-лельных генов кодирует определенный белок, и у гетерозиготного организма синтезируются они оба. В таких случаях путем биохимического исследования можно установить гетерозигот-ность без проведения анализирующего скрещивания. Этот метод нашел распространение в медико-генетических консультациях для выявления гетерозиготных носителей генов, обусловливающих болезни обмена. По типу кодо-минирования у человека наследуется четвертая группа крови.
Сложные отношения возникают между неаллельными парами генов.
Комплементарное действие. Комплементарными (лат. complementum — средство пополнения) называются взаимодополняющие гены, когда для формирования признака необходимо наличие нескольких не-аллельных (обычно доминантных) генов. Этот тип наследования в природе широко распространен.
У душистогр горошка окраска венчика цветка обусловлена нал чем двух доминантных генов (А и B), в отсутствие одного ' из них — цветки белые. Поэтому при скрещивании растений с генотипами ААЬЪ и ааВВ, имеющих белые венчики, в первом поколении растения оказываются окрашенными, а во втором поколении расщепление происходит в соотношении 9 окрашенных к 7 неокрашенным (ЗАbb + ЗааВ + 1ааbb).
Комплементарное взаимодействие генов у человека можно показать на следующих примерах. Нормальный слух' обусловлен двумя доминантными неаллельными генами D и Е, из которых один определяет развитие улитки, а другой—слухового нерва. Доминантные гомозиготы и гетерозиготы по обоим генам имеют нормальный слух, рецессивные гомозиготы по одному из этих генов — глухие.
Эпистаз. Взаимодействие генов, противоположное комплементарному, получило название эпистаза. Под эпистазом понимают подавление неаллельным геном действия другого гена, названного гипостатическим.
Проявление эпистаза у человека можно показать на следующем примере. Ген, обусловливающий группы крови по системе Л 60, кодирует не только синтез специфических белков, присущих данной группе крови, но и наличие их в слюне и других секретах. Однако при наличии в гомозиготном состоянии рецессивного гена по другой системе крови — системе Люис выделение их в слюне и других секретах подавлено. Другим примером эпистаза у человека может служить «бомбейский феномен» в наследовании групп крови. Он описан у женщины, получившей от матери аллель 1В, но фенотипическн имеющей первую группу крови. Оказалось, что деятельность аллеля 1В подавлена редким рецессивным аллелем гена «х», который в гомозиготном состоянии оказывает эпистатическое действие.
В проявлении ферментопатий (т. е. болезней, связанных с отсутствием каких-либо ферментов) нередко повинно эпистатическое взаимодействие генов, когда наличие или отсутствие продуктов реализации какого-либо гена препятствует образованию жизненно важных ферментов, кодируемых другим геном.
Полимерия. Различные- доминантные неаллельные гены могут оказывать действие на один и тот же признак, усиливая его проявление. Такие гены получили название однозначных, или полимерных, а признаки, ими определяемые,— полигенных. В этом случае два или больше доминантных аллелей в одинаковой степени оказывают влияние на развитие одного и того же признака.
Важная особенность полимерии — суммирование (аддитивность) действия неаллельных генов на развитие количественных признаков. Если при моно-генном наследовании признака возможно три варианта «дозл гена в генотипе: АА, Аа, аа. то при полигенном количество их возрастает до четырех и более. Суммирование «доз» полимерных генов обеспечивает cуществование непрерывных рядов количественных изменений.
Биологическое значение полимерии заключается еще и в том, что определяемые этими генами признаки более стабильны, чем кодируемые одним геном. Организм без полимерных генов был бы крайне неустойчив: любая мутация или рекомбинация приводила бы к резкой изменчивости, а это в большинстве случаев невыгодно.
(15) Независимое комбинирование неаллельных генов. Изучая расщепление при дигибридном скрещивании, Мендель обнаружил, что признаки наследуются независимо друг от друга. Эта закономерность, известная как правило независимого комбинирования признаков, формулируется следующим образом: при скрещивании гомозиготных особей, отличающихся двумя (или более) парами альтернативных признаков, во втором поколении F2) наблюдается независимое наследование и комбинирование признаков, если гены, определяющие их, расположены в различных гомологичных хромосомах. Это возможно, так как при мейозе распределение (комбинирование) хромосом в половых клетках при их созревании идет независимо, что может привести к появлению потомков, несущих признаки в сочетаниях, не свойственных родительским и прародительским особям. Вступают в брак дигетерозиготы по окраске глаз и способности лучше владеть правой рукой (АаВb). При формировании гамет аллель А может оказаться в одной гамете как с аллелем В, так и с аллелем b. Точно так же аллель а может попасть в одну гамету либо с аллелем В, либо с аллелем b. Следовательно, у дигетерозиготной особи образуются четыре возможные комбинации генов в гаметах: АВ, Аb, аВ, аb. Всех типов гамет будет поровну (по 25%).
Это несложно объяснить поведением хромосом при мейозе. Негомологичные хромосомы при мейозе могут комбинироваться в любых сочетаниях, поэтому хромосома, несущая аллель А, равновероятно может отойти в гамету как с хромосомой, несущей аллель В так и с хромосомой, несущей аллель b. Точно так же хромосома, несущая аллель а, может комбинироваться как с хромосомой, несущей аллель В, так и с хромосомой, несущей аллель b. Итак, дигетерозиготная особь образует 4 типа гамет. Естественно, что при скрещивании этих гетерозиготных особей любая из четырех типов гамет одного родителя может быть оплодотворена любой из четырех типов гамет, сформированных другим родителем, т. е. возможны 16 комбинаций. Такое же число комбинаций следует ожидать по законам комбинаторики.
При подсчете фенотипов, записанных на решетке Пеннета, оказывается, что из 16 возможных комбинаций во втором поколении в 9 реализуются два доминантных признака (АВ, в нашем примере — кареглазые правши), в 3—первый признак доминантный, второй рецессивный (Аb, в нашем примере — кареглазые левши), еще в 3 — первый признак рецессивный, второй — доминантный (аВ, т. е. голубоглазые правши), а в одной — оба признака рецессивные (аb, в данном случае — голубоглазый левша). Произошло расщепление по фенотипу в соотношении 9:3:3:1.
Если при дигнбридном скрещивании во втором поколении последовательно провести подсчет полученных особей по каждому признаку в отдельности до результат получится такой же, как при моногчбридном скрещивании, т.e. 3 : 1.
В нашем примере при расщеплении по окраске глаз получается соотношение: кареглазых 12/16, голубоглазых 4/16, по другому признаку — правшей 12/16, левшей 4/16, т. е. известное соотношение 3:1.
Дигетерозигота образует четыре типа гамет, поэтому при скрещивании с рецессивной гомозиготой наблюдается четыре типа потомков; при этом расщепление как по фенотипу, так и по генотипу происходит в соотношении 1:1:1:1.
При подсчете фенотипов, полученных в этом случае, наблюдается расщепление в соотношении 27 : 9 : 9 : 9: :3 : 3 : 3 : 1. Это следствие того, что принятые нами во внимание признаки: способность лучше владеть правой рукой, окраска глаз и резус-фактор контролируются генами, локализованными в разных хромосомах, и вероятность встречи хромосомы, несущей ген А, с хромосомой, несущей ген В или R, зависит полностью от случайности, так как та же хромосома с геном А в равной степени могла встретиться с хромосомой, несущей ген b или r.
В более общей форме, при любых скрещиваниях, расщепление по фенотипу происходит по формуле (3 + 1)n, где п — число пар признаков, принятых во внимание при скрещивании.
(17) Сцепление генов и кроссинговер. Во всех примерах скрещивания, которые приводились выше, имело место независимое комбинирование генов, относящихся к различным аллельным парам. Оно возможно только потому, что рассматриваемые нами гены локализованы в различных парах хромосом. Однако число генов значительно превосходит число хромосом. Следовательно, в каждой хромосоме локализовано много генов, наследующихся совместно. Гены, локализованные в одной хромосоме, называются группой сцепления. Понятно, что у каждого вида организмов число групп сцепления равняется числу пар хромосом, т. е. у дрозофилы их 4, у гороха — 7, у кукурузы — 10, у томата — 12 и т. д.
Следовательно, установленный Менделем принцип независимого наследования и комбинирования признаков проявляется только тогда, когда гены, определяющие эти признаки, находятся в разных парах хромосом (относятся к различным группам сцепления).
Однако оказалось, что гены, находящиеся в одной хромосоме, сцеплены не абсолютно. Во время мейоза, при конъюгации хромосом гомологичные хромосомы обмениваются идентичными участками. Этот процесс получил название кроссинговера, или перекреста. Кроссинговер может произойти в любом участке хромосомы, даже в нескольких местах одной хромосомы. Чем дальше друг от друга расположены локусы в одной хромосоме, тем чаще между ними следует ожидать перекрест и обмен участками.
Обмен участками между гомологичными хромосомами имеет большое значение для эволюции, так как непомерно увеличивает возможности ком-бинативной изменчивости. Вследствие перекреста отбор в процессе эволюции идет не по целым группам сцепления, а по группам генов и даже отдельным генам. Ведь в одной группе сцепления могут находиться гены, кодирующие наряду с адаптивными (приспособительными) и неадаптивные состояния признаков. В результате перекреста «полезные» для организма аллели могут быть отделены от «вредных» и, следовательно, возникнут более выгодные для существования вида генные комбинации — адаптивные.
Методы гибридизации соматических клеток. Соматические клетки содержат весь объем генетической информации. Это дает возможность изучать многие вопросы генетики чело-
века, которые невозможно исследовать на целом организме. Благодаря методам генетики соматических клеток человек стал как бы одним из экспериментальных объектов. Соматические клетки человека получают из разных органов (кожа, костный мозг, клетки крови, ткани эмбрионов). Чаще всего используют клетки соединительной ткани (фибробласты) и лимфоциты крови. Культивирование клеток вне организма позволяет получить достаточное количество материала для исследования, что не всегда можно взять у человека без ущерба для здоровья.
В 1960 г. французский биолог Ж. Барский, выращивая вне организма в культуре ткани клетки двух линий мышей, обнаружил, что некоторые клетки по своим морфологическим и биохимическим признакам были промежуточными между исходными родительскими клетками. Эти клетки оказались гибридными.
Гибридизация соматических клеток проводится в широких пределах не только между разными видами, но и типами: человек х мышь, человек х комар, мышь х курица и т. п. В зависимости от целей анализа исследование проводят на гетерокарионах или синкарионах. Синкарионы обычно удается получить при гибридизации в пределах класса. Это истинные гибридные клетки, так как в них произошло объединение двух геномов. Происходит постепенная элиминация хромосом того организма, клетки которого имеют более медленный темп размножения.
Применение метода генетики соматических клеток дает возможность изучать механизмы первичного действия генов и взаимодействия генов.
(18) Наследование, сцепленное с полом. Признаки, наследуемые через половые хромосомы, получили название сцепленных с полом. У человека признаки, наследуемые через X-хромосому, могут быть только у лиц мужского пола, а наследуемые через Х-хромосо-му — у лиц как одного, так и другого пола. Лицо женского пола может быть как гомо-, так и гетерозиготным по генам, локализованным в Х-хромосоме, а рецессивные аллели генов у него проявляются только в гомозиготном состоянии. Поскольку у лиц мужского пола только одна Х-хромосома, все локализованные в ней гены, даже рецессивные, сразу же проявляются в фенотипе. Такой организм называют гемизиготным.
У человека некоторые патологические состояния наследуются сцепленно с полом. К ним относится, например, гемофилия (медленная свертываемость крови, обусловливающая повышенную кровоточивость).
Аллель гена, контролирующий нормальную свертываемость крови (H), и его аллельная пара «ген гемофилии» (h) находятся в Х-хромосоме. Аллель Я доминантен, аллель Н рецессивен, поэтому, если женщина гетерозиготна по этому гену (ХНХh), гемофилия у нее не проявляется. У мужчины только одна Х-хромосома. Следовательно, если у него в Х-хромосоме находится аллель Н, то он и проявляется. Если же Х-хромосома мужчины имеет аллель h, то мужчина страдает гемофилией: К-хромосома не несет генов, определяющих механизмы нормального свертывания крови.
Если рецессивные признаки, наследуемые через Х-хромосому у женщин, проявляются только в гомозиготном состоянии, то доминантные в равной мере проявляются у обоих полов. К таким признакам у человека относятся: витаминоустойчивый рахит, темная эмаль зубов и другие.
Признаки, которые наследуются через К-хромосому, получили название голандриуеских. Они передаются от отца всем его сыновьям. К числу таких у человека относится признак, проявляющийся в интенсивном развитии волос на крае ушной раковины.
(19) Взаимодействие неаллельных генов. Комплементарное действие. Комплементарными (лат. complementum — средство пополнения) называются взаимодополняющие гены, когда для формирования признака необходимо наличие нескольких не-аллельных (обычно доминантных) генов. Этот тип наследования в природе широко распространен.
У душистогр горошка окраска венчика цветка обусловлена нал чем двух доминантных генов (А и B), в отсутствие одного из них — цветки белые. Поэтому при скрещивании растений с генотипами ААЬЪ и ааВВ, имеющих белые венчики, в первом поколении растения оказываются окрашенными, а во втором поколении расщепление происходит в соотношении 9 окрашенных к 7 неокрашенным (ЗАbb + ЗааВ + 1ааbb).
Комплементарное взаимодействие генов у человека можно показать на следующих примерах. Нормальный слух' обусловлен двумя доминантными неаллельными генами D и Е, из которых один определяет развитие улитки, а другой—слухового нерва. Доминантные гомозиготы и гетерозиготы по обоим генам имеют нормальный слух, рецессивные гомозиготы по одному из этих генов — глухие.
Эпистаз. Взаимодействие генов, противоположное комплементарному, получило название эпистаза. Под эпистазом понимают подавление неаллельным геном действия другого гена, названного гипостатическим.
Проявление эпистаза у человека можно показать на следующем примере. Ген, обусловливающий группы крови по системе Л 60, кодирует не только синтез специфических белков, присущих данной группе крови, но и наличие их в слюне и других секретах. Однако при наличии в гомозиготном состоянии рецессивного гена по другой системе крови — системе Люис выделение их в слюне и других секретах подавлено. Другим примером эпистаза у человека может служить «бомбейский феномен» в наследовании групп крови. Он описан у женщины, получившей от матери аллель 1В, но фенотипическн имеющей первую группу крови. Оказалось, что деятельность аллеля 1В подавлена редким рецессивным аллелем гена «х», который в гомозиготном состоянии оказывает эпистатическое действие.
В проявлении ферментопатий (т. е. болезней, связанных с отсутствием каких-либо ферментов) нередко повинно эпистатическое взаимодействие генов, когда наличие или отсутствие продуктов реализации какого-либо гена препятствует образованию жизненно важных ферментов, кодируемых другим геном.
Полимерия. Различные- доминантные неаллельные гены могут оказывать действие на один и тот же признак, усиливая его проявление. Такие гены получили название однозначных, или полимерных, а признаки, ими определяемые,— полигенных. В этом случае два или больше доминантных аллелей в одинаковой степени оказывают влияние на развитие одного и того же признака.
Важная особенность полимерии — суммирование (аддитивность) действия неаллельных генов на развитие количественных признаков. Если при моно-генном наследовании признака возможно три варианта «дозл гена в генотипе: АА, Аа, аа. то при полигенном количество их возрастает до четырех и более. Суммирование «доз» полимерных генов обеспечивает cуществование непрерывных рядов количественных изменений.
Биологическое значение полимерии заключается еще и в том, что определяемые этими генами признаки более стабильны, чем кодируемые одним геном. Организм без полимерных генов был бы крайне неустойчив: любая мутация или рекомбинация приводила бы к резкой изменчивости, а это в большинстве случаев невыгодно.
(20) Плейотропия. Зависимость нескольких признаков от одного гена носит название плейотропии (гр. рleison — полный, tropos — способ), т. е. наблюдается проявление множественных эффектов одного гена. Это явление было впервые обнаружено Менделем, хотя он специально его не исследовал. По его наблюдениям у растений с пурпурными цветками всегда имелась красная окраска в основании черешков листьев, а кожура семян была бурого цвета. Эти три признака определялись действием одного гена. Н. И. Вавилов описал плейотропное действие гена черной окраски колоса у персидской пшеницы, который вызывал одновременно развитие другого признака — опушение колосковых чешуи. У дрозофилы ген белой окраски глаз (w) одновременно оказывает влияние на цвет тела, длину крыльев, строение полового аппарата, снижает плодовитость, уменьшает продолжительность жизни. У человека известно наследственное заболевание — арахнодактилия («паучьи пальцы»—очень тонкие и длинные), или болезнь Марфана. Ген, определяющий это заболевание, вызывает нарушение развития соединительной ткани и оказывает влияние одновременно на развитие нескольких признаков: нарушение в строении хрусталика глаза, аномалии в сердечно-сосудистой системе.
Плейотропное действие гена может быть первичным и вторичным. При первичной плейотропии ген одновременно проявляет свое множественное действие. Например, измененный белок взаимодействует с цитоплазмой различных клеточных систем или изменяет свойства мембран в клетктзс нескольких органов. При вторичной плейотропии имеется одно первичное фенотипическое проявление гена, вслед за которым развивается ступенчатый процесс вторичных проявлений, приводящих к множественным эффектам (серповидно-клеточная анемия).
При плейотропии ген, влияя на какой-то один основной признак, может также изменять, модифицировать проявление других генов, в связи с чем введено понятие о генах-модификаторах. Последние усиливают или ослабляют развитие признаков, кодируемых «основным» геном. Возможно, что каждый ген является одновременно геном' основного действия для «своего» признака и модификатором для других признаков. Таким образом, фенотип — результат взаимодействия генов и всего генотипа с внешней средой в онтогенезе особи.
Пенетрантность. Количественный показатель фенотипического проявления гена называется пенетрантностью. Пенетрантность характеризуется процентом особей, у которых проявляется в фенотипе данный ген, по отношению к общему числу особей, у которых ген мог бы проявиться (если учитывается рецессивный ген, то у гомозигот, если доминантный — то у доминантных гомозигот и гетерозигот). Если, например, мутантный ген проявляется у всех особей, говорят о 100 % пене-трантности, в остальных случаях — о неполной и указывают процент особей, проявляющих ген. Так, наследуемость групп крови у человека по системе АВО имеет стопроцентную пенетрант-ность, наследственные болезни: эпилепсия — 67 %, сахарный диабет — 65 %, врожденный вывих бедра — 20 % и т. д.
Экспрессивность. Термины «экспрессивность» и «пенетрантность» введены в 1927 г. Н. В. Тимофеевым-Ресовским. Экспрессивность и пенетрантность поддерживаются естественным отбором. Обе закономерности необходимо иметь в виду при изучении наследственности у человека. Следует помнить, что гены, контролирующие патологические признаки, могут иметь различную пенетрантность и экспрессивность, т. е. проявляться не у всех носителей аномального гена, и что у болеющих степень болезненного состояния неодинакова. Изменяя условия среды, можно влиять на проявление признаков.
Положения: 1. Организмов вне среды не существует. Поскольку организмы являются открытыми системами, находящимися в единстве с условиями среды, то и реализация наследственной информации происходит под контролем среды. 2. Один и тот же генотип способен дать различные фенотипы, что определяется условиями, в которых реализуется генотип в процессе онтогенеза особи. 3. В организме могут развиться лишь те признаки, которые обусловлены генотипом. Фенотипическая изменчивость происходит в пределах нормы реакции по каждому конкретному признаку. 4. Условия среды могут влиять на степень выраженности наследственного признака у организмов, имеющих соответствующий ген (экспрессивность), или на численность особей, проявляющих соответствующий наследственный признак (пенетрантность).
Генокопии. Ряд сходных по фенотипическому проявлению признаков, в том числе и патологических, может вызываться различными неаллельными генами. Такое явление называется генокопией. Генокопии обусловливают генетическую неоднородность ряда заболеваний. Примером генокопий могут служить различные виды гемофилии, клинически проявляющиеся понижением свертываемости крови на воздуие.
Оказалось, что эти разные по генетическому происхождению формы, связанные с мутациями неаллельных генов. Гемофилия А вызвана мутацией гена, контролирующего синтез фактора VIII (антигемофильного глобулина), а причиной гемофилии В является дефицит фактора IX свертывающей системы крови. Примером генокопии являются также различные формы талассемии (гр. talassa — море) — заболевания, сопровождающегося распадом эритроцитов, желтухой, увеличением селезенки. Известны две формы этого заболевания (α и β), при которых тормозится скорость синтеза разных полепиптидных цепей. Впервые оно было обнаружено у жителей Средиземноморья. Гены, обусловливающие это заболевание, относятся к сублетальным, как и ген серповидноклеточности.
(21) Генотип, геном. Несмотря на дискретное генетическое определение отдельных признаков, в индивидуальном развитии воссоздается сбалансированный комплекс признаков и свойств, соответствующий типу морфофункциональной организации конкретного биологического вида. Закономерно возникают плазмодий малярийный, кедр ливанский, аскарида человеческая, слон индийский, человек разумный. Это достигается вследствие интеграции дискретных в структурном отношении единиц наследственности в целостную в функциональном плане систему — генотип (геном): «генотип» обозначают совокупность аллелей (генов) диплоидного набора хромосом, а термином «геном» — гаплоидного. Такая интеграция находит отражение в разнообразных взаимодействиях генов в процессе их функционирования.
Обычно генотип определяют как совокупность всех генов (более точно аллелей) организма. С учетом факта интеграции генотип представляется системой определенным образом взаимодействующих генов. Генные взаимодействия происходят на нескольких уровнях: непосредственно в генетическом материале клеток, между иРНК и образующимися полипептидами в процессе биосинтеза белка, между белками-ферментами одного метаболического цикла.
Взаимодействие генов на уровне продуктов функциональной активности (РНК или полипептидов) лежит в основе развития сложных признаков. Рассмотрим в качестве примера синдром Морриса. Y больных, кариотип которых включает половые хромосомы X и Y, отмечается недоразвитие вторичных половых признаков мужского пола, которое зависит от продукции и взаимодействия на известной стадии онтогенеза двух факторов — мужского полового гормона и белка-рецептора, встраивающегося в клеточную оболочку и делающего клетки чувствительными к гормону. Синтез указанных факторов контролируется разными генами. У лице синдромом Морриса мужской половой гормон образуется своевременно и в требуемом количестве, но не синтезируется белок-рецептор. Таким образом, нормальное развитие сложного признака комплекса мужских вторичных половых признаков контролируется двумя генами, которые взаимодействуют на уровне продуктов их функциональной активности.
В настоящее время для большинства признаков нельзя указать точно уровень взаимодействия тех генов, которые контролируют их развитие. Учитывая интерес практического врача прежде всего к закономерностям наследования признаков, ниже приводятся формы взаимодействия генов, которые изменяют наследование определенным образом. При этом уровень взаимодействия генов не оговаривается.
Фенотип. Совокупность признаков и свойств особи составляет ее фенотип. Фенотип складывается в процессе индивидуального развития. Он соответствует тому типу структурно-функциональной организации, который свойствен данному биологическому виду. Фенотип развивается в соответствии с наследственной информацией, которая содержится в генотипе. При этом отдельные гены обусловливают лишь возможность развития признаков. Эта возможность осуществляется при наличии подходящих условий внешней среды. Внешняя среда включает всю совокупность негенетических (т. е. не связанных непосредственно с наследственным материалом) факторов, действующих на организм в процессе его развития и жизнедеятельности. В зависимости от изменений внешней среды состояние сложных признаков варьирует от организма к организму. Такие вариации называются модификациями.
Они имеют приспособительное значение, а диапазон модификаций каждого признака находится под генетическим контролем. Так, пределы изменения количества эритроцитов в периферической крови человека в зависимости от величины парциального давления кислорода в воздухе ограничены генетически. То или иное значение количества красных кровяных клеток в пределах возможных колебаний зависит от высоты местности над уровнем моря.
Взаимодействие генов и факторов окружающей среды составляет основу развития как отдельных признаков, так и фенотипа в целом. Это нашло отражение в таком генетическом понятии, как «норма реакции»— специфический способ реагирования организма на изменения внешней среды. Она зависит от видовых характеристик и индивидуальных особенностей генотипа. По-другому норму реакции определяют как весь спектр путей развития, которые возможны у носителя конкретного генотипа в любой среде, совместимой с жизнью. По отношению к разным признакам «норма реакции» бывает узкой и широкой. В первом случае одинаковое состояние признака возникает в широком спектре колебаний факторов среды. Во втором — признак отличается значительной изменчивостью в зависимости от параметров внешней среды. В качестве примера приведем соответственно систему групп крови АВО и рост индивидуума. Рис. 48 дает представление о диапазоне варьирования степени развития признаков с узкрй и широкой нормой реакции в зависимости от генотипа.
Сходные состояния некоторых признаков возникают у одних особей благодаря наличию в генотипе определенного аллеля, а у других — в результате особого сочетания внешних факторов. Изменения фенотипа, сходные с изменениями генетической природы, но вызванные факторами внешней среды, называются фенокопиями. Так, у женщин, перенесших на ранних сроках беременности краснуху, нередко рождаются дети с врожденной катарактой (помутнение хрусталика), не отличимой от наследственной катаракты.
К основным факторам, от которых зависит фенотип организма, относятся гены с присущими им свойствами, разного рода генные взаимодействия и параметры внешней среды, в которой осуществляется развитие. Проиллюстрируем действие этих факторов на примере развития признака пола.У раздельнополых организмов среди новорожденных соотношение числа особей мужского и женского пола близко 1:1
Аллельное исключение. Выделяют взаимодействие аллельных и неаллельных генов. Основные формы взаимодействия аллельных генов рассмотрены выше. Они обусловливают доминантное, рецессивное, кодоминантное наследование признаков, явление неполного доминирования. При перечисленных формах доминирования результаты взаимодействия генов проявляются во всех соматических клетках организма. При такой форме взаимодействия как аллельное исключение в части клеток организма, гетерозиготного по данному локусу, активен один аллель, тогда как в других клетках другой. В качестве примера рассмотрим генетический контроль синтеза иммуноглобулинов — белков плазмы крови, которые обеспечивают в организме человека реакции иммунологической защиты. Они состоят из «тяжелых» и «легких» полипептидных цепей, которые синтезируются под генетическим контролем трех разных групп неаллельных генов. И «тяжелые», и «легкие» полипептиды образуются плазматическими
клетками. При этом отдельные плазматические клетки синтезируют лишь по одному из возможных вариантов «тяжелых» и «легких» полипептидов глобулинов. Аллельное исключение увеличивает разнообразие признаков многоклеточного организма при идентичности генотипов соматических клеток. Механизм этого явления окончательно не установлен. Другим примером аллельного исключения является генетическая инактивация одной из Х-хромосом женских особей. В мировой литературе описаны лишь единичные случаи заболевания женщин гемофилией. Вместе с тем матери — гетерозиготные носители аллеля гемофилии — передают его половине своих дочерей, которые нормальный аллель получают с Х-хромосомой отца. Случайный характер инактивации путем гетерохроматизации приводит к выключению из функции в одних клетках материнской, а в других—отцовской Х-хромосомы. Таким образом, всегда остаются клетки, которые несут нормальный аллель синтеза антигемофилическо-го фактора в активном состоянии.
Неполное доминирование. Одной из форм взаимодействия аллельных генов является неполное доминирование, которое заключается в ослаблении действия доминантного аллеля в присутствии рецессивного. Так, активность фермента фенил ал анингидроксилазы у носителей одновременно нормального и аномального (рецессивного) аллелей выше, чем у больных фенилкетонурией, имеющих два аномальных аллеля, но ниже, чем у носителей двух нормальных аллелей. Неполное доминирование отражает собой, по-видимому, дозированность действия доминантных аллелей.
(22) Молекулярное строение гена у прокориот.
В связи с тем, что у прокариот геном организован в виде кольцевидной молекулы ДНК, расположенной непосредственно в цитоплазе клетки, различные этапы реализации наследственной информации практически не разобщены ни во времени, ни в пространстве. Транскрипция и сборка пептидной цепи - трансляция протекают практически одновременно. По мере освобождения начала молекулы иРНК от матрицы ДНК к ней присоединяются рибосомы и начинается синтез пептидных цепей.
Молекулярное строение гена у эукориот. Геном эукариот организован сложнее, чем у прокариот. Для него характерен хромосомный уровень организации. В хромосомах ДНК находится в окружении белков. В геноме эукариот имеется много избыточной ДНК. В конце 70-х годов было высказано предположение о наличии в генетическом материале эукариот неинформативных участков - нитронов, которые вставлены между информативными - экзонами. Интронноэкзонная организация генов у эукарит определяет необходимость преобразования первичного транскрипта (преинформационной РНК - продукта транскрипции) в зрелую иРНК. Она должна быть освобождена от неинформативных участков и защищена против разрушающего воздействия ферментов цитоплазмы.
Кроме того, у эукариот появляется ядерная мембрана, которая пространственно разобщает место хранения генетической информации (хромосомы в ядре) и место синтеза пептидной цепи (рибосомы). Иными словами, у эукариот процессы транскрипции и трансляции разобщены как пространство (ядерной оболочкой), так и во времени (процессами созревания иРНК).
Таким образом, в ходе реализации наследственной информации у эукариог выделяют следующие этапы:
1. Транскрипция;
2. Посттранскрипционные процессы (процессинг);
3. Трансляция;
4. Посттрансляционные процессы.
1. Транскрипция - осуществляется с помощью РНК-полимераз. РНК-полимераза I синтезирует пре-рРНК. РНК-полимераза II синтезирует пре-иРНК РНК-полимераза III - пре-тРНК. Раньше считали, что транскрипция происходит по 1 из 2-х расплетаемых нитей ДНК. Сейчас установлено, что транскрипция идет по обеим нитям в 2-х направлениях. Одна нить ДНК несет наследственную информацию (смысловая), другая, комплементарная ей - антисмысловая. В клетке антисмысловая иРНК играет роль в управлении дифференцировкой и иногда - в регуляции синтеза белка. Если образуется комплекс (дуплекс иРНК + антисмысловая иРНК), тогда невозможен перенос иРНК из ядра в цитоплазму, следовательно, нет трансляции на рибосомах.
В участке ДНК, соответствующем отдельному гену перед структурной частью, в которой зашифрована последовательность аминокислот в пептиде, обязательно располагается последовательность нуклеотидов, узнаваемая РНК-полимеразой. Такая последовательность называется промотором.
РНК-полимераза находит промотор, взаимодействует с ним и после этого, двигаясь вдоль молекулы ДНК, обеспечивает постепенную сборку молекулы иРНК в соответствии с принципом комплементарности и антипараллельности. В конце структурной части гена расположен участок с особой последовательностью нуклеотидов - терминатор. Он обязательно включает один из нонсенс-триплетов, не кодирующих аминокислоты. В результате транскрипции синтезируется молекула преинформационной РНК.
2. Посттранскрипционные процессы (процессинг).
Это превращения, происходящие с первичным транскриптом, направленные на образование зрелой, стабилизированной иРНК, способной выполнять функцию матрицы при трансляции и защищенной от разрушающего действия специфических ферментов цитоплазмы.
Основные стадии процессинга:
1. отщепление концевых участков первичного транскрипта (спейсеров);
2. формирование на 5/ конце колпачка, состоящего из особой последовательности нуклеотидов;
3. формирование на 3/ конце полиадениловой последовательности нуклеотидов АААА:
4. метилирование некоторых внутренних азотистых оснований в транскрипте, стабилизирующее молекулу РНК;
5. вырезание неинформативных участков, соответствующих интронам ДНК, и сшивание (сплайсинг) участков, соответствующих экзонам Вырезание интронов происходит с участием сплайссом. Некодирующие последовательности - интроны превращаются в малую ядерную РНК (мяРНК). Выделено до 30мяРНК, они участвуют в сплейсинге и ядерноцитоплазматическом транспорте белков.
3. Трансляция - процесс сборки пептидной цепи, происходящей в цитоплазме на рибосомах на основании программы, содержащейся в иРНК. Основные фазы трансляции: 1) инициация; 2) элонгация; 3) терминация.
Инициация трансляции предполагает следующие события:
• с помощью колпачка иРНК находит в цитоплазме малую субъединицу рибосомы;
• с помощью лидерной последовательности устанавливается связь с комплементарным участком определенной фракции рРНК и иРНК прикрепляется к малой субъединице;
• к стартовому кодону (АУГ) присоединяется тРНК, несущая формилметионин;
• малая субъединица ассоциируется с большой субъединицей в аминоацильном центре (АЦ), которой располагается формилметионин.
Таким образом, фаза инициации завершается формированием комплекса иРНК и рибосомы и подстановкой начальной для всех пептидных цепей аминокислоты - формилметионина.
Фаза элонгации, т.е. наращивание пептидной цепи. Осуществляется путем постепенной подстановки аминокислоты в соответствии с очередным кодовом иРНК, который встает против аминоацильного центра. К этому кодону присоединяется соответствующая тРНК, имеющая комплементарный ему антикодон. Она несет определенную аминокислоту, которая располагается в аминоацильном центре (АЦ), тРНК, соединенная с предыдущим кодоном оказывается в пептидильном центре (ПЦ где располагает свою аминокислоту (цепочку АК).Между двумя аминокислотами, расположенными в пептидильном и аминоацильном центре, при участии имеющихся здесь ферментов возникает пептидная связь
После установления пептидной связи предыдущая тРНК отделяется от своей аминокислоты и своего кодона и уходит в цитоплазму, а последняя тРНК, нагруженная цепочкой аминокислот, переходит в ПЦ, заставляя иРНК перемещаться вдоль рибосомы и устанавливать новый кодон против аминоацильного центра.
После прохождения через рибосому всей кодирующей части иРНК на рибосоме собирается пептидная цепь с определенной последовательностью аминокислот.
Фаза терминации наступает, когда в контакт с рибосомой приходит концевой участок иРНК, который включает нонсенс-кодон, не кодирующий никакой аминокислоты. На этом сборка пептидной цепи заканчивается. По мере освобождения 5/ конца иРНК колпачок может находить новые малые субъединицы рибосом и процесс трансляции может повторно осуществляться на новых рибосомах. Комплекс рибосом, находящихся в контакте с одной молекулой иРНК и синтезирующих одинаковые пептидные цепи, называется полирибосомой (полисомой).
4. Посттрансляционные процессы.
В ходе предыдущих этапов реализации наследственной информации обеспечивается синтез пептидной цепи, которая в большинстве случаев начинается с аминокислоты формилметионин и соответствует первичной структуре белковой молекулы. Последующие события заключаются в отщеплении формилметионина, в некоторых случаях осуществляется модифицирование пептида после трансляции, формируется вторичная и третичная структуры белка (иногда для некоторых белков, характеризующихся четвертичной структурой, осуществляется объединение одинаковых, либо различных пептидных цепей с образованием активно функционирующего белка).
В зависимости от того, каковы функции белка (ферменты, строительный материал, антитела и т.д), он принимает участие в обеспечении морфо-функциональных особенностей клетки (организма), т.е. в формировали определенных сложных признаков.
Это является завершающим этапом процесса реализации генетической информации.
У эукариот образование РНК происходит и в цитоплазме: в митохондриях и хлоропластах (у растений), обладающих собственной системой синтеза белка и собственной генетической информацией в виде ДНК - цитоплазматическая наследственность, однако, система белкового синтеза в митохондриях и пластидах аналогична таковой у прокариот и существенно отличается от белкового синтеза в ядре высших животных. Гены, расположенные в цитоплазме вне хромосом, называются плазмогенами. Ими объясняется особый тип наследования, при котором признак передается через цитоплазму яйцеклетки (по материнской линии). Уникальной остается родословная, по которой в семьях трех поколений родилось 72 девочки и ни одного мальчика. Предполагают, что мутацией митохондриальных генов объясняются некоторые пороки развития человека - Spina bifida (раздвоенный позвоночный столб), сращение нижних конечностей.
Цитоплазматическая наследственность. Благодаря работам А. Вейсмана и Т. Моргана теорию наследственности эукариотических организмов называют хромосомной. Этим подчеркивается факт размещения наследственного материала в хромосомах клеточного ядра. По мере развития генетики накапливались данные, необъяснимые с точки зрения исключительно ядерной локализации генов и свидетельствовавшие о возможности прямого участия в явлениях наследственности цитоплазмы. Цитоплазматическая наследственность обеспечивается генами, локализованными вне ядра клетки. Ей соответствует особый тип одностороннего наследования по материнской линии, при котором признак передается через цитоплазму яйцеклетки. Совокупность наследственных задатков цитоплазмы называется плазмоном, а сами задатки — плазмагенами. По материнскому типу наследуется устойчивость к стрептомицину у хламидомонад, направление завитка раковины улиток, пятнистость листьев и мужская стерильность некоторых растений. Уникальной остается родословная, согласно которой в семьях трех поколений родилось 72 девочки и ни одного мальчика. Это может быть объяснено цитоплазматической наследственностью, хотя допустимы и другие объяснения.
Плазмагены разнородны по своей природе. Их можно разделить на две группы: 1) гены ДНК-содержащих органелл клетки (митохондрии, хлоропласты); 2) инфекционные агенты или симбионты клетки (вирусы, плазмиды, эписомы). Плазмагены обоих групп сходны по своим свойствам с ядерными генами и осуществляют генетический контроль синтеза ряда важных ферментов, а, следовательно, и развития некоторых сложных признаков. Они способны к редупликации и случайным, устойчивым, передающимся в ряду поколений изменениям — точковым мутациям. В качестве примера рассмотрим плазмаге-ны митохондрий. Одна такая органелла содержит 4—5 кольцевых молекул ДНК, каждая длиной примерно в 15 000 пар нуклеотидов. За счет собственной генетической информации в митохондриях образуются тРНК, рибонуклеиновые кислоты и белки рибосом, некоторые ферменты аэробного энергетического обмена и структурные белки. ДНК митохондрий редуплицируется, вслед за чем происходит деление исходной органеллы на две дочерние. Предположительно мутациями митохондриальных генов объясняются такие пороки развития человека, как 5рта ЫШа (раздвоенный позвоночный столб), сращение нижних конечностей.
Генетический контроль структуры и функции митохондрий плазмагены обеспечивают во взаимодействии с генами хромосом ядра. Простой расчет показывает, что объем собственной наследственной информации митохондрии недостаточен для воспроизведения всей совокупности рибонуклеиновых кислот и белков органеллы. Многие белки, особенно ферментативные, включаются в структуру митохондрии, будучи синтезированы в цитоплазме на иРНК, поступившей из ядра. Описано явление генокопирования по ядерным и цитрплазматиче-ским генам. Так, к мужской стерильности растений приводят в одних случаях мутации ядерных генов, а в других — плазмагенов.
(23) Классификация генов. Другая группа структурных генов, обеспечивающих синтез некоторых белков-ферментов, в своем функционировании зависит различных регулирующих факторов и называется регулируемыми генами. Их активное функционирование, скорость и продолжительность транскрибирования могут регулироваться как генетическими факторами, так и факторами негенетической природы.
Генетическими факторами регуляции транскрипции являются гены-регуляторы и операторы. Гены-регуляторы определяют синтез белков-регуляторов, способных в активном состоянии соединяться с оператором, включающим или выключающим транскрипцию структурных генов. В зависимости от свойств белка-регулятора различают негативный и позитивный контроль транскрипции со стороны гена-регулятора. При негативном контроле белок-регулятор, соединяясь с оператором, прекращает (выключает) транскрипцию. Такой белок называется репрессором. При позитивном контроле белок-регулятор, соединяясь с оператором, включает транскрипцию. В таком случае продукт гена-регулятора называется апоиндуктором.
Таким образом, наряду со структурными генами с геноме имеются гены-регуляторы, которые, обеспечивая репрессию или депрессию структурных генов, регулируют процессы синтеза белка в клетке.
Наряду с генетическими факторами в регуляции экспрессии генов важная роль принадлежит факторам негенетической природы - эффекторам. К ним относятся вещества небелковой природы, расщепляемые или синтезируемые в клетке при участии различных ферментов.
В зависимости от того, как эффектор воздействует на активность генов, различают индукторы, включающие транскрипцию генов, и корепрессоры, выключающие ее. Действие эффектора заключается в его взаимодействии с белком-регулятором, при котором он либо активируется и может соединяться с оператором, либо инактивируется и теряет способность соединяться с оператором.
Таким образом, экспрессия генов является результатом регулирующего воздействия на процессы транскрипции как со стороны самого генома (гены-регуляторы и операторы), так и со стороны факторов негенетической природы.
(24) Регуляция экспрессии генов у прокориот. Изучение регуляции экспрессии генов на стадии транскрипции у прокариот привело к созданию в 1961 г. модели оперона (Жакоб и Мано). Оперон – это тесно связанная последовательность структурных генов, определяющих синтез группы ферментов для какой-либо одной из биохимических реакции.
Особенностью прокариот является транскрибирование иРНК со всех структурных генов оперона. Такая полицистронная иРНК в дальнейшем разрезается на фрагменты, соответствующие матрицам для синтеза отдельных ферментов. Цепи структурных генов оперона всегда предшествует промотор, узнаваемый РНК-полимеразой. У конститутивных генов этого достаточно для осуществления транскрипции. У регулируемых генов между промотором и структурными генами располагается оператор - последовательность нукдеотидов, которая узнается белком-регулягорбм (репрессором), находящимся в активном состоянии. Белок-репрессорпредставляет собой аллостерический белок, способный изменять свои биологические свойства при соединении с различными специфическими молекулами и обладает двумя высокочувствительными группами: одной из них он распознает оператор, другой - специфично связывает индуктор. Одновременно быть связанным с двумя молекулами он не может. Индуктор представляет низкомолекулярное вещество, которое связывается с репрессором и переводит его в неактивную форму, неспособную более связываться с оператором. Так, в Lас-системе индуктором является лактоза, после ассоциации с которой репрессор отсоединяетсяот оператора.
При отсутствии в среде лактозы активный репрессор, взаимодействуя с оператором, репрессирует гены А,В,С - транскрипции нет. Появление в среде лактозы инактивирует репрессор, он не соединяется с оператором и осуществляется транскрипция генов А, В, С, отвечающих за синтез ферментов, которые расщепляют лактозу.
Регуляция экспрессии генов у эукориот. У эукариот не установлено оперонной организации генов. Гены, определяющие синтез ферментов одной цепи биохимических реакций, могут быть рассеяны в геноме и очевино не имеют, как у прокариот, единой регулирующей системы. В связи с этим синтезируемые мРНК у эукариот моноцистронны, т.е. являются матрицами для отдельных пептидных цепей.
В настоящее время механизмы регуляции активности эукариотических генов интенсивно изучаются. Установлено, что регуляция транскрипции у эукариот является комбинационной, т.е. актвиность каждого гена регулируется большим спектром генов-регуляторов. У многих эукариотических генов, кодирующих белки и транскрибируемых РНК-полимеразой II, в ДНК имеется несколько областей, которые узнаются разными белками-регуляторами. Одной ю них является область, расположенная вблизи промотора. Она включает около 100 пар нуклеотидов, в том числе ТАТА-блок, располагающийся на расстоянии 25 пар нуклеотидов от точки начала транскрипции. Установлено, что для успешного присоединения РНК-полимеразы II к промотору необходимо предварительное соединение с ТАТА-блоком особого белка - фактора транскрипции - с образованием стабильного транскрипционного комплекса. Именно этот комплекс ДНК с белком узнается РНК-полимеразой II.
Другая область, играющая важную роль в регуляции активности эукариотических генов, располагается на большом расстоянии от промотора (до нескольких тысяч пар нуклеотидов) и называется ЭНХАНСЕЮМ (от англ. enhance - усиливать).
И энхансер, и препромоторный элемент эукариотических генов - это короткие последовательности нуклеотидов, которые связываются с соответствующими регулягорными белками. В результате взаимодействия этих белков происходит включение или выключение генов.
Для эффективной регуляции экспрессии генов у эукариот существуют мехзанизмы, работающие не только на стадии транскрипции, но и на других этапах этого процесса.
Связанная с экзон-интронной организацией генов необходимость процессинга, в том числе сплайсинга, делает возможным регуляцию этих процессов в ядре: используя один и тот же первичный транскрипт, можно обеспечить образование матриц для разных палтидов, вырезая из них разные последовательности или изменяя последовательности на 5/ и 3/ концах мРНК.
Транспорт зрелых мРНК из ядра в цитоплазму также регулируется: лишь небольшая часть РНК, транскрибируемая с генов, после сплайсинга покидает ядро. Значительное количество ее деградирует.
Существуют механизмы, обеспечивающие регуляцию процессов синтеза пептидных цепей. Они менее экономичны, но отличаются быстротой реагирования на изменения потребностей клетки в данном белке. Регуляция трансляции осуществляется на стадами инициации, когда блокируется присоединение к малой субъединице рибосомы тРНК, несущей формилметионин. В результате при наличии в цитоплазме иРНК трансляции на ней не происходит. Такая ситуация наблюдается, например, при отсутствии в цитоплазме гена, что ведет к выключению трансляции глобиновых цепей гемоглобина.
Регуляция процесса реализации наследственной информации может осуществляться и на стадии посттранслядионных изменений, когда происходит задержка в формировании активных молекул белка при наличии пептидных цепей. Например, для формирования активной формы инсулина из проинсулина должны вырезаться две субъединицы. Торможение этих процессов уменьшает выход конечного активного продукта.
(25) Генетическая инженерия. Генетическая (генная) инженерия - область молекулярной биологии и генетики, ставящая своей задачей конструирование генетических структур по заранее намеченному плану, создание организмов с новой генетической программой. Возникновение генетической инженерии стало возможным благодаря синтезу идей и методов молекулярной биологии, генетики, биохимии и микробиологии. Основные методы генной инженерии были разработаны в 60-70-х годах нашего века. Они включают три основных этапа:
• получение генетического материала (искусственный синтез гена или выделение природных генов);
• включение этих генов в автономно реплицирующуюся генетическую структуру (векторную молекулу) и создание рекомбинантной молекулы ДНК;
• введение векторной молекулы (с включенным в нее геном) в клетку-реципиент, где она встраивается в хромосомный аппарат. Экспериментальный перенос генов в другой геном называется ТРАНСГЕНЕЗОМ.
Для ХИМИЧЕСКОГО СИНТЕЗА необходимо иметь полностью расшифрованную последовательность нуклеотидов. Впервые в 1970 году индийским ученым Корана Г. (США) был осуществлен искусственный синтез гена. Он синтезировал последовательность нуклеотидов (77) в ДНК, специфическую для структуры гена транспортной аланиновой РНК в клетках пекарских дрожжей. Более двух лет затратили на этот синтез гена. Последовательность нуклеотидов в нити ДНК определялась по информационной РНК. Для транскрипция необходимо, чтобы фермент РНК-полимераза "узнавала" место промотора, где локализована точка инициации синтеза, и в этом месте "садилась" на матрицу.
Однако, химическим путем можно синтезировать небольшие по размеру гены прокариот, синтез сложных генов эукариот, состоящих из тысячи и более нуклеотидов, путем химического синтеза пока создать не удается.
Кроме того, химический синтез очень трудоемкий и для генной инженерии в настоящее время практически не используется. Наиболее успешным оказался ФЕРМЕНТАТИВНЫЙ СИНТЕЗ гена.
Центральная догма молекулярной генетики утверждает, что считка информации происходит в направлении: ДНК → РНК → белок. Но ряд авторов, начиная с 1948 года, выступали с соображениями, что РНК может быть предшественником ДНК. Подобное наблюдается у онкогенных РНК - содержащих вирусов. С РНК-вируса, попавшего в клетку, синтезируется провирус (ДНК - копия РНК) с помощью фермента обратная транскриптаза (ревертаза), а сам процесс называется обратной транскрипцией. Этот фермент был открыт в 1970 году Теминым, Мазутани, Балтимором.
Ген, полученный путем ферментативного синтеза, может функционировать в бактериальной клетке, на нем синтезируется иРНК, а затем белок, таким путем под руководством академика В.А.Энгельгардга был получен ген, определяющий синтез фермента галактозидазы, введенный в фаг.
Следовательно, если иметь в пробирке выделенные молекулы иРНК, принадлежащие данному гену, то он может быть синтезирован с помощью фермента. Матрицей служит иРНК, ее выделяют, добавляют нуклеотиды, затравку, ферменты.
Важным достижением генной инженерии является синтез гена соматостатина, этот ген функционирует в микробной клетке.
Спонтанные и индуцированные мутации. Мутации делят на спонтанные и индуцированные. Спонтанными называют мутации, возникшие под влиянием неизвестных природных факторов, чаще всего как результат ошибок при репликации ДНК. Индуцированные мутации вызваны специально направленными воздействиями, повышающими мутационный процесс.
Наследственные различия у микроорганизмов, растений, животных и человека, в том числе наследственные болезни и уродства, появились в результате мутаций. Если спонтанные мутации — явление довольно редкое (частота—10-6—10-7), то применение мутагенных агентов значительно повышает частоту их.
Факторы, способные индуцировать мутационный эффект, получили название мутагенных. Установлено, что любые факторы внешней и внутренней среды, которые могут нарушить гомео-стаз, способны вызвать мутацию. Главнейшими мутагенами являются: химические соединения, различные виды излучений, биологические факторы.
Мутакинез. Химический мутагенез. Еще в 1934 г. М. Е. Лобашев отметил, что химические мутагены должны обладать тремя качествами: высокой проникающей способностью; свойством изменять коллоидное состояние хромосом; определенным действием на состояние гена или хромосомы.
Приоритет открытия химических мутагенов принадлежит советским исследователям. В 1933 г. В. В. Сахаров получил мутации путем действия йода, в 1934 г. М. Е. Лобашев — применяя аммоний. В 1946 г. советский генетик И. А. Рапопорт обнаружил сильное мутагенное действие формалина и эти-ленимина, а английская исследовательница Ш. Ауэрбах — иприта. Позже были открыты многие другие химические мутагены. Некоторые из них усиливают мутационный эффект в сотни раз по сравнению со спонтанным; они получили название супермутагенов (лат. зирег — сверх), т. е. оказывающих сверхмутагенное действие. Многие из супермутагенов, в частности использованные для получения высокоактивных штаммов микроорганизмов — продуцентов антибиотиков, открыл И. А. Рапопорт.
Химические мутагены используются для получения мутантных форм плесневых грибов, актиномицетов, бактерий, вырабатывающих в большом количестве пенициллин, стрептомицин и другие антибиотики. Химическими мутагенами повышена ферментативная активность грибов, применяемых для спиртового брожения. Разработаны десятки перспективных мутаций культурных растений.
В экспериментах мутации индуцируются разнообразными химическими агентами. Этот факт свидетельствует о том, что, по-видимому, и в естественных условиях подобные факторы также служат причиной появления спонтанных мутаций у различных химических веществ и даже некоторых лекарственных препаратов. Это говорит о необходимости изучения мутагенного действия новых фармакологических веществ, пестицидов и других химических соединений, все шире используемых в медицине и сельском хозяйстве.
Радиационный мутагенез. Индуцированные мутации, вызванные облучением, впервые были экспериментально получены советскими учеными Г. А. Надсоном и Г. С. Филипповым, которые в 1925 г. наблюдали мутационный эффект на дрожжах после воздействия на них ионизирующей радиации. В 1927 г. американский генетик Г. Меллер показал, что рентгеновы лучи могут вызвать множество мутаций у дрозофилы, а позже мутагенное воздействие рентгеновых лучей подтвердилось на многих объектах. В дальнейшем было установлено, что наследственные изменения обусловливаются также всеми другими видами проникающей радиации.
Для искусственных мутаций часто используются гамма-лучи, источником которых в лабораториях обычно является радиоактивный кобальт (60Со). В последнее время для индуцирования мутаций все шире применяются нейтроны, обладающие большой проникающей способностью. При этом возникают как разрывы хромосом, так и точ-ковые мутации. Изучение мутаций, связанных с действием нейтронов и гамма-лучей, представляет собой интерес по двум причинам. Во-первых, установлено, что генетические последствия атомных взрывов связаны прежде всего с мутагенным влиянием ионизирующей радиации. Во-вторых, физические методы мутагенеза применяются для получения ценных в хозяйственном отношении сортов культурных растений. Так, советские исследователи, используя методы воздействия физическими факторами, вывели стойкие к ряду грибных заболеваний и более урожайные сорта пшеницы и ячменя.
Одним из самых опасных последствий облучения является образование свободных радикалов ОН или НО2 из находящейся в тканях воды. Эти радикалы обладают высокой реактивной способностью и могут расщеплять многие органические вещества, в том числе нуклеиновые кислоты.
Другие мутагенные факторы. Первые исследователи мутационного процесса недооценивали роль факторов внешней среды в явлениях изменчивости. В начале XX в. некоторые исследователи даже считали, что внешние воздействия не имеют никакого значения для процесса мутирования. В дальнейшем зги представления были отвергнуты благодаря искусственному воспроизведению мутаций с помощью различных факторов внешней среды. В настоящее время можно предполагать, что нет таких факторов внешней среды, которое в какой-то мере не сказались бы на изменении наследственных свойств. Из фичических факторов на ряде объектов установлено мутагенное действие ультрафиолетовых лучей, фотонов света и температуры. Повышение температуры увеличивает число мутаций. Однако температура относится к числу тех агентов, в отношении которых у организмов существуют защитные механизмы, вследствие чего гомеостаз нарушается незначительно. В связи с этим температурные воздействия дают небольшой мутагенный эффект по сравнению с другими агентами.
Найдены биологические мутагены, к которым относятся вирусы и токсины ряда организмов, особенно плесневых грибов. В 1958 г. советский генетик С. И. Алиханян показал, что вирусы вызывают мутации У актиномицетов. Оказалось также, что вирусы вызывают мутации у растений и животных При этом мутагенным действием опладают не только те вирусы, к которым восприимчив организм, в котором они размножаются и вызывают заболевание, но и непатогенные для него вирусы. Таким образом, роль вирусов в природе заключается в том, что они являются не только возбудителями многих болезней растений, животных и чел, но и виновниками многих спонтанных мутаций.
(26) Комбинативная изменчивость. Комбинативная изменчивость. Комбинативная изменчивость связана с получением новых сочетаний генов в генотипе. Достигается это в результате трех процессов: а) независимого расхождения хромосом при мей-озе, б) случайного их сочетания при оплодотворении, в) рекомбинации генов благодаря кроссинговеру; сами наследственные факторы (гены) при этом не изменяются, но возникают их новые сочетания, что приводит к появлению организмов с другим генотипом и фенотипом.
Дарвин установил, что многие сорта культурных растений и породы домашних животных были созданы благодаря гибридизации существовавших ранее пород. Он придавал большое значение комбинативной изменчивости, считая, что наряду с отбором ей принадлежит важная роль в получении новых форм как в природе, так и в хозяйстве человека.
Комбинативная изменчивость широко распространена в природе. У микроорганизмов, размножающихся бесполым путем, появились своеобразные механизмы (трансформация и транс-дукция), приводящие к появлению комбинативной изменчивости. Все это говорит о большой значимости комбинативной изменчивости для эволюции.
Комбинативная изменчивость распространена в природе и может играть роль даже в видообразовании. Описаны виды цветковых растений и рыб, совмещающие признаки двух близких ныне существующих видов. Однако возникновение видов в результате только гибридизации — явление редкое.
К комбинативной изменчивости примыкает явление гетерозиса. Гетерозис (гр. heteroisis — видоизменение, превращение), или «гибридная сила», может наблюдаться в первом поколении при гибридизации между представителями различных видов или сортов. Проявляется он в форме повышенной жизнеспособности, увеличения роста и других особенностей. Ярко выражен гетерозис у кукурузы, гибридизация которой дает значительный экономический эффект.
Мутационная изменчивость. Мутацией (лат. mutatio—перемена) называется изменение, обусловленное реорганизацией воспроизводящих структур, изменением ее генетического аппарата. Этим мутации резко отличаются от модификаций, не затрагивающих генотипа особи. Мутации возникают внезапно, скачкообразно, что иногда резко отличает организм от исходной формы.
Растениеводам и животноводам такие изменения были известны давно. Ряд наследственных изменений описал Дарвин в труде «Изменение домашних животных и культурных растений» (1868). Мутационной изменчивости посвятил свои работы С. И. Коржинский (1899) и Г. де Фриз (1901). Последнему принадлежит термин «мутация».
В настоящее время известны мутации у всех классов животных, растений и вирусов. Существует много мутаций и у человека. Именно мутациями обусловлен полиморфизм человеческих популяций: различная пигментация кожи, волос, окраска глаз, форма носа, ушей, подбородка и т. д. В результате мутаций появляются и наследственные аномалии в строении тела, и наследственные болезни человека.С мутационной изменчивостью связана эволюция— процесс образования новых видов, сортов и пород. По характеру изменений генетического аппарата различают мутации, обусловленные: а) изменением числа хромосом (геномные) б) изменением структуры хромосом (хромосомные аберрации); в) изменением молекулярной структуры гена (генные, или точковые мутации).
Хромосомные мутации. Возникают и результате перестройки хромосом. Они являются следствием разрыва хромосомы, приводящего к образованию фрагментов, которые в дальнейшем воссоединяются, но при этом нормальное строение хромосомы не восстанавливается. Различают четыре основных типа хромосомных аберраций: нехватки, удвоения (дупликации), инверсии, транслокации.
Нехватки возникают вследствие потери хромосомой того или иного участка. Нехватки в средней части хромосомы приводят организм к гибели, утрата незначительных участков вызывает изменение наследственных свойств. Так, при нехватке участка одной из хромосом у кукурузы ее проростки лишены хлорофилла.
Удвоение (дупликация) связано с включением лишнего, дублирующего участка хромосомы. Это также ведет к проявлению новых признаков. Так, у дрозофилы ген полоско-видных глаз (вмэсто круглых) обусловлен удвоением участка в одной из хромосом.
Инверсии наблюдаются при разрыве хромосомы и переворачивании оторвавшегося участка на 180°. Если разрыв произошел в одном месте, оторвавшийся фрагмент прикрепляется к хромосоме противоположным концом, если же в двух местах, то средний фрагмент, перевернувшись, прикрепляется к местам разрыва, но другими концами. Н. П. Дубинин установил, что инверсии широко распространены, в частности у дрозофил, взятых из природы, и, по-видимому, могут играть роль в эволюции видов.
Транслокации возникают в тех случаях. когаа участок хромосомы из одной пары прикрепляется к негомологичной хромосоме, т. е. хромосоме из другой пары Транслокачия участка одной из хромосом (21-й) известна у человека; оно может быть причиной болезни Дауна Большинство крупных хромосомных аберраций в зиготах у человека приводит к тяжелым аномалиям, несовместимым с жизнью, либо к гибели зародышей еще во время внутриутробного развития.
Полиплоидия. Это увеличение диплоидного числа хромосом путем добавления целых хромосомных наборов в результате нарушения мейоза. Вспомним, что половые клетки имеют гаплоидный набор хромосом (л), а для зигот и всех соматических клеток характерен диплоидный набор (2л). У полиплоидных форм отмечается увеличение числа хромосом, кратное гаплоидному набору: Зn — триплоид, 4n — тетраплоид, 5n — пентаплоид, 6n — гексаплоид и т. д. По-видимому, эволюция ряда цветковых растений шла путем полиплоидизации. Культурные растения в своем большинстве— полиплоиды.
Формы, возникающие в результате умножения хромосом одного генома, носят название автоплоидных. Однако известна и другая форма полиплоидии — аллоплоидия, при которой умножается число хромосом двух разных геномов. Аллополиплоиды искусственно получены при гибридизации ряда видов растений и животных. Так, Г. Д. Карпеченко создал аллополиплоидный гибрид редьки и капусты. В данном случае каждый исходный вид имеет 18 хромосом, а гибридный — 36, так как является аллотетраплоидом.
Полиплоидные формы известны и у животных. По-видимому, эволюция некоторых групп простейших, в частности инфузорий и радиолярий, шла также путем полиплоидизации. У некоторых многоклеточных животных полиплоидные формы удалось создать искусственно (тутовый шелкопряд).
Гетероплоидия. В результате нарушения мейоза и митоза число хромосом может изменяться и становиться не кратным гаплоидному набору. Явление, когда какая-либо из хромосом, вместо того чтобы быть парной, оказывается в тройном числе, получило название трисомии. Если наблюдается трисомия по одной хромосоме, то такой организм называется трисомиком и его хромосомный набор равен 2n + 1. Трисомия может быть по любой из хромосом и даже по нескольким. Двойной трисомик имеет набор хромосом 2n + 3 тройной — 2лn + 3 и т.
Явление трисомии впервые описано у дурмана. Известна трисомня и у других видов растений и животных, а также у человека. Трисомиками являются, например, люди с синдромом Дауна. Трисомики чаще всего либо нежизнеспособны, либо отличаются пониженной жизнеспособностью и рядом патологических признаков.
Явление, противоположное трисомии, т. е. утрата одной хромосомы из пары в диплоидном наборе, называется моносомией, организм же—моносомиком; его кариотип — 2n— 1. При отсутствии двух различных хромосом организм является двойным моносомиком (2n — 2). Если из диплоидного набора выпадают обе гомологические хромосомы, организм называется ну-лисомиком. Он, как правило, нежизнеспособен.
Из сказанного видно, что анэуплоидия, т. е. нарушение нормального числа хромосом, приводит к изменениям в строении и к снижению жизнеспособности организма. Чем больше нарушение, тем ниже жизнеспособность. У человека нарушение сбалансированного набора хромосом елечет за собой болезненные состояния, известные под общим названием хромосомных болезней.
(27) Модификационная изменчивость. Модификациями называются фенотипические изменения, возникающие под влиянием условий среды. Размах модифика-ционной изменчивости ограничен нормой реакции. Возникшее конкретное модификационное изменение признака не наследуется, но диапазон модифика-ционной изменчивости, норма реакции, генетически обусловлен и наследуется. Модификационные изменения не влекут за собой изменений генотипа.
Норма реакции, лежащая в основе модификационной изменчивости, складывалась исторически в результате естественного отбора. В силу этого модификационная изменчивость, как правило, целесообразна. Она соответствует условиям обитания, является приспособительной.
Модификационной изменчивости подвержены такие признаки, как рост животных и растений, их масса, окраска и т. д. Возникновение модифи-кационных изменений связано с тем, что условия среды воздействуют на ферментативные реакции, протекающие в развивающемся организме, и в известной мере изменяют их течение. К модификационной изменчивости следует отнести также фенокопии. Они обусловлены тем, что в процессе развития под влиянием внешних факторов признак, зависящий от определенного генотипа, может измениться; при этом копируются признаки, характерные для другого генотипа. В развитии фенокопии могут играть роль разнообразные факторы среды — климатические, физические, химические, биологические. Некоторые инфекционные болезни (краснуха, токсоплазмоз), которые перенесла мать, также могут стать причиной фенокопии ряда наследственных болезней и пороков развития. Наличие фенокопии нередко затрудняет постановку диагноза, поэтому существование их врач всегда должен иметь в виду.
Особую группу модификационной изменчивости составляют длительные модификации. Эти изменения возникают под влиянием внешних условий. Так, при воздействии высокой или пониженной температуры на куколок колорадского картофельного жука окраска взрослых животных изменяется. Этот признак держится в нескольких поколениях, а затем возвращается прежняя окраска. Указанный признак передается потомкам лишь под воздействием температуры на женские особи и не передается, если влиянию фактора подвергались только самцы. Следовательно, длительные модификации наследуются по типу цитоплаЗма-тической наследственности. По-видимому, под влиянием внешнего фактора происходят изменения в тех частях цитоплазмы, которые затем могут ауто-репроду цироваться.
Фенокопии. В патологии человека большую роль играют также фенокопии, сходные по проявлению с генетически обусловленными изменениями. Так, если мать во время беременности болела коревой краснухой, то у ребенка часто бывает врожденное уродство — расщелина губы и неба. Это пример феноко-пии, так как признак развивается при отсутствии мутантного гена, определяющего данную аномалию. Понятно, что в этом случае признак не будет наследоваться.
Организм матери представляет собой среду, в которой развивается плод, и неблагоприятное воздействие каких-либо факторов (физических, химических, биологических) может вызвать нарушения на этапе реализации генетической информации при нормальном генотипе. Причиной фенокопии — врожденных пороков развития (уродств)— могут быть и другие заболевания (ток-соплазмоз, сифилис). Фенокопии
могут развиваться в разные периоды жизни под влиянием различных повреждающих факторов. Так, у человека бывают судорожные припадки, напоминающие наследственно обусловленную эпилепсию, однако причиной их может быть воспалительный процесс в мозге или опухоль. При недостатке йода в окружающей среде развиваются проявления кретинизма, напоминающие наследственные. Некоторые поражения печени копируют наследственное заболевание — болезнь Коновалова — Вильсона, обычный детский рахит, возникающий от недостатка витамина О, по своему проявлению сходен с наследственной витамииоустойчивой формой рахита.
Обычно у новорожденных в течение первых дней бывают проявления желтухи. Это нормальное физиологическое явление, связанное с распадом избытка эритроцитов — у плода их больше вследствие меньшей обеспеченности кислородом. В какой-то период эти проявления могут напоминать патологическое явление, связанное с наследственно-обусловленной несовместимостью крови матери и ребенка по резус-фактору.
Существование гено- и фенокопии усложняет постановку диагноза. Врач должен иметь в виду, что некоторые сходные заболевания могут иметь как наследственную (эндогенную), так и ненаследственную (экзогенную) природу. Анализ и установление природы заболевания составляют важнейшую задачу для прогноза в отношении возможности рождения в будущем здорового ребенка.
(28) Мутационная изменчивость. Мутацией (лат. mutatio—перемена) называется изменение, обусловленное реорганизацией воспроизводящих структур, изменением ее генетического аппарата. Этим мутации резко отличаются от модификаций, не затрагивающих генотипа особи. Мутации возникают внезапно, скачкообразно, что иногда резко отличает организм от исходной формы.
Растениеводам и животноводам такие изменения были известны давно. Ряд наследственных изменений описал Дарвин в труде «Изменение домашних животных и культурных растений» (1868). Мутационной изменчивости посвятил свои работы С. И. Коржинский (1899) и Г. де Фриз (1901). Последнему принадлежит термин «мутация».
В настоящее время известны мутации у всех классов животных, растений и вирусов. Существует много мутаций и у человека. Именно мутациями обусловлен полиморфизм человеческих популяций: различная пигментация кожи, волос, окраска глаз, форма носа, ушей, подбородка и т. д. В результате мутаций появляются и наследственные аномалии в строении тела, и наследственные болезни человека.С мутационной изменчивостью связана эволюция— процесс образования новых видов, сортов и пород. По характеру изменений генетического аппарата различают мутации, обусловленные: а) изменением числа хромосом (геномные) б) изменением структуры хромосом (хромосомные аберрации); в) изменением молекулярной структуры гена (генные, или точковые мутации).
Геномная изменчивость. Гаплоидный набор хромосом, а также совокупность генов, находящихся в гаплоидном наборе хромосом, названы геномом. Мутации, связанные с изменением числа хромосом, получили название геномных. К ним относятся полиплоидия и гетероплоидия (анэуплоидия).
Полиплоидия. Это увеличение диплоидного числа хромосом путем добавления целых хромосомных наборов в результате нарушения мейоза. Вспомним, что половые клетки имеют гаплоидный набор хромосом (л), а для зигот и всех соматических клеток характерен диплоидный набор (2л). У полиплоидных форм отмечается увеличение числа хромосом, кратное гаплоидному набору: Зn — триплоид, 4n — тетраплоид, 5n — пентаплоид, 6n — гексаплоид и т. д. По-видимому, эволюция ряда цветковых растений шла путем полиплоидизации. Культурные растения в своем большинстве— полиплоиды.
Формы, возникающие в результате умножения хромосом одного генома, носят название автоплоидных. Однако известна и другая форма полиплоидии — аллоплоидия, при которой умножается число хромосом двух разных геномов. Аллополиплоиды искусственно получены при гибридизации ряда видов растений и животных. Так, Г. Д. Карпеченко создал аллополиплоидный гибрид редьки и капусты. В данном случае каждый исходный вид имеет 18 хромосом, а гибридный — 36, так как является аллотетраплоидом.
Полиплоидные формы известны и у животных. По-видимому, эволюция некоторых групп простейших, в частности инфузорий и радиолярий, шла также путем полиплоидизации. У некоторых многоклеточных животных полиплоидные формы удалось создать искусственно (тутовый шелкопряд).
Гетероплоидия. В результате нарушения мейоза и митоза число хромосом может изменяться и становиться не кратным гаплоидному набору. Явление, когда какая-либо из хромосом, вместо того чтобы быть парной, оказывается в тройном числе, получило название трисомии. Если наблюдается трисомия по одной хромосоме, то такой организм называется трисомиком и его хромосомный набор равен 2n + 1. Трисомия может быть по любой из хромосом и даже по нескольким. Двойной трисомик имеет набор хромосом 2n + 3 тройной — 2лn + 3 и т.
Явление трисомии впервые описано у дурмана. Известна трисомня и у других видов растений и животных, а также у человека. Трисомиками являются, например, люди с синдромом Дауна. Трисомики чаще всего либо нежизнеспособны, либо отличаются пониженной жизнеспособностью и рядом патологических признаков.
Явление, противоположное трисомии, т. е. утрата одной хромосомы из пары в диплоидном наборе, называется моносомией, организм же—моносомиком; его кариотип — 2n— 1. При отсутствии двух различных хромосом организм является двойным моносомиком (2n — 2). Если из диплоидного набора выпадают обе гомологические хромосомы, организм называется ну-лисомиком. Он, как правило, нежизнеспособен.
Из сказанного видно, что анэуплоидия, т. е. нарушение нормального числа хромосом, приводит к изменениям в строении и к снижению жизнеспособности организма. Чем больше нарушение, тем ниже жизнеспособность. У человека нарушение сбалансированного набора хромосом елечет за собой болезненные состояния, известные под общим названием хромосомных болезней.
Хромосомные абберации. Возникают и результате перестройки хромосом. Они являются следствием разрыва хромосомы, приводящего к образованию фрагментов, которые в дальнейшем воссоединяются, но при этом нормальное строение хромосомы не восстанавливается. Различают четыре основных типа хромосомных аберраций: нехватки, удвоения (дупликации), инверсии, транслокации.
Нехватки возникают вследствие потери хромосомой того или иного участка. Нехватки в средней части хромосомы приводят организм к гибели, утрата незначительных участков вызывает изменение наследственных свойств. Так, при нехватке участка одной из хромосом у кукурузы ее проростки лишены хлорофилла.
Удвоение (дупликация) связано с включением лишнего, дублирующего участка хромосомы. Это также ведет к проявлению новых признаков. Так, у дрозофилы ген полоско-видных глаз (вмэсто круглых) обусловлен удвоением участка в одной из хромосом.
Инверсии наблюдаются при разрыве хромосомы и переворачивании оторвавшегося участка на 180°. Если разрыв произошел в одном месте, оторвавшийся фрагмент прикрепляется к хромосоме противоположным концом, если же в двух местах, то средний фрагмент, перевернувшись, прикрепляется к местам разрыва, но другими концами. Н. П. Дубинин установил, что инверсии широко распространены, в частности у дрозофил, взятых из природы, и, по-видимому, могут играть роль в эволюции видов.
Транслокации возникают в тех случаях. когаа участок хромосомы из одной пары прикрепляется к негомологичной хромосоме, т. е. хромосоме из другой пары Транслокачия участка одной из хромосом (21-й) известна у человека; оно может быть причиной болезни Дауна Большинство крупных хромосомных аберраций в зиготах у человека приводит к тяжелым аномалиям, несовместимым с жизнью, либо к гибели зародышей еще во время внутриутробного развития.
Генные мутации. затрагивают структуру самого гена. Мутации могут изменять участки молекулы ДНК различной длины. Наименьший участок, изменение которого приводит к появлению мутации, назван мутоном. Его может составить только одна пара нуклеотидов. Изменение последовательности нуклеотидов в ДНК обусловливает изменение в последовательности триплетов и е конечном итоге изменяет программу синтеза белка. Следует помнить, что нарушения в структуре ДНК приводят к мутациям только тогда, когда не осуществляется репарация.
Большинство мутаций, с которыми связаны эволюция органического мира и селекция,— трансгенации. Вот несколько примеров мутаций, широко используемых при изучении закономерностей наследственности. У дрозофилы, имеющей в норме красные глаза, появились мутанты с глазами белого цвета, абрикосового цвета, цвета слоновой кости и т. д. Так возникла большая серия аллелей, включающая более 10 мутантных изменений окраски глаз.
Альбинизм животных — типичная генная мутация В результате мутации гороха появились растения с Желтыми и зелеными семенами, с гладкими и морщинистыми зернами, белыми и пурпурными цветками и т. д. Гены, которые возникли в результате мутации одного локуса как известно, являются алле.1ьными. Появление мутации для каждого генного локуса — событие довольно редкое. Различные аллели имеют неодинаковую частоту мутирования. Так, у человека мутация, приводящая к карликовости, встречается в 5—13 гаметах на миллион, мышечной дистрофии (мышечная слабость) в 8—11, микроцефалии (недоразвитие мозга) — в 27, ретинобластомы (опухоль сетчатки глаза) — в 3—12 гаметах на миллион и т. д. Для каждой аллели частота мутирования более или менее постоянна и колеблется в пределах 10-5—10-7. Однако ввиду огромного числа генов у каждого организма мутации довольно часты. Так, у высших растений и животных до 10 % гамет несут какие-либо новые, спонтанно возникшие изменения.
Соматические мутации. Мутации возникают в любых клетках, поэтому их делят на соматические и генеративные. Биологическое значение их неравноценно и связано с характером размножения организмов.
При половом размножении признаки, появившиеся в результате соматических мутаций, потомкам не передаются и в процессе эволюции никакой роли не играют. Однако в- индивидуальном развитии они могут влиять на формирование признака: чем в более ранней стадии развития возникнет соматическая мутация, тем больше участок ткани, несущий данную мутацию. Такие особи называются мозаиками. Например, мозаиками являются люди, у которых цвет одного глаза отличается от цвета другого, или животные определенной масти, у которых на теле появляются пятна другого цвета, и т. п. Не исключено, что соматические мутации, влияющие на метаболизм, являются одной из причин старения и злокачественных новообразований.
Если мутация происходит в клетках, из которых развиваются гаметы, или в половой клетке, то новый признак проявится в ближайшем или последующих поколениях. Наблюдения показывают, что многие мутации вредны для организма. Это объясняется тем, что функционирование каждого органа сбалансировано в отношении как других органов, так и внешней среды. Нарушение существующего равновесия обычно ведет к снижению жизнедеятельности или гибели организма. Мутации, снижающие жизнедеятельность, называются полулетальными.. Мутации, не совместимые с жизнью, носят название летальных (лат. letalis — смертельный). Однако некоторая часть мутаций может оказаться полезной. Такие мутации являются материалом для прогрессивной эволюции, а также для селекции ценных пород домашних животных и культурных растений. По-видимому, чаще всего «полезные» мутации в сочетании с отбором лежат в основе эволюции.
(29) Репарация генетического материала. В процессе жизнедеятельности под действием различных факторов в ДНК возникают повреждения, некоторые из них могут ликвидироваться благодаря репарации ДНК. Механизм репарации ДНК изучен на кишечной палочке. При воздействии на культуру кишечной палочки ультрафиолетовыми лучами на нити ДНК возникают повреждения - димеры (цитозин-цитозин, цитозин-тимин, чаще всего возникают димеры тимина, соединенные через атомы углерода и представляющие собой наиболее стойкие соединения). Димеры тимина приводят культуру кишечной палочки к гибели, если ее поместить в темноту. На свету димеры тимина расщепляются под действием фермента на два тимина, тем самым, восстанавливая структуру ДНК, это явление называется световая фотореактивация. Исправляются повреждения, возникшие под действием ультрафиолетовых лучей. Повреждения, возникшие под влиянием других факторов (ионизирующая радиация, химические вещества и др.) исправляется в результате темновой фазы репарации. Она осуществляется в 5 этапов:
1. Фермент эндонуклеаза надрезает цепочку ДНК в месте возникновения повреждения. Фермент нуклеаза вырезает поврежденный участок,
2. Фермент экзонуклеаза расширяет брешь.
3. ДНК-полимераза латает брешь, синтезируя участок ДНК комплементарно неповрежденной цепочке.
4. Ферменты лигазы сшивают вновь построенный участок со старым, и целостность ДНК восстанавливается.
Темновая репарация происходит во всех клетках на всех фазах жизненного цикла. У бактерий восстанавливается до 95% повреждений.
Темновая репарация обнаружена у высших организмов в культуре тканей. У человека известны заболевания, связанные с возникновением мутаций в генах, детерминирующих ферменты темновой репарации. В настоящее время известно около 10 наследственных заболеваний с нарушением репарационных процессов в ДНК.
Пигментная ксеродерма - группа заболеваний, при которых отмечается повышенная чувствительность кожи к солнечным лучам (покраснение. Пигментация, изъязвления, злокачественные образования). Это рецессивно аутосомное заболевание. Фибробласты кожи больных людей более чувствительны к ультрафиолетовым лучам, чем фибробласты здоровых людей. Это связано с тем, что они обладают пониженной способностью выщеплять димеры тимина, следовательно, имеет место нарушение репарации на первом ее этапе, то есть
произошла мутация в гене, кодирующем синтез ультрафиолетовой специфической эндонуклеазы. Возможны нарушения и на других этапах репарации ДНК или даже на нескольких этапах.
Атаксия - телеангиоэктазия (синдром Луи Бара) - прогрессирующая атаксия мозжечка с нарушением координации движений, телеангиоэктазия склер. В этом случае сильно запаздывает второй этап репарации - удаление поврежденных оснований молекулы ДНК.
Панцитопения при гипо- и апластических анемиях. Поражены все ростки костного мозга. При этом заболевании нарушен третий этап темновой репарации – синтез экзонуклеазы, завершающей вырезание поврежденного участка ДНК.
Синдром Блума - сочетание недоразвития скелета, гипофизарной карликовости, гипогонадизма с врожденной телеангиоэктатической эритермой лица, участками гиперкератоза и гиперпигментации на туловище. Эти аномалии связаны с нарушением пострепликативного восстановления - 4, 5 этапов репарации.
На нити ДНК в структуре гена могут возникнуть и нерепарируемые изменения - генные или точковые мутации:
1. Миссенс-мутация. Связаны с заменой одного нуклеотида на другой. В результате такой мутации возникло заболевание серповидноклеточная анемия. У гомозиготных носителей этого гена в эритроцитах содержится гемоглобин S, отличающийся от нормального гемоглобина. А только одной аминокислотой, потерявшей способность легко связывается с кислородом.
2. Нонсенс-мутация. Связана с образованием бессмысленных кодонов (УАА, УАГ, УГА).
3. Мутация со "сдвигом рамки". Наблюдаются при вставке или выпадении одного нуклеотида.
Выявлены механизмы, снижающие частоту фенотипического проявления мутаций и биологические антимутагенные факторы:
1. триплетносгь и вырожденность генетического кода;
2. диплоидность (гегерозиготность) генотипа. Мутации чаще всего рецессивные и проявляются только в гомозиготном состоянии;
3. повторы генов на нити ДНК;
4. репаративные процессы;
5. метилирование ДНК (присоединение метальной группы СН3 под действием фермента метилазы) предохраняет ДНК от действия рестрикгаз (ферментов, расщепляющих ДНК). С возрастом процесс метилирования усиливается.
(30) Биология развития. Во времени жизнь организована как смена поколений организмов. Организмы каждого поколения осуществляют закономерный процесс развития или жизненный цикл. Наиболее демонстративен жизненный цикл многоклеточных растений и животных, размножающихся половым способом, который начинается одной клеткой — зиготой. Совершающиеся в определенной* последовательности преобразования клеток, образующихся в результате деления зиготы и ее потомков, обусловливают рост организма, выделение в нем клеток разных направлений специализации и частей, различающихся строением и выполняемыми функциями, и наконец, достижение состояния зрелости. Зрелый организм выполняет главную биологическую задачу — воспроизведение особей следующего поколения. В дальнейшем организм стареет, что проявляется в снижении уровня его жизнедеятельности. Жизненный цикл завершается смертью. Жизненные циклы некоторых одноклеточных эукариот и микроорганизмов нередко исчерпываются клеточным циклом. Их усложнение связано с возможностью образования цист или спор, включением стадии полового размножения. Переходной формой между циклами одноклеточных и многоклеточных организмов служит жизненный цикл некоторых колониальных простейших, например Volvoх. В отличие от одноклеточных у них происходит стабильное выделение в развитии линий генеративных и соматических клеток, однако не наблюдается разнообразия морфофункциональных специализаций соматических клеток. У многих простейших и низших многоклеточных циклы отличаются высокой степенью сложности.
Совокупность взаимосвязанных и детерминированных хронологических событий, закономерно совершающихся в процессе осуществления организмом жизненного цикла, обозначают терминами «онтогенез» или «индивидуальное развитие».
Различают два главных типа индивидуального развития — непрямое (с метаморфозом) и прямое. Первый из названных типов характеризуется наличием особой вставочной формы - личинки, более или менее отличной от зрелой особи по строению тела и ведущей активный образ жизни. Некоторые личинки имеют органы захвата и переработки пищи, тогда как другие снабжены лишь органами расселения. Последнее типично для личинок паразитов (мирацидий и циркария сосальщиков, корацидий широкого лентеца). Совокупность процессов, в результате которых происходит переход от личиночной к взрослой форме, называется метаморфозом. Он заключается в изменении внешнего вида и строения животного и достижении им половозрелого состояния. Непрямой тип индивидуального развития свойствен видам, откладывающим яйца с относительно малым количеством желтка.
При прямом развитии зародышевый период заканчивается рождением молодой формы, имеющей общий план строения, набор органов и систем, характерный для зрелого состояния, но отличающейся меньшими размерами, функциональной и структурной незрелостью органов и систем. Этот тип развития присущ животным, откладывающим яйца с высоким содержанием желтка.
Характерные особенности имеет тип развития плацентарных млекопитающих и человека. Он является вариантом прямого развития, но отличается тем, что непосредственно по окончании зародышевого периода после рождения новый организм не способен к самостоятельному образу жизни, так как нуждается в специфическом питании — секрете определенных желез материнского организма (молоко).
Изменения в индивидуальном развитии проявляются на разных уровнях организации особи — генетическом, молекулярно-биохимиче-ском, клеточном, тканевом, органном, системном. Исследования индивидуального развития проводятся с участием специалистов многих отраслей биологической науки — генетиков, биохимиков, морфологов, эмбриологов, молекулярных биологов. Усиление роли междисциплинарных исследований онтогенеза, наметившееся в начале текущего столетия, привело к возникновению самостоятельной области науки о живом — биологии развития. Она изучает наследственные, молекулярные, структурные основы, а также механизмы регуляции онтогенетических изменений на всех этапах жизненного цикла особи.
Основу процесса индивидуального развития составляет наследственная информация, получаемая потомками от родителей. Достаточно, однако, сравнить, например, человека на начальной, одноклеточной стадии онтогенеза и во взрослом состоянии, чтобы прийти к заключению о том, что в ходе развития объем информации, воспроизведенный в структурах и метаболизме организма, возрастает. Об этом свидетельствует, в частности, большее разнообразие химических соединений, их неслучайное распределение в органах, наличие самих органов и многое другое, что мы наблюдаем у взрослой особи и не обнаруживаем в зиготе. Накопление информации в процессе развития служит важной чертой онтогенеза и свидетельствует о его системном характере. Первичная наследственная информация зиготы играет роль инструкции, в соответствии с которой при активном регулирующем влиянии факторов окружающей среды в развивающемся организме последовательно образуются и закономерно взаимодействуют друг с другом молекулы и структуры разных уровней сложности. С учетом этого замечания онтогенез можно определить как процесс реализации потомком наследственной информации родителей в определенных условиях окружающей среды. Это определение подчеркивает, что генетические закономерности играют важную роль в индивидуальном развитии, но не исчерпывают всего его содержания.
Кроме зародышевого развития, роста, старения биология развития изучает также молекулярно-генетические, клеточные и системные механизмы регенерации — совокупности процессов, обусловливающих восстановление структур, снашиваемых в процессе жизнедеятельности организма или утрачиваемых вследствие травмы.
Онтогенез и его периодизация. Онтогенез представляет собой непрерывный процесс развития особи. Однако для удобства изучения, а также в связи с тем, что на отдельных этапах его происходит смена преобладающих молекулярных, клеточных и системных механизмов и характера отношений организма с окружающей средой онтогенез многоклеточных организмов подразделяют на периоды и стадии. Предложено несколько схем периодизации индивидуального развития. В соответствии с одной из них, имеющей широкое распространение, выделяют эмбриональный и постэмбриональный периоды. У
лацентарных животных и человека выделяют дородовый (антенатальный) и послеродовый (постнатальный) периоды. Первый охватывает развитие до рождения особи и происходит под покровом яйцевых оболочек, а у плацентарных в материнском организме. В этот период факторы окружающей среды оказывают на развивающийся организм опосредованное действие. После рождения, с началом постнатального периода принципиальным образом меняются условия существования организма. Он начинает самостоятельную жизнь, вступая в непосредственное взаимодействие с окружающей средой.
Названные периоды онтогенеза подразделяются на стадии, различающиеся по конкретному содержанию изменений. У животных, размножающихся половым способом, эмбриональный период представлен следующими стадиями: одноклеточной (зигота), дробления (образование однослойного зародыша бластулы), гаструляции (образование трехслойного зародыша), гисто- и органогенезов (образование тканей и органов). В первые 8 нед развивающийся организм человека называют эмбрионом или зародышем, что соответствует прохождению им зародышевой стадии. С 9-й недели начинается плодная стадия развития. Организм приобретает характерные наружные формы, в нем обособляются закладки органов. На этой стадии он называется плодом.
В постнатальном периоде при прямом типе развития выделяют ранний и поздний постнатальный онтогенез. При этом к раннему постнатальному онтогенезу относят отрезок жизни до приобретения черт структурно-функциональной и репродуктивной зрелости, а к позднему — отрезок жизни, соответствующий зрелому состоянию и старению организма. Дальнейшее подразделение наиболее детально проводится для человека. Оно обосновывается результатами исследования возрастной физиологии и медицины. Так, в раннем постнатальном онтогенезе человека выделяют периоды новорожденности, грудного возраста, дошкольного и школьного возраста, полового созревания (пубертатный). Выделение их способствует оптимальному решению практических задач педиатрии, так как ранний постнатальный онтогенез характеризуется относительно быстрой сменой функциональных показателей различных органов и систем организма. Соответственно меняются требования к характеру питания, гигиеническому режиму, а также выносливость по отношению к температурным, физическим, эмоциональным нагрузкам.
Схема периодизации онтогенеза, которой мы будем придерживаться в дальнейшем, вытекает из существа генетических механизмов индивидуального развития, которое рассматривается как процесс реализации наследственной информации, обусловливающий достижение состояния зрелости и участие организма в репродукции. В этой схеме, отражающей общебиологические закономерности, выделяют дорепродуктивный, зрелый (активный репродуктивный) и пострепродуктивный периоды. Первый из них, начинаясь с момента образования зиготы, ограничивается достижением половой зрелости и может быть назван также периодом развития дефинитивного фенотипа, второй - периодом стабильного функционирования органов и систем, третий — периодом старения организма. Одним из главных критериев выделения периодов согласно приводимой схеме является участие организма в репродукции, что создает трудности с установлением
точных границ периодов. В частности, у млекопитающих и человека состояние половой зрелости достигается развивающимся организмом нередко раньше, чем он реально получает возможность активно участвовать в размножении. Репродуктивный и пострепродуктивный периоды онтогенеза женщины разграничены достаточно отчетливо (менопауза). Стареющий мужчина сохраняет способность к воспроизведению потомства, однако активность его в этом отношении снижается. Соответственно снижается доля участия в формировании состава генофонда следующего поколения. В силу социальной сущности биологический критерий зрелости, используемый в рассматриваемой схеме, в отношении человека дополняется показателями эффективности обучения, трудовой деятельности, творческой активности людей в разные возрастные периоды.
Дорепродуктивный период включает эмбриональное развитие и ранний постнатальный онтогенез, выделяемые согласно первой схеме периодизации. Хотя акт рождения принципиально изменяет характер отношений между организмом и внешней средой, в раннем постнатальном периоде в сравнении с эмбриональным периодом главное направление развития сохраняется. В частности, продолжаются формообразовательные процессы, рост организма, происходят изменения клеточного состава и межтканевых отношений в различных органах. Однако если в эмбриональном периоде формообразовательные процессы доминируют, то в раннем постнатальном онтогенезе происходит смена этих процессов обычными формами жизнедеятельности, характерными для каждого органа во взрослом состоянии.
В последнее время появились основания для выделения в индивидуальном развитии предзародышевого (предэмб-рионального) периода, который соответствует гаме-тогенезу. Такое выделение обосновывается тем, что в дополнение к выработке питательного материала зародыша желтка в оогене-зе синтезируются и сохраняются в цитоплазме ооцитов до начала развития некоторые биологически важные макромолекулы, например информационные РНК, контролирующие ранние стадии эмбриогенеза.
(31) Общая характеристика эмбрионального развития. В онтогенезе различают два периода — эмбриональный и постэмбриональный. Для высших животных и человека принято деление на пренатальный, или антенатальный (до рождения), и пост-натальный (после рождения). Предложено также выделить предзиготный период, предшествующий образованию зиготы.
Предзиготный период развития связан с образованием гамет (гаметоге-нез). Процессы, характеризующие овогенез, приводят к образованию гаплоидного набора хромосом и формированию сложных структур в цитоплазме. В яйцеклетках происходит накопление желтка. В зависимости от количества желтка и характера его распределения различают яйца трех основных типов: изолецитальные, телолециталь-ные и центролецитальные.
Изолецитальные яйца содержат немного желтка, и он распределен равномерно по всей клетке. Такие яйца встречаются у иглокожих низших хордовых, млекопитающих. Телолециталь-ныг яйца характерны для моллюсков, земноводных, рептилий, птиц, содержат большое количество желтка, сосредоточенного на одном из полюсов — вегетативном. Противоположный полюс, содержащий ядро и цитоплазму без желтка, называется анимальным. В центролецитальных яйцах желток находится в центре клетки, а цитоплазма расположена на периферии (яйца насекомых). Различное строение яиц связано с приспособлением к условиям развития и закрепилось в процессе эволюции.
У животных, которые в постэмбриональный период проходят стадию личинок (иглокожие, насекомые, амфибии), яйца содержат сравнительно немного желтка. Личинки покидают яйцевые оболочки до окончания развития и продолжают его вне яйца. У многих животных с неличнночным типом онтогенеза яйца телолешггальные. У животных с внутриутробным типом развития (млекопитающие) яйца бедны желтком, и он распределен в них равномерно.
В предзнготный период развития в яйце накапливаются рибосомальная и информационная РНК, различные участки цитоплазмы приобретают отличия по химическому составу, образуется ряд структур. Многие из них заметны благодаря присутствию различных пигментов. Под клеточной мембраной образуется кортикальный слой цитоплазмы, содержащий гранулы гликогена. Яйцо приобретает полярность: вегетативный и анимальный полюса.
Эмбриональный период, или эмбриогенез (гр. етЬгуоп — зародыш), начинается с образования зиготы. Окончание этого периода при разных типах онтогенеза связано с различными моментами развития: при личиночном типе — с выходом из яйцевых оболочек, при неличиночном — с выходом из зародышевых оболочек, при внутриутробном — с моментом рождения.
Эмбриональный период делится на стадии зиготы, дробления, бластулы, образования зародышевых листков, гисто- и органогенеза. Зародыши млекопитающих и человека до образования зачатков органов принято называть эмбрионом, а в дальнейшем плодом.
Зигота, образующаяся в результате слияния женской и мужской гамет, представляет собой одноклеточную стадию развития многоклеточного организма. Участки цитоплазмы яйца, содержащие зерна желтка, митохондрии, пигменты, видны на живых объектах, поэтому в зиготе удалось проследить значительные перемешения цитоплазмы.
В неоплодотворенных яйцах морского ежа в кортикальной, области равномерно расположены зерна красного пигмента. После оплодотворения они перемещаются и образуют красный пояс ниже экватора, в то время как анимальный и вегетативный полюса обесцвечиваются. Таким образом, создаются три зоны цитоплазмы: в ани-малыюй части яйца — непигментированная, ниже экватора — пигментированная, на вегетативном полюсе — бесцветная. В дальнейшем из цито-плазматического материала верхней бесцветной зоны формируется эктодерма, из пигментированной зоны — энтодерма, из нижней — элементы мезодермы.
У ряда видов животных уже в зиготе осуществляется интенсивный синтез белка, матрицей для которого на начальных стадиях развития служит и РНК, синтезированная во время овогенеза, но одновременно синтезируется и новая РНК.
Дробление. Начальный этап развития оплодотворенного яйца (зиготы) носит название дробления. Характер дробления обусловлен типом яйцеклетки. В изолецитальном, бедном желтком оплодотворенном яйце ланцетника, первая борозда дробления в виде щели начинается на анимальном полюсе и постепенно распространяется в продольном меридиональном направлении к вегетативному, разделяя яйцо на две клетки — 2 бластомера. Вторая борозда проходит перпендикулярно первой — образуются 4 бластомера. Третья борозда проходит экваториально: возникает 8 бластомеров. В результате последующих дроблений в меридиональных и экваториальных плоскостях образуется 16, 32, 64 и т. д. бластомеров. Клетки, расположенные на вегетативном полюсе, несколько крупнее, чем на анимальном.
В результате ряда последовательных дроблений формируются группы клеток, тесно прилегающих друг к другу. У некоторых животных такой зародыш напоминает ягоду шелковицы или малины. Он получил название морулы (лат. morum — тутовая ягода).
У млекопитающих желтка в яйцах мало, поэтому дробление полное, но также неравномерное. В различных бластомерах оно идет с разным ритмом, и можно наблюдать стадии 2, 3, 6, 7, 9, 10 и т. д. бластомеров. Одни из них (светлые) располагаются по периферии, другие (темные) находятся в центре. Из светлых клеток образуется окружающий зародыш трофобласт, клетки которого выполняют вспомогательную функцию и непосредственно в формировании тела зародыша не участвуют. Клетки трофобласта обладают способностью растворять ткани, благодаря чему зародыш внедряется в стенку матки. Далее клетки трофобласта отслаиваются от клеток зародыша, образуя полый пузырек. Полость трофобласта заполняется жидкостью, диффундирующей в нее из тканей матки. Зародыш в это время имеет вид узелка, расположенного на внутренней стенке трофобласта. В результате дальнейшего дробления зародыш принимает форму диска, распластанного на внутренней поверхности трофобласта.
В процессе дробления увеличивается число бластомеров, однако бластомеры не вырастают до размеров исходной клетки, а с каждым дроблением становятся мельче Эчо объясняется тем. что митотические циклы дробящейся зиготы не имеют типичной интерфазы пресинтетический период (G1) отсутствует, а синтетический (S)
начинается еще в телофазе предшествующего митоза. Во время дробления митозы следуют быстро друг за другом, и к концу периода весь зародыш лишь ненамного крупнее зиготы. В это время бластомеры уже отличаются по характеру цитоплазмы и могут разниться по содержанию желтка и размерам, что накладывает отпечаток на их дальнейшее развитие и дифференцировку.
Дробление яйца заканчивается образованием бластулы. Отметим, что в зиготе и бластомерах ядерно-плазменное соотношение нарушено в пользу цитоплазмы. В клетках бластулы устанавливается типичное для каждого вида животных ядерно-плазменное со: отношение. Начиная с бластулы, клетки зародыша принято называть не бластомерами, а эмбриональными клетками. У ланцетника бластула образуется по достижении зародышем 128 клеток. В силу накопления продуктов жизнедеятельности бластомеров между ними появляется полость (бластоцель, или первичная полость). При полном равномерном дроблении (как у ланцетника) бластула имеет форму пузырька со стенкой в один слой клеток, который назван бластодермой. Стадию бластулы проходят зародыши всех типов животных.
Гаструляция. У всех многоклеточных животных следующим за бластулой этапом развития является гас-труляция, которая представляет собой сложный процесс перемещения эмбрионального материала с образованием двух или трех слоев тела зародыша, называемых зародышевыми листками. В процессе гаструляции следует различать два этапа: а) образование экто-и энтодермы (двуслойный зародыш); б) образование мезодермы (трехслойный зародыш). У животных с изоле-цитальным типом яиц гаструляция идет путем инвагинации, т. е. впячи-вания. Вегетативный полюс бластулы впячивается внутрь наподобие стенки продырявленного резинового мяча. Противоположные полюса бластодермы почти смыкаются, так что бластоцель либо исчезает полностью, либо остается в виде незначительной полости, а из шара возникает двухслойный зародыш.
Внешний слой клеток носит название наружного листка, или эктодермы (гр. есtos—снаружи, derma—кожа), внутренний слой—внутреннего листка, или энтодермы (гр. еntos—внутри). Полость называется гастроцелем, или первичной кишкой, а вход в кишку получил наименование бластопора, или первичного рта. Края его сближаются, образуя верхнюю и нижнюю губы. У пер-вичноротых (к ним относится большинство типов беспозвоночных) бластопор превращается в дефинитивный (окончательный) рот, у вторичноротых (иглокожие и хордовые) из него формируется анальное отверстие либо он зарастает, а рот образуется на противоположном конце тела.
Гаструляция происходит не только путем инвагинации. Другими ее способами являются деляминация (расслоение), эпиболия (обрастание) и иммиграция (проникновение внутрь).
Образование гаструлы путем иммиграции характерно для кишечнополостных. Этот способ заключается в массовом активном перемещении клеток бластодермы в бластоцель. Эпиболия Встречается у животных, имеющих телолецитальные яйца. При этом способе гас
труляции мелкие клетки анимального полюса обрастают и покрывают снаружи крупные, богатые желтком клетки вегетативного полюса, которые становятся внутренним слоем. При делями-нации клетки зародыша делятся параллельно его поверхности, образуя наружный и внутренний зародышевые листки.
Гистогенез и органогенез. Гистогенез — процесс образования тканей, органогенез — формирование органов. Диффгренцированный на три эмбриональных листка зародышевый материал дает начало всем тканям и органам. Из эктодермы развиваются ткани нервной системы, очень рано обособляющиеся. У хордовых она первоначально имеет форму нервной пластин-кч. Эта пластинка растет интенсивнее остальных участков эктодермы и затем прогибается, образуя желобок. Размножение клеток продолжается, края желобка смыкаются, возникает нервная трубка, которая тянется вдоль тела от переднего конца к заднему. На переднем конце нервной трубки путем дальнейшего роста и днфферен-цировки формируется головной мозг. Отростки нервных клеток центральных отделов нервной системы образуют периферические нервы. Кроме того, из эктодермы развиваются наружный покров кожи — эпидермис и его производные (ногти, волосы, сальные и потовые железы, эмаль зубов, вослринимающие клетки органов зрения, слуха, обоняния и т. п.).
Из энтодермы развивается эпителиальная ткань, выстилающая органы дыхательной, частично мочеполовой и пищеварительной систем, в том числе печень и поджелудочную железу.
Миотом дает начало скелетной мускулатуре, нефрогонотом—органам выделения и половым железам (гонадам). Клетки, образующие висцеральные и париетальные листки спланхнотома, являются источником эпителиальной выстилки вторичной погости тела — целома. За счет элементов склеротома развиваются хрящевая, костная и соединительная ткани, образующие вокруг хорды осевой скелет. Дерматом дает начало соединительной ткани кожи, а спланхнотом — соединительной ткани внутренних органов, кровеносным сосудам, гладкой мускулатуре кишок, дыхательных и мочеполовых путей. В образовании сердца принимает участие также висцеральный листок спланхнотома. Железы внутренней секреции имеют различное происхождение: одни из них (эпифиз, часть гипофиза) развиваются из закладок нервной системы, другие— из эктодермы. Надпочечники и половые железы являются производными мезодермы.
Органогенез завершается в основном к концу эмбрионального периода развития. Однако дифференцировка и усложнение органов продолжаются и в постэмбрионалыюм онтогенезе. Описанные процессы связаны не только с активным клеточным размножением первичных эмбриональных закладок, но и с их значительным перемещением, изменением формы тела зародыша, образованием отверстий и полостей, а также с формированием ряда временных зародышевых (провизорных) органов.
Взаимоотношение материнского организма и плода. У млекопитающих и человека яйцеклетка бедна желтком, поэтому провизорные приспособления развивающегося организма имеют свои особенности. Желточный мешок закладывается на ранних этапах эмбриогенеза, но не развивается, а постепенно редуцируется, расслаивается. Аллантоис также не развит. Зачаток его входит в состав нового специфического провизорного органа — пупочного канатика.
Функцию наружной зародышевой оболочки выполняет хорион, или ворсинчатая оболочка, названная так вследствие развития на ее поверхности большого числа выростов, ворсинок. Ворсинки хориона врастают в слизистую оболочку матки — специального органа материнского организма, присущего только млекопитающим. Место наибольшего разветвления ворсинок хориона и наиболее тесного контакта их со слизистой оболочкой матки носит название детского места, или плаценты.
Связь тела зародыша с плацентой осуществляется через пуповину или пупочный канатик, содержащий кровеносные сосуды. Кровеносные капилляры тела зародыша разветвляются в ворсинках хориона. Так устанавливается плацентарное кровообращение. Кровь матери не смешивается с кровью плода; она омывает ворсинки хориона, но никогда не проникает в капилляры плода. Через плаценту плод снабжается питательными веществами, кислородом и освобождается от продуктов жизнедеятельности. При этом важная роль принадлежит эпителиальным клеткам, образующим хорион и его ворсинки. Вместе с клетками стенок сосудов эпителий хориона образует специфический клеточный барьер; микроорганизмы и ряд веществ из кровотока матери в норме не поступают в кровоток плода. Нарушение плацентарного барьера, как правило, ведет к расстройству нормального развития плода, к патологии беременности. Плацента не является барьером для ряда лекарственных веществ, в том числе наркотиков, производственных и пищевых ядов, чужеродных белков и антител. Изучение биологических особенностей связи организма плода и матери у высших млекопитающих, а следовательно, и у человека, имеет большое значение и лежит в основе правильной организации медицинской службы в области охраны материнства.
Реализация наследственной информации и становление фенотипа. Уже упоминалось, что у земноводных и иглокожих каждый из двух изолированных бластомеров может развиться в полноценный организм. Следовательно, на этой стадии они тотипотентны, т. е. равнонаследственны. Было установлено, что у тритона сохраняется такая тотипотентность до стадии 16 бластомеров, у кроликов — до стадии 4 бластомеров. О существовании подобной тотипотентности в бластомерах человека говорит случай рождения двух, четырех и даже семи однозиготных близнецов.
При дальнейшем развитии зародышевые клетки, начиная со стадии бластулы, теряют тотипотентность. Бластомеры уже неоднородны. Начинается дифференцировка. Под дифференциров-кой понимается формирование разнообразных структур и частей тела (а затем и органов) из относительно однородного материала зародыша.
Но оказалось, что, несмотря на утрату тотипотентности и дифференциров-ку, клетки полностью сохраняют генетическую информацию. Это вытекает из серии опытов, проведенных в 1964— 1966 гг. английским эмбриологом Д. Гердоном. Он пересаживал ядра из клеток кожи и кишок головастика в яйцеклетки, лишенные ядер. Многие из таких яйцеклеток развились в нормальных головастиков (рис. 6.1).
Таким образом, оказалось, что любая соматическая клетка представляет собой интегрированную часть в организме, выполняет узко специализированные функции, но в то же время несет в себе генотип целого организма.
Для того чтобы происходил синтез иРНК, молекула ДНК должна быть раскрученной. Это раскручивание может иметь характер волнообразно движущейся петли, последовательно включающей в активное состояние разные локусы ДНК, но не приводящей к раскручиванию всей молекулы. Возможно одновременное раскручивание в результате возникновения нескольких волн, следующих друг на другом с определенным разрывом.
К регулированию деятельности генов имеют отношение белки-гистоны, входящие в состав хромосом, Эти белки покрывают значительную часть молекул ДНК. Синтез иРНК происходит только в тех участках ДНК, которые не закрыты гистонами. Вещества, поступающие из цитоплазмы в ядро, освобождают определенные участки ДНК от гистонов. Установлено действие гормонов на хромосомный аппарат клетки (а следовательно, и на ее генотип). Например, экдизон — гормон линьки и метаморфоза насекомых — вызывает образование пуффов на хромосомах.
Таким образом, белки-ферменты образуются в результате деятельности генов, но последние регулируются бел-ками-гистонами и гормонами. Процесс онтогенеза представляет собой цепь реакций, регулирующихся по принципу обратной связи. В этой цепи накопление определенных веществ, образующихся в результате деятельности генов, может либо тормозить, либо стимулировать функцию генов.
Многочисленные факты привели к убеждению, что гены действуют через кодируемые ими ферменты. Такая точка зрения, получившая широкое распространение, в сжатом виде сформулирована В теории: один ген — один фермент — один признак. В настоящее время эта формулировка может быть несколько более детализирована: ген (ДНК) — иРНК — белок (фермент)— признак. Точнее следует сказать, что на молекулярном уровне реализация признака претерпевает ряд этапов: транскрипция — иРНК — процес-синг — тРНК — трансляция — образование белков и их участие в формировании признака. На каждом из этих этапов возможно влияние других генов. Именно этим объясняется существование генов-модификаторов, эпистаза, генокопий.
(33) Эмбриональная индукция. Большое значение в упорядочении хода эмбриогенеза принадлежит эмбриональной индукции. Начало принципиальному изучению этого явления положил опыт Г. Шпемана и Г. Мангольд, результаты которого были опубликованы в 1924 г. В нем дорсальная губа бластопора, подлежащая в нормальных условиях эктодерме, развивающейся в структуры нервной системы, из зародыша гребенчатого (непигментированного) тритона на стадии ранней гаструлы вырезалась и пересаживалась под эктодерму брюшной стороны, дающую в дальнейшем эпидермис кожи зародыша примерно той же стадии развития обыкновенного (пигментированного) тритона (рис. 88). В итоге на брюшной стороне зародыша- реципиента возникали сначала нервная трубка и другие компоненты комплекса осевых органов — хорда, сомиты, а затем формировался дополнительный зародыш. Наблюдения за распределением пигментированных и непигментированных клеток показали, что ткани дополнительного зародыша формируются почти исключительно из клеточного материала реципиента.
Приведенные данные убедительно доказывают, что в ходе эмбриогенеза некоторые части зародыша выполняют роль индукторов или организаторов (по терминологии Г. Шпемана), намечающих пути развития других частей. Явление эмбриональной индукции состоит в побуждении к развитию в определенном направлении одних структур зародыша в результате воздействия на них других структур, возникающих на более ранних стадиях.
Отдельные примеры индукционных воздействий ограниченного характера, например образование хрусталика из эктодермы под действием зачатка глаза (рис. 89), были известны и ранее. Значение результатов опыта Г. Шпемана и Г. Мангольд состоит в установлении факта первичной эмбриональной индукции, т. е. первого шага в цепи последовательных (вторичных, третичных) индукционных процессов в дальнейшем развитии.
Дорсальная губа бластопора, представляющая по своим потенциям хордомезодермальный зачаток, является первичным индуктором и организатором у амфибий. У рыб ему соответствует дорсальный край бластодиска, у птиц — первичный узелок.
Зачаток бластопора у амфибий возникает в области серого серпа. Если небольшой участок кортикального слоя цитоплазмы яйцеклетки лягушки из области названной структуры пересадить на брюшную сторону другого зародыша, то у последнего индуцируется дополнительная нервная система. Можно предположить, что клеточный материал дорсальной губы бластопора наследует свойства первичного организатора, которые были каким-то образом запрограммированы еще на уровне яйца.
Многочисленными исследованиями, выполненными в 20—30-х годах текущего столетия, показано, что в условиях эксперимента индукцию развития эктодермы в направлении нервной системы вызывают многие факторы — вытяжки из разных органов беспозвоночных и позвоночных животных, тканей растений, неорганические вещества.
Наряду с этим было установлено, что существуют «специфические индукторы», т. е. вещества, оказывающие индуцирующее действие в ничтожных концентрациях, и различающиеся по конечному результату своего действия. Так, экстракт из печени млекопитающих индуцирует главным образом мозговые структуры, а из костного мозга —
мезодермальные. При совместном воздействии обоих индукторов формировался зародыш почти нормального вида. В тканях куриных зародышей высокоактивные индукторы относятся к классу белков или нуклеопротеинов.
В развитии многих зачатков выявляются цепи последовательных индукций. Так, описана индукция глазным бокалом хрусталика, хрусталиком и даже взрослым глазом роговицы. Продолговатый мозг индуцирует развитие слухового пузырька, а последний — хрящевую капсулу. В отличие от первичной эмбриональной индукции, результатом которой служит образование дополнительного зародыша, примеры, описанные выше, относятся к тканевому и органному уровню структурной организации. В основе таких межорганных и межтканевых индукций лежат, по-видимому, не химические, а контактные воздействия одних клеток на другие.
Важным обстоятельством служит то, что в нормальном развитии индуктор оказывает соответствующее действие лишь в отношении зачатков, которые характеризуются восприимчивостью. Способность эмбрионального зачатка к восприятию индукционного стимула называется компетенцией. Таким образом, индукционные процессы в эмбриогенезе происходят благодаря приобретению одними частями свойств индукторов, а другими — свойства компетентности.
В парах элементов «индуктор — компетентный зачаток» содержание изменений, провоцируемых индуктором, зависит от внутренних потенций зачатка. Так, зачаток бедра задней конечности цыпленка пересаживали под эпителий зачатка конечного (дистального) отдела
Из трансплантата под влиянием эпителия, в норме индуцирующего конечный отдел крыла, из презуптивного материала бедра сформировались дистальные структуры, из ноги — стопа, фаланги пальцев.
Современные исследования показали, что действие индуктора не воспринимается одиночными клетками, причем клетки в трехмерном скоплении изменяются быстрее, чем будучи распластаны тонким слоем. Чем больше масса индуцируемого зачатка, тем активнее в нем происходит дифференцировка частей.
Такие характеристики эмбриогенеза, как тотипотентность частей зародыша на достаточно ранних стадиях, прогрессивное ограничение путей развития зачатков, явление нарастающей дифференциации, о которых шла речь выше, хорошо согласуются с наличием цепей индукционных процессов. При этом закономерная смена индукторов и состояний компетентности могут служить инструментом детерминации последовательных этапов развития: от значительных (например, формирование комплекса осевых органов) до ограниченных объемом органа или клеточной группы.
Наблюдения показывают, что зачаток почти любого органа проходит в своем развитии две фазы. В фазе зависимой дифференцировки его судьба во многом зависит от действия индукторов и внешнего окружения. С определенного момента зачаток вступает в фазу независимой дифференцировки и осуществляет закономерный цикл преобразований даже при изменении внешних условий. Трансплантация зачатка в нетипичное окружение в 1 -и фазе приведет к трансдифференцировке, во 2-й — не вызовет изменения пути развития.
Представления о смене организаторов и состояния компетенции зачатков как факторах детерминации последовательных этапов развития структур не противоречит положению о том, что на любой стадии организм является целостностью, а не мозаикой органов и частей. Целостность обусловливается системой связей между отдельными элементами зародыша, характеристики которой закономерно изменяются. Лишь условно можно говорить об одних частях зародыша как об индукторах, а о других — как о реагирующих элементах. В процессе развития, включаясь в разные системы связей, «индукторы и реакторы» (по терминологии И. И. Шмальгаузена) постоянно меняются ролями. Факторы, обусловливающие закономерный характер итога развития в целом и на отдельных этапах, возникают по мере дифференцировки зародыша благодаря взаимодействию результатов этой дифференцировки.
Критические периоды развития. Экспериментальное изучение развития животных привело к представлению о так называемых критических периодах. Этим термином обозначают периоды, когда зародыш наиболее чувствителен к повреждению разнообразными факторами, которые могут нарушить нормальное развитие. Иными словами, это периоды наименьшей резистент-ности (устойчивости) зародышей к факторам внешней среды.
В отношении развития человека П. Г. Светлов подчеркивает большое значение следующих критических периодов: имплантации (6—7-е сутки после зачатия), плацентации (конец 2-й недели беременности) и перинатального (роды). С критическим периодом в организме новорожденного связаны резкое изменение условий существования и перестройка деятельности всех систем организма (изменяется характер кровообращения, газообмена, питания и т. д.). Кроме того, отмечены критические периоды развития отдельных органов в различные сроки жизни человеческого эмбриона. Изучение критических периодов в эмбриогенезе показывает необходимость охраны материнского организма от вредных факторов, особенно в самые первые недели беременности. Условия существования зародыша в это время отражаются на его эмбриональном развитии, а следовательно, на всей дальнейшей жизни.
Есть основания полагать, что разные гены начинают функционировать на различных стадиях онтогенеза, совпадающих с критическими периодами. Такой вывод напрашивается на основании того, что под влиянием повреждающих факторов физической и химической природы возникают нарушения нормального развития, напоминающие собой мутации. Советский исследователь И. А. Рапопорт действием разнообразных химических веществ на личинки дрозофилы в различные периоды развития добился модификационных изменений, имитирующих мутации (фе-нокопии). Так, в опытах с солями серебра у дрозофилы получен высокий процент особей с желтым телом, таких же, как при соответствующей мутации.
В опытах на лабораторных млекопитающих установлено, что соединение бета-аминопропионитил вызывает в плодах такое же нарушение образования коллагена в коже, как и при наследственной болезни дерматоспари-ксисе. При этом кожа становится хрупкой, неэластичной, легко повреждаемой.
Не исключена вероятность, что фено-копии возникают в результате того, что повреждение препятствует реализации соответствующего гена. Изучение фенокопий перспективно для выяснения реализации действия генов в онтогенезе.
Тератогенные факторы среды. Факторы среды, способные вызвать нарушение развития, уродства, называются тератогенами (гр. teras — чудовище, урод). В разные периоды развития эмбрион оказывается чувствительным к тем или другим физическим факторам и химическим веществам, попадающим в организм матери. Так, прием внутрь хинина, алкоголя, отравление токсическими веществами, недостаток кислорода, могут нарушить развитие органов и, в первую очередь, нервной системы плода. Иногда после воздействия названных факторов рождаются микроцефалы (гр. mikros — малый, kehpale — голова); иногда у зародыша полностью отсутствует головной мозг. Подобные уродства получены экспериментально у животных, подвергшихся аналогичным воздействиям.
Недостаток витаминов группы В может стать причиной ряда морфологических уродств, в том числе во внутренних органах (сердце, печени). Тера-тогены могут быть причиной не только морфологических, но и функциональных аномалий. Так, дозы гидрокснмо-чевины, не вызывающие морфологических нарушений в центральной системе зародыша, приводят к функциональным расстройствам нервной системы.
Причиной ряда уродств являются токсины паразитов. Отмечены, разнообразные пороки развития при заболевании матери токсоплазмозом, возбудитель которого — одноклеточный организм из типа простейших — токсо-плазма (Тохорlasma gondii).
В настоящее время установлено, что и ряд других фармакологических веществ в организме беременной женщины вызывает гибель плода или уродства.
Оказалось, что препарат хлоридин, применяемый для лечения .и профилактики малярии, токсоплазмоза и ряда других протозойных болезней, обладает тератогенным действием (правда, не у всех видов животных). У крыс уродства, им вызываемые, различны.в зависимости от стадии развития,' на которой действовал препарат. Так, в период с 8-го по 11-й день развития у эмбрионов образуются мозговые грыжи, после 12-го дня возникает микроцефалия и аномалии в строении конечностей.
Конечно, тератогенным действием обладают лишь немногие лекарственные препараты, но такое действие некоторых из них следует иметь в виду. При лечении беременных женщин необходимо подбирать безопасные в этом отношении препараты.
Следует также учитывать, что мощным повреждающим тератогенным фактором являются рентгеновские лучи и другие ионизирующие излучения. Это говорит о необходимости осторожного назначения беременным женщинам рентгеноскопических и флюорографических процедур.
(34) Постнатальный онтогенез и его периоды. После рождения или выхода из яйцевых и зародышевых оболочек начинается постэмбриональный, или постнатальный, этап онтогенеза, в течение которого происходит дальнейшее развитие организма. У различных видов животных постнатальный этап жизни может продолжаться от нескольких дней до десятков лет. Продолжительность индивидуальной жизни — видовой признак, не зависящий от высоты организации.
Постэмбриональный онтогенез человека можно разделить на следующие периоды: ювенильный (до полового созревания); зрелый (взрослое, половозрелое состояние); период старости, заканчивающийся естественной смертью.
Ювенильный период (лат. juvenilis — юный) в зависимости от типа онтогенеза протекает с прямым или непрямым развитием. Первое из них характерно для организма с неличиночным и внутриутробным типом развития, второе — для организмов с личиночным типом развития.
При прямом развитии выклюнувшиеся из яйцевых оболочек или новорожденные отличаются от взрослой формы преимущественно размерами, а также недоразвитием ряда органов и пропорциями тела. Сказанное относится не только к животным, но и к человеку. Рис. 7.1 наглядно иллюстрирует относительные размеры скелета, мышц, центральной нервной системы и внутренних органов новорожденного и взрослого человека.
При непрямом развитии личинка претерпевает превращение, иначе называемое метаморфозом (гр. гле1атогрпо515, — превращение). Личинка может резко отличаться от взрослой формы. У нее не только могут отсутствовать или быть недоразвитыми органы, необходимые в половозрелом состоянии, но имеются многие временные (провизорные) органы.
Метаморфоз широко распространен у представителей различных типов животных. Он встречается не только у беспозвоночных животных (у кишечнополостных, плоских и круглых чер-вей, моллюсков, членистоногих), а и у хордовых, например земноводных. Развитие с превращением появилось как одно из приспособлений к условиям обитания и нередко связано с переходом личиночных стадий из одной среды обитания в другую, например развитие насекомых и земноводных.
Рост. Одной из наиболее характерных черт онтогенеза является увеличение размеров развивающегося организма, т. е. рост. Он связан с увеличением количества клеток и с накоплением массы внеклеточных образований. По характеру роста всех животных можно разделить на две группы — с определенным и неопределенным ростом.
Неопределенный рост наблюдается у моллюсков, ракообразных, рыб, земноводных, рептилий и других животных, не прекращающих расти в течение всей жизни. Определенный рост свойствен организмам, которые к определенному возрасту перестают расти, например насекомым, птицам, млекопитающим.
Деление онтогенеза на возрастные периоды у детей отражает этапы созревания ряда систем: костной, нервной, половой. Человек отличается от других видов, в том числе и от приматов, относительно более длинным периодом детства. Это имеет большое значение, так как в этот период происходит не только физическое развитие организма, но и становление личности: в условиях коллектива осуществляются различные пути социального наследования.
Старость как этап онтогенеза. Старение—общебиологическая закономерность,свойственная всем живым организмам. Старость — заключительный этап онтогенеза, воз-растной период, который наступает за зрелостью и характеризуется существенными структурными, функциональными и биохимическими изменениями в организме, ограничивающими его приспособительные возможности.
Наука о старости — геронтология (гр. geron — старик) выясняет основные закономерности старения, начиная от молекулярного и клеточного уровня до целостного организма. Гериатрия (гр. iatros — врач) изучает особенности развития, течения, лечения и предупреждения заболеваний у людей старческого возраста. В состав геронтологии входят также герогигие-на и геронтопсихология.
Старение — процесс закономерного возникновения возрастных изменений, которые начинаются задолго до старости и постепенно приводят к сокращению приспособительных функциональных возможностей организма. Интенсивность старения, темп его развития определяют продолжительность жизни. Признаки старения проявляются на разных уровнях организации живого организма: на молекулярном, клеточном, тканевом, системном и орга-низменном.
На организменном уровне изменения при старении выражаются прежде всего во внешних признаках: изменяется осанка, форма тела, уменьшаются его размеры, появляется седина, кожа теряет эластичность, что приводит к образованию морщин. Наблюдается ослабление зрения и слуха, ухудшение памяти. Истончается компактное и губчатое вещество костной ткани, в частности, это проявляется в изменении лицевого отдела черепа.
На клеточном уровне можно отметить уменьшение содержания воды в протоплазме, изменение активного транспорта ионов, что сказывается на важнейших физиологических свойствах клетки, снижений ее электрического потенциала. В стареющих клетках возрастает значение процесса гликолиза и относительно уменьшается активность процесса окислительного фосфо-рилирования, в связи с этим в протоплазме снижается содержание АТФ, креатинфосфата, особенно в сердце, мозге, скелетных мышцах. Изменяется структура эндоплазматической сети, нередко она фрагментируется, отдельные ее участки неравномерно расширены.
В клетках старого организма уменьшается активность ряда ферментов, снижается интенсивность синтеза ДНК и.РНК. Возникают ошибки присчитывании информационной РНК, вследствие чего нарушается синтез необходимых белков. В цитоплазме накапливаются свободные радикалы. Вследствие этого ассимиляция уже полностью не восполняет потерь, связанных с диссимиляцией. Снижается митоти-ческая активность клеток. Усиливается процесс возникновения хромосомных аберраций в некоторых соматических клетках (анеуплоидии, склеивание хромосом).
Смерть - завершающая фаза индивидуального существования каждого организма. Неизбежность смерти вытекает из противоречивой сущности жизни.
В процессе жизнедеятельности организма непрерывно происходит отмирание клеток; так же непрерывно осуществляется восстановление отмирающих структур. При нарушении согласованных процессов обмена в организме, а также между организмом как целым и средой наступает смерть. Причиной смерти могут быть нарастающие старческие изменения, патологический процесс или воздействия внешней среды, насильственно обрывающие жизнь. Таким образом, смерть является завершающим этапом индивидуального развития.
У высших животных и у человека различают смерть физиологическую (естественную), наступающую в результате старения, одряхления организма, и патологическую (преждевременную), вызванную болезненными состояниями организма, поражением жизненно важных органов. Преждевременная смерть может быть и следствием несчастного случая.
(35) Биологические и социальные аспекты старения и смерти. Старение—общебиологическая закономерность,свойственная всем живым организмам. Старость — заключительный этап онтогенеза, воз-растной период, который наступает за зрелостью и характеризуется существенными структурными, функциональными и биохимическими изменениями в организме, ограничивающими его приспособительные возможности.
Наука о старости — геронтология (гр. geron — старик) выясняет основные закономерности старения, начиная от молекулярного и клеточного уровня до целостного организма. Гериатрия (гр. iatros — врач) изучает особенности развития, течения, лечения и предупреждения заболеваний у людей старческого возраста. В состав геронтологии входят также герогигие-на и геронтопсихология.
Старение — процесс закономерного возникновения возрастных изменений, которые начинаются задолго до старости и постепенно приводят к сокращению приспособительных функциональных возможностей организма. Интенсивность старения, темп его развития определяют продолжительность жизни. Признаки старения проявляются на разных уровнях организации живого организма: на молекулярном, клеточном, тканевом, системном и орга-низменном.
На организменном уровне изменения при старении выражаются прежде всего во внешних признаках: изменяется осанка, форма тела, уменьшаются его размеры, появляется седина, кожа теряет эластичность, что приводит к образованию морщин. Наблюдается ослабление зрения и слуха, ухудшение памяти. Истончается компактное и губчатое вещество костной ткани, в частности, это проявляется в изменении лицевого отдела черепа.
На клеточном уровне можно отметить уменьшение содержания воды в протоплазме, изменение активного транспорта ионов, что сказывается на важнейших физиологических свойствах клетки, снижений ее электрического потенциала. В стареющих клетках возрастает значение процесса гликолиза и относительно уменьшается активность процесса окислительного фосфо-рилирования, в связи с этим в протоплазме снижается содержание АТФ, креатинфосфата, особенно в сердце, мозге, скелетных мышцах. Изменяется структура эндоплазматической сети, нередко она фрагментируется, отдельные ее участки неравномерно расширены.
В клетках старого организма уменьшается активность ряда ферментов, снижается интенсивность синтеза ДНК и.РНК. Возникают ошибки присчитывании информационной РНК, вследствие чего нарушается синтез необходимых белков. В цитоплазме накапливаются свободные радикалы. Вследствие этого ассимиляция уже полностью не восполняет потерь, связанных с диссимиляцией. Снижается митоти-ческая активность клеток. Усиливается процесс возникновения хромосомных аберраций в некоторых соматических клетках (анеуплоидии, склеивание хромосом).
Смерть - завершающая фаза индивидуального существования каждого организма. Неизбежность смерти вытекает из противоречивой сущности жизни.
В процессе жизнедеятельности организма непрерывно происходит отмирание клеток; так же непрерывно осуществляется восстановление отмирающих структур. При нарушении согласованных процессов обмена в организме, а также между организмом как целым и средой
наступает смерть. Причиной смерти могут быть нарастающие старческие изменения, патологический процесс или воздействия внешней среды, насильственно обрывающие жизнь. Таким образом, смерть является завершающим этапом индивидуального развития.
У высших животных и у человека различают смерть физиологическую (естественную), наступающую в результате старения, одряхления организма, и патологическую (преждевременную), вызванную болезненными состояниями организма, поражением жизненно важных органов. Преждевременная смерть может быть и следствием несчастного случая.
Биологический возраст. Различают хронологический и биологический (физиологически и) возраст. Согласно современной классификации, основанной на анализе средних показателей состояния организма, людей, хронологический возраст которых достиг 60—74 лет, называют пожилыми, 75—89 лет — старыми, свыше 90 лет — долгожителями. Точное определение биологического возраста затруднено тем, что отдельные признаки старости появляются в разном хронологическом возрасте и характеризуются различной скоростью нарастания. Кроме того, изменения даже одного параметра, коррелирующего с возрастом, подвержены значительным половым и индивидуальным колебаниям. Так, если исходить из такого показателя, как упругость кожи, то один и тот же биологический возраст достигается женщиной примерно в 30 лет, а мужчиной в 80. С целью определения биологического возраста, что необходимо для суждения о скорости старения, пытаются использовать «батареи тестов» — совокупность многих характеристик, закономерно изменяющихся в процессе жизни. Основу таких «батарей» составят, по-видимому, сложные функциональные показатели, зависящие от согласованной деятельности нескольких систем организма. В этом убеждают результаты поисков тестов старения. Например, скорость прохождения нервного импульса, которая зависит от состояния нервного волокна, снижается в интервале 20—90 лет на 10%, тогда как жизненная емкость легких, определяемая координированной работой нервной и мышечной систем, — на 50%.
Проблемы долголетия. Продолжительность жизни человека в значительной степени зависит от социальных факторов. Свидетельством этого является тот факт, что в разные периоды человеческой истории средняя продолжительность жизни существенно изменялась, хотя биологически за последние несколько тысячелетий и человек не изменился, и в основном действовали те же природные факторы.
Недостаток средств к существованию, увеличение расходов на медицинское обслуживание, неуверенность в завтрашнем дне — все эти факторы ведут к снижению уровня жизни. В ряде стран, которые в недавнем прошлом были колониями или полуколониями, еще высока смертность от инфекционных заболеваний.
Занятия физическим и умственным трудом должны чередоваться. Следует предпочитать активный отдых: прогулки, туризм, спорт. Большое значение имеет нормальный сон.
(36) Регенерация. Во взрослом организме продолжаются процессы развития, связанные с делением и специализацией клеток. Эти процессы могут быть как нормальными, физиологическими, так и направленными на восстановление организма как целого в случае нарушения его целостности. К таким явлениям относится регенерация. Близкие к регенерации явления наблюдаются при трансплантации, т. е. пересадке органов и тканей.
Под регенерацией (гр. regeneratio — восстановление) понимается восстановление организмом утраченных частей. Проблема регенерации представляет первостепенный интерес для медицины, особенно для восстановительной хирургии. Различают физиологическую, репаративную и патологическую регенерацию.
В процессе жизнедеятельности происходит утрата клеток и их комплексов. Восстановление их получило название физиологической регенерации. В тех случаях, когда восстанавливаются части тела, отторгнутые насильственным путем, говорят о репаративпой регенерации (гр. reparatio — возмещение). Многие биологи к этой форме регенерации относят также случаи восстановления целого организма из части. Однако правильнее, как это сделал Б. П. Токин (1958), выделить их в особую группу явлений — соматический эмбриогенез.
Соматический эмбриогенез, т. е. развитие нового организма из отдельных соматических клеток или их комплексов,— форма вегетативного размножения. Еще Дарвин указывал на большое сходство этих явлений. Оба они подчиняются одной закономерности: чем проще организация тех или иных организмов, тем чаще у них встречается бесполое размножение и тем легче у них получить экспериментально соматический эмбриогенез. Вегетативное размножение и соматический эмбриогенез широко распространены у растений.
Cоматический эмбриогенез характерен только для организмов, обладающих способностью к бесполому размножению.
Физиологическая регенерация. Свойственна всем организмам. Процесс жизнедеятельности обязательно включает два момента — утрату (деструкцию) и восстановление морфологических структур на клеточном, тканевом, органном уровнях. У млекопитающих и человека непрерывно отмирают и слущиваются наружные слои кожного эпителия, продолжительность жизни клеток кишечного эпителия составляет несколько дней. Сравнительно быстро происходит смена эритроцитов, средняя продолжительность жизни которых около 125 дней. Это значит, что в теле человека каждую секунду гибнет около 4 млн. эритроцитов и одновременно в костном мозге образуется столько же новых.
Судьба клеток, погибших в процессе жизнедеятельности, неодинакова. Клетки наружных покровов после гибели слущиваются и попадают во внешнюю среду. Клетки внутренних органов претерпевают дальнейшие изменения и могут играть определенную роль в процессе жизнедеятельности. Так, клетки слизистой оболочки кишок богаты ферментами и после слущивания, входя в состав кишечного сока, принимают участие в пищеварении.
Погибшие клетки заменяются новыми, образующимися в результате деления. На течение физиологической регенерации влияют внешние и внутренние факторы. Так, понижение атмосферного давления вызывает увеличение количества эритроцитов, поэтому у людей, постоянно
живущих в горах, содержание эритроцитов в крови больше, чем у живущих в долинах. Такие же изменения происходят у путешественников при подъеме в горы. На число эритроцитов оказывают влияние физическая нагрузка, питание,свет.
В нервных клетках, которые неспособны к размножению, процессы физиологической регенерации осуществляются на субклеточном, ультраструктурном уровнях. Раньше считали, что в высокодифференцированных нервных клетках и в мышечных волокнах регенерация не происходит. В действительности процесс физиологической регенерации протекает во всех тканях, причем наиболее универсальной его формой следует считать регенерацию, происходящую внутри клеток. Высокая интенсивность этого процесса обеспечивает возможность длительной жизни этих клеток, равной жизни всего организма.
(37) Репаративная регенерация. Репаративная регенерация возникает, когда в организме происходит повреждение и гибель клеток и тканей. Репаративная регенерация широко распространена, но способность к ней выражена неодинаково у различных животных. Есть организмы, у которых регенерационные способности настолько велики, что из части тела или даже из отдельных клеток развивается целый организм (т. е. имеет место соматический эмбриогенез).
Репаративная, или восстановительная, регенерация может быть типичной (гомоморфов) и атипичной (гетероморфоз). При гомоморфозе восстанавливается такой же орган, как и утраченный. При гетероморфозе восстановленные органы отличаются от типичных. Изучение гетероморфоза важно для выяснения факторов, влияющих на регенерацию, что необходимо для управления процессом восстановления утраченных органов.
Восстановление утраченных органов осуществляется путем эпиморфоза, морфаллаксиса и эндоморфоза.
Эпиморфоз — отрастание утраченного органа от раневой поверхности. Процесс регенерации при этом начинается с рассасывания тканей, прилегающих к ране, и интенсивного размножения клеток, из которых образуется регенерационный зачаток. Дальнейшее размножение клеток приводит к увеличению зачатка, а дифференцировка клеток — к формированию органа.
К эпиморфозу примыкает рубцевание, при котором происходит закрытие ран, но без восстановления утраченного органа.
Морфаллаксис влечет за собой перегруппировку оставшейся части организма. Эта форма регенерации нередко связана с дальнейшим значительным разрастанием оставшейся части и завершается образованием из этого материала целого организма или органа. Новая особь (или восстановленный орган) сначала оказывается меньше исходной и равна лишь взятому фрагменту, но в дальнейшем увеличивается.
Регенерация, происходящая внутри органа, получила название эндоморфэза, или регенерационной гипертрофии. Эндоморфоз, как показывает его название,— восстановление, идущее внутри органа. При этом восстанавливается не форма, а масса органа. Регенерация по типу эндоморфоза начинается с заживления раны, а затем происходит увеличение оставшейся части органа за счет размножения клеток и их гипертрофии. Отрастания от раневой поверхности не происходит, поэтому восстановившийся в размерах орган сохраняет форму культи. Так протекает, например, регенерация печени у млекопитающих.
Проявление регенерации в филогенезе. Физиологическая регенерация представляет собой процесс, свойственный всем живым организмам.
Масштабы и способы репаративной регенерации существенно варьируют у представителей групп животных, различающихся систематическим положением (рис. 104). В ходе эволюции отдельных групп организмов повышалась роль одних способов регенерации на фоне снижения роли других. Изменялись и масштабы регенерации. Так, амфибии обладают большей способностью к восстановлению типичной структуры органов, чем круглоротые. У губок, кишечнополостных и червей регенерация нередко осуществляется в полном объеме — из части восстанавливается целый организм. Ряд биологов выделяют это явление в самостоятельное и называют соматическим эмбриогенезом,
рассматривая его как вариант вегетативного размножения. У червя планарии, например, целый организм восстанавливается из 1/10 части исходного, а у гидры —из 1/200.
У членистоногих и моллюсков наблюдается регенерация отдельных органов. Низшие представители хордовых способны восстанавливать целый организм из его части (асцидии). Позвоночные в целом имеют суженный масштаб регенерации путем эпиморфоза. Правда, представители амфибий и рептилий могут восстанавливать отдельные органы, например конечности, хвост. Птицы и млекопитающие восстанавливают кожу, кости, мышцы, внутренние органы. Восстановление способом регенерационной гипертрофии, например, позволяет компенсировать потерю 4/5 печени.
(38) Патологическая регенерация. При этом происходит разрастание тканей, не идентичных здоровым тканям в этом органе. Например, на месте глубоких ожогов может быть массивное разрастание плотной соединительной рубцовой ткани, а нормальная структура кожи не восстанавливается.
После перелома кости при отсутствии совмещения обломков ее нормальное строение не восстанавливается, а разрастается хрящевая ткань, образуя ложный сустав.
Репаративная регенерация в различных тканях проявляется по-разному. В соединительной ткани, коже, слизистых оболочках после повреждения происходит интенсивное размножение клеток и восстановление ткани, подобной утраченной. Это — полная регенерация (реституция). В случае неполного восстановления ткани говорят о субституции.
При повреждении покровов восстанавливается как соединительно-тканная часть (дерма), так и эпителий (эпидермис). Однако темп размножения клеток рыхлой соединительной ткани более высокий, поэтому они частично заполняют дефект, образуются волокна и после больших повреждений на их месте формируется рубцовая ткань. Чтобы предотвратить это, применяют пересадку кожи, взятой у того же больного со здоровых участков тела или у другого человека. Хорошие способности к регенерации имеет костная ткань.
Регенерация хрящевой ткани осуществляется за счет камбиальных элементов надхрящницы. Однако новооб-разование и полное восстановление, в отличие от кости, может происходить только при небольших дефектах.
Нервные клетки вскоре после рождения теряют способность делиться митозом; способностью к регенерации обладают периферические нервы — отростки нервных волокон. При ранении периферический отрезок подвергается дегенерации, но сохраняются клетки его оболочки, они размножаются и образуют русло, по которому растет центральный отрезок. Поэтому хирурги сшивают рассеченные нервы. Если концы перерезанного нерва не соединить, то на месте перерыва образуется рубец с вросшими в него беспорядочно располагающимися нервными отростками. Это не приводит к восстановлению нервного волокна, но рубцовая ткань приобретает болезненную чувствительность. Это также патологическая регенерация. Она характеризуется часто избыточным разрастанием тканей или переходом одного типа ткани в другой (метаплазия). Патологическая регенерация может быть вызвана и нарушениями гормональной регуляции, например разрастанием хрящевой ткани при акромегалии.
После повреждения исчерченных (поперечно-полосатых) мышечных волокон на месте травмы развивается соединительная ткань и восстановления непрерывности волокон не происходит. После глубоких ожогов развивается плотная соединительная рубцовая ткань — неполная компенсация.
Процесс регенерации происходит во многих внутренних органах после различных патологических процессов (воспалительные процессы вирусного и бактериального происхождения) а также после каких-либо эндогенных нарушений. Известно, что мышечная ткань сердца очень чувствительна к недостатку кислорода. При нарушении кровоснабжения какого-либо участка миокарда (а это бывает в результате спазма мелиой артерии или закрытия ее просвета образовавшимся тромбом) в мышечных волокнах сравнительно быстро появляются вначале микроскопические мелкоочаговые участки распада миофибрилл, а затем и более крупные некротические очаги (инфаркт). В этом случае после фазы лейкоцитарной реакции (по типу фагоцитоза) происходит размножение клеток соединительной ткани, которая как бы замещает дефект, закрывает его, происходит рубцевание. Одновременно в оставшихся неповрежденными мышечных волокнах начинаются процессы регенерации по типу гипертрофии — увеличение количества саркоплазмы, миофибрилл и ядер. Строго говоря, в данном случае регенерация миокарда является атипичной, так как в этом месте, где раньше была мышечная ткань, развивается соединительно-тканный рубец. Однако в результате происходит более или менее полная компенсация, степень ее зависит от обширности поражения, применяемого лечения и от общего состояния организма.
Основой регенерации являются мо-лекулярно-генетические и внутриклеточные механизмы: редупликация ДНК, синтез белка, накопление АТФ, митоз. Изучение процесса регенерации привело к установлению факта, что регенерирующие ткани в известной степени приближаются к эмбриональным. В обоих случаях клетки малодифференцированы, имеется и биохимическое сходство. Эти изменения клеток регенерата в сторону, близкую к эмбриональным, можно объяснить следующим образом. Каждая соматическая клетка имеет полный набор генов. В дифференцированных клетках разных тканей активны определенные гены, программирующие синтез специфических белков, все остальные гены репрессированны, неактивны. При регенерации прекращается синтез специфических белков (дедифференцировка). По-видимому, это связано с тем, что происходит активизация тех генов, которые были активны в эмбриональном периоде.
(39) Понятие о гемостазе. Одно из основных свойств всего живого — способность сохранять относительное динамическое постоянство внутренней среды. Это свойство получило название гомеостазп (гр. homoios — равный, stasis — состояние). Гомеостаз выражается в относительном постоянстве химического состава, осмотического давления, устойчивости основных физиологических функций в организмах растений, животных,, человека. Гомеостаз каждого индивидуума специфичен и обусловлен его генотипом.
Регуляторные гомеостатические механизмы функционируют на клеточном, органном, организменном и над-организменном уровнях.
Таким образом, понятие гомеостаза не связано со стабильностью процессов. В ответ на действие внешних факторов происходит некоторое изменение физиологических показателей, а включение регуляторных систем обеспечивает поддержание относительного постоянства внутренней среды. Способность к поддержанию постоянства внутренней среды представляет собой свойство, выработавшееся в процессе эволюции и наследственно закрепленное.
Основные компоненты гомеостаза. Клеточный и молекулярно-генетический уровни. Клетка является сложной биологической системой, которой присуща саморегуляция. Установление гомеостаза клеточной среды обеспечивается мембранными системами, с которыми связаны биоэнергетические процессы и регулирование транспорта веществ в клетку и из нее. В клетке непрерывно идут процессы изменения и восстановления органоидов. Это происходит и в обычных условиях среды, но особенно интенсивно при дгйствии различных повреждающих факторов (изменение температуры, гипоксия, недостаток питательных веществ).
В основе реакций, осуществляемых в клетке на ультраструктурном уровне, лежат генетические механизмы гомеостаза.
Важнейшее свойство живого — самовоспроизведение — основано на процессе редупликации ДНК. Сам механизм этого процесса, при котором новая нить ДНК строится строго комплементарно около каждой из составляющих молекул двух старых нитей, является оптимальным для точной передачи информации. Точность этого процесса очень высока, но все же, хотя и очень редко, происходят ошибки при редупликации. Нарушение структуры молекулы ДНК может происходить и в ее пепвмчных цепях вне связи с редупликацией под воздействием эндогенных и экзогенных химических соединений, под влиянием физических факторов. В большинстве случаев происходит восстановление генома клетки, исправление повреждения посредством системы репарирующих ферментов. Репарация играет важнейшую роль в восстановлении структуры генетического материала и сохранении нормальной жизнеспособности клетки. При повреждении механизмов репарации происходит нарушение гомеостаза как на клеточном, так и на органиэменном уровнях.
Важным механизмом сохранения гомеостаза является диплоидное состояние соматических клеток у эукариот. Диплоидные клетки отличаются большей стабильностью функционирования, так как наличие у них двух генетических программ повышает надежность генотипа. Большинство мутаций, оказывающих часто неблагоприятное действие, являются рецессивными. Наличие у гетерозиготной особи доминантного ал деля обеспечивает либо полное, либо частичное подавление в фенотипе рецессивной мутации. Стабилизация сложной системы генотипа обеспечивается и явлениями полимерии, а также другими видами взаимодействия генов. Большую роль в процессах гомеостаза играют регуляторные гены, контролирующие активность оперонов.
У прокариот, имеющих более примитивную организацию генотипа, наблюдается меньшая автономность организмов от колебания внешней среды и более низкая стабильность самого генетического аппарата.
Общие закономерности гомеостаза. Способность сохранять гомеостаз — одно из важнейших свойств живой системы, находящейся в состоянии динамического равновесия с условиями внешней среды. Способность к поддержанию гомеостаза неодинакова у различных видов. По мере усложнения организмов эта способность прогрессирует, делая их в большей степени независимыми от колебаний внешних условий. Особенно это проявляется у высших животных и человека, имеющих сложные нервные, эндокринные и иммунные механизмы регуляции. Влияние среды на организм человека в основном является не прямым, а опосредованным, благодаря созданию им искусственной среды, успехам техники и цивилизации.
Молекулярно-генетический уровень гомеостаза обеспечивается процессами редупликации ДНК, репарации. Надежность генетического аппарата эука-риот обусловлена наличием двух геномов в каждой соматической клетке.
На уровне клетки происходит восстановление ее мембран, компенсаторное увеличение ряда органоидов при необходимости повышения функции (увеличение количества митохондрий, рибосом).
Контроль за генетическим постоянством осуществляется иммунной системой. Эта система состоит из анатомически разобщенных органов, представляющих функциональное единство. Свойство иммунной защиты достигло высшего развития у птиц и млекопитающих.
В системных механизмах гомеостаза действует кибернетический принцип отрицательной обратной связи: при любом возмущающем воздействии происходит включение нервных и эндокринных механизмов, которые тесно взаимосвязаны. Нормализация физиологических показателей осуществляется на основе свойства раздражимости. У более высоко организованных животных это усложняется, дополняется сложными поведенческими реакциями, включающими инстинкты, условно-рефлекторную и элементарную рассудочную деятельность, а у человека абстрактное мышление — качественно новое явление, положившее начало социальной эволюции, где действуют другие законы.
(40) Трансплантация. Ауто-, алло- и ксенотрансплантация. Трансплантацией (лат. transplantatio — пересадка) называется пересадка или приживление органов и тканей. Пересаживаемый участок органа называется трансплантатом. Организм, от которого берут ткань для пересадки, является донором; организм, которому пересаживают трансплантат,— реципиентом.
Различают аутотрансплантацию, когда пересадка осуществляется на другую часть тела того же организма, аллотрансплантацию, когда производят пересадку от одной особи другой, принадлежащей тому же виду, и ксе-нотрансплантацию, когда донор и реципиент относятся к разным видам.
Огромный экспериментальный и клинический материал показал, что успех трансплантации зависит от иммунологических реакций организма. Ауто-трансплантации происходят наиболее успешно, так как белки (антигены) трансплантата не отличаются от белков реципиента. Иммунологическая реакция не возникает, и возможно истинное приживление. При аллотрансплан-тациях донор и реципиент, как правило, различаются по антигенам. В опытах на гидрах и червях аллотрансплантации удаются, так как иммунологические реакции у них выражены слабо. Однако у высших животных и человека обычно не наблюдается длительное приживление аллотрансплантатов. Исключение составляют однояйцовые близнецы, генотип которых, а следовательно, и белковый состав одинаковы. Ксенотрансплантация удается у некоторых беспозвоночных, но у высших животных трансплантаты от особей других видов рассасываются.
Трансплантация в медицинской практике. В тех случаях, когда орган не может регенерировать, но он необходим, остается один метод — заменить его таким же естественным или искусственным органом.
При пластических операциях, проводимых с целью восстановления формы и функции какого-либо органа или деформированной поверхности тела, распространена пересадка кожи, хряща, мышц, сухожилий, кровеносных сосудов, нервов, сальника.
Значительную часть пластических операций составляют косметические, направленные на восстановление деформированных частей лица. При пластических операциях пользуются преимущественно аутотрансплантацией.
Пересадка роговицы проходит без осложнений, которые сопровождают пересадку других органов, так как роговица не содержит кровеносных капилляров и, следовательно, в нее не попадают клетки иммунной системы крови.
Проблема тканевой несовместимости. Успехи трансплантологии. Поскольку абсолютно точно подобрать донора и реципиента по всем антигенгм невозможно, возникает проблема подавления иммунной реакции отторжения. Большое значение в этом имеет явление иммунологической толерантности (лат. tolerantia — терпимость) к чужеродным клеткам. Это явление было открыто на разных организмах независимо друг от друга чешским эмбриологом М. Гашеком (1953) и английским зоологом П. Медаваром (1953). М. Гашек произвел опыт по эмбриональному парабиозу у двух цыплят, различающихся по антигенам. В результате у обеих птиц выработалась толерантность: при последующем введении им эритроцитов друг от друга не происходило выработки антител, не отторгались и пересаженные от партнера кожные трансплантаты.
Иммунная система, направленная против любых генетически чужеродных веществ и клеток, защищает организм от микробов и вирусов. Однако это свойство, выработанное в процессе длительной эволюции, обращается против интересов человека в случае пересадки органов и тканей. В этом случае, а также при аутоиммунных заболеваниях, перед учеными встала задача подавления иммунитета — иммунодепрес-сии. Это достигается различными способами: подавлением активности иммунной системы, облучением, введением специальной антилимфатической сыворотки, гормонов коры надпочечников.
Применяют также различные химические препараты — антидепрессанты (имуран). Уже при первой операции сердца пациенту было назначено облучение и сильнодействующие химические и гормональные препараты для предотвращения отторжения сердца. Иммунитет удалось подавить; сердце не отторгалось, но одновременно был подавлен не только трансплантационный иммунитет, но и тот, который защищает организм от микробов, и больной погиб от воспаления легких.
Искусственные органы. Трансплантация не может полностью решить проблему замены нефункциони-' рующих или утраченных органов человека.
В последние десятилетия стало развиваться новое направление в заместительной хирургии — применение искусственных органов. Это технические устройства, предназначенные для временной или постоянной замены функции того или иного органа человека. Примером имплантируемых органов могут служить искусственные клапаны сердца, которыми заменяют пораженные; применяют трансплантацию протезов крупных сосудов, сделанных из тефлона или других синтетических материалов.
Жизнь многих людей с тяжелыми нарушениями ритмической деятельности сердца удается спасти, имплантируя миниатюрные электрокардиостимуляторы. Созданы протезы некоторых суставов, действующий от биотоков пациента протез руки. Сделана первая попытка замены сердца человека искусственным; хотя сам аппарат находится в теле человека на месте сердца, но источник его энергоснабжения — довольно массивная конструкция — находится вне тела человека, с которым соединяется специальными приводами. Проблема полностью имплантированного (включая источник энергии) сердца требует еще большой исследовательской работы и новых технических решений.
(41) Биологические ритмы. В эволюции выработалась способность организмов ориентироваться во времени, которая позволяет согласовывать скорость и направление главных физиологических процессов с закономерными и прежде всего циклическими изменениями условий обитания. Механизмы, лежащие в основе указанной способности, объединяют под общим термином «биологические часы». Внешним проявлением функционирования таких часов служат ритмические колебания функций организма — биологические ритмы. Область биологии, изучающая закономерности временной организации живых систем, называется хронобиологией.
Циклические изменения характеризуют различные процессы на клеточном, тканевом, органном и организменном структурных уровнях. Так, с определенной периодичностью изменяется содержание гликогена в клетках печени, количество клеток, редуплицирующих ДНК или делящихся митозом, происходит вылет имаго из куколок у плодовых мух или свечение одноклеточной водоросли Оопуаи1ах, обусловливающее свечение морской воды. Многочисленны примеры таких изменений у растений: поднимание и опускание листьев или движение лепестков в зависимости от времени суток, опорожнение спор из спорангиев у грибов и водорослей.
Биологические ритмы различаются продолжительностью цикла. Околочасовые ритмы характеризуют временную организацию некоторых внутриклеточных метаболических процессов, например синтез и выделение белкового секрета клетками некоторых желез. Их изучение начато сравнительно недавно. Изменения растений и животных в связи со сменой времен года, издавна привлекавшие внимание людей, являются примером ритмов с годовой периодичностью.
Интенсивно изучаются суточные (циркадные)ритмы, которые заключаются в закономерных изменениях физиологических показателей организма в зависимости от времени суток.
Суточные ритмы многих физиологических процессов являются эндогенными, т. е. определяются механизмами, действующими в самом организме. В пользу этого говорит, например, сохранение ритма, зависящего от фотопериодичности, даже после помещения организма в условия постоянного освещения. Так, мыши, существуя в течение нескольких поколений при постоянном освещении, по возвращении в условия чередования света и темноты, воспроизводили нормальную суточную периодичность двигательной активности.
Суточные ритмы реагируют на действие внешних факторов, прежде всего чередование света и темноты, высоких и низких температур. При этом изменяется положение фаз ритмических изменений. У человека, например, при переходе к образу жизни, противоположному обычному (бодрствование ночью, сон днем), через 9—10 сут наблюдается смена фаз ритма колебаний температуры тела. Внешние факторы способствуют выявлению эндогенных суточных ритмов путем синхронизации ритмических изменений отдельных клеток или особей. Например, в популяциях плодовых мух, выдерживаемых в постоянных условиях освещения, регистрируется непериодический вылет имаго из куколок. После воздействия светом благодаря синхронизации процесс становится периодическим. Таким образом, внешние факторы могут служить указателем времени.
Средняя длина периодов суточных ритмов у растений варьирует от 22 до 28 ч, у животных в большинстве случаев этот показатель укладывается в пределы 23—25 ч. Существуют определенные индивидуальные колебания длины периодов. При постоянных условиях длительность цикла активности у четырех мышей составила в одном из опытов от 25,0 до 25,4 ч.
Эндогенные суточные ритмы ограничивают осуществление тех или
иных функций определенным временем суток. Это имеет большое приспособительное значение, так как приводит организм в состояние «готовности» по отношению к ожидаемым условиям среды в определенное время. Так, вечерние прыжки лососей, требующие соответствующего энергетического подкрепления, совпадают с максимумом активности поедаемых насекомых. Благодаря эндогенному ритму организмы сохраняют экологически целесообразную ориентировку во времени суток, несмотря на периодическое выключение внешних указателей времени, например в связи с непогодой.
Хронобиология представляет собой интенсивно развивающуюся область науки, однако до сих пор нет отчетливого понимания механизма биологических часов или способов сопряжения эндогенных ритмов и циклических изменений внешних факторов. Между тем познание указанного механизма имеет большое значение, например для выбора оптимального режима активности человека. Так, ночная работа в режиме «12-часовая смена, 24-часовой отдых» менее благоприятна, чем многонедельная ночная работа, укладывающаяся в суточный ритм. Данные о суточном ритме клеточной пролиферации используются при выборе времени назначения лекарств, действующих на делящиеся клетки, например в онкологических клиниках.
(42) Жизнь тканей и органов вне организма. Культурой тканей называется метод, дающий возможность выращивать вне организма кусочки тканей и даже отдельные клетки. На теоретическую возможность такого метода указал А. Е. Голубев еще в 1874 г., а применил его впервые И. П. Скворцов в 1885 г. Методы культуры тканей были усовершенствованы американскими биологами Г. Гаррисоном в 1907 г. и Д. Кар-релем в 1910 г. и нашли широкое распространение в лабораториях многих стран.
Для культуры тканей небольшие кусочки органов или суспензию клеток в строго стерильных условиях выделяют, из организма, помещают в стеклянные камеры на специально приготовленные стерильные питательные среды и создают необходимый температурный режим. После некоторого периода покоя клетки в культуре начинают интенсивно размножаться. Питательный материал для роста ткань получает из среды; в нее же поступают продукты жизнедеятельности. Накопление их приводит культуру к старению. Образующиеся клетки становятся мельче. Если своевременно не сделать пересев (пассаж) в свежую среду, ткань погибает.
Интенсивность роста клеток в культуре тканей очень велика.
Культуры тканей используют в научных исследованиях для выяснения многих вопросов теоретической и практической биологии и медицины. Так, с помощью культуры тканей были детально изучены все стадии митоза. Этот метод был применен также для изучения дифференцировки клеток во время эмбрионального развития органов млекопитающих и птиц. Культуры тканей используют для решения многих вопросов цитологии, гистологии, эмбриологии, физиологии, онкологии, генетики.
Клеточные культуры широко применяют для изучения действия различных повреждающих факторов на генетический аппарат клеток, для исследования ферментных систем клетки.
Клеточные культуры используют для производства некоторых биологически активных препаратов: ферментов, антител. Так можно размножать вирусы гриппа, полиомиелита, клещевого энцефалита, что необходимо для получения профилактических сывороток. Большое практическое значение имеет культивирование клеток костного мозга.
Клиническая и биологическая смерть. У высших многоклеточных организмов смерть — не одномоментное событие. В этом процессе различают два этапа — клинической и биологической смерти. Признаком клинической смерти служит прекращение важнейших жизненных функций: потеря сознания, отсутствие сердцебиения и дыхания. Однако в это время большинство клеток и органов еще остаются живыми, в них еще совершаются процессы самообновления, их метаболизм еще упорядочен. Лишь постепенно наступает биологическая смерть, связанная с прекращением самообновления, химические процессы становятся неупорядоченными, в клетках происходит аутолиз (самопереваривание) и разложение. Эти процессы происходят в различных органах с неодинаковой скоростью, которая определяется степенью чувствительности тканей к нарушению снабжения их кислородом. Нервные клетки коры мозга являются наиболее чувствительными, в них некротические изменения происходят уже через 5—6 мин, при более длительном прекращении дыхания и кровообращения наступают необратимые изменения в клетках коры
большого мозга. Некоторым больным после этого удается восстановить сердечную деятельность, дыхание и другие функции, но сознание не восстанавливается. С целью удлинения периода клинической смерти используют обшее. охлаждение организма. Гипотермия, замедляя обменные процессы, обеспечивает большую устойчивость к кислородному голоданию.
Так, при снижении температуры тела до 24—26° срок клинической смерти у собак удлиняется до 1 ч, а у обезьян до 30 мин. В эксперименте возможно и более глубокое и длительное охлаждение.
Реанимация. Изучение процесса умирания организма привело к заключению, что между жизнью и смертью существует переходное состояние — клиническая смерть, когда признаки жизни уже не наблюдаются, но ткани еще живы. Следовательно, в это время еще есть возможность возвратить организм к жизни.
Разумеется, вернуть к жизни из состояния клинической смерти можно лишь тогда, когда не повреждены жизненно важные органы. Оживление возможно при наступлении смерти от кровопотери, поражения электрическим током, утопления и других причин, не связанных с повреждением жизненно важных органов. В случае смерти от рака, далеко зашедшего туберкулеза, повреждений сердца и т. д. период клинической смерти также имеется, поэтому теоретически оживление возможно, но организм уже настолько разрушен заболеванием, что не будет жизнеспособным. Как показывают работы по оживлению, оно возможно у человека лишь в тех случаях, когда с момента начала клинической смерти прошло не более 6—7 мин. После этого начинаются уже необратимые процессы в коре большого мозга.
Успехи хирургии, особенно грудной и, в частности, операций на сердце, в большой мере связаны с широким внедрением принципов реанимации в клинику. Операции, на которые до середины XX в. хирург решался редко в силу частой смерти больных, нашли широкое распространение. Методы реанимации применяются не только в хирургической практике, но и при различных угрожающих состояниях в любой области практической медицины.
(43) Раздражимость. Это способность живых клеток, систем и целого организма изменять свою активность под влиянием внешних воздействий. В нервах и мышцах раздражимость служит предпосылкой для возникновения возбуждения.
Анаболизм. Происходит биосинтез сложных в-в из более простых мол.-предшественников. При этом каждая клетка синтезирует характерные для нее белки, жиры, УВ и др.соед. синтез белков, протоплазмы и клеточных структур относят к пластическому обмену, связанному с построением клеток и внутриклеточных образований.
(44) История становления эволюционной идеи. Идея развития является одним из важнейших элементов современного научного диалектико-материалистиче-ского подхода к изучению окружающего нас мира.
В области биологических наук идея развития нашла наиболее полное воплощение в эволюционной теории Ч.Дарвина. Однако теория Дарвина, представившая убедительные доказательства исторического развития живых организмов и впервые объяснившая движущие силы и пути эволюции, явилась завершением длительного процесса становления эволюционных воззрений, истоки которого восходят к древним культурам Запада и Востока.
На всех этапах своей истории биология, как и другие области человеческих знаний, являлась ареной борьбы материализма и идеализма, диалектики и метафизики.
Идеям об изменяемости живых существ, о развитии живого противостояло господствовавшее много веков и всегда поддерживаемое церковью представление о возникновении живого в результате акта творения, о постоянстве и неизменности всего существующего. Эта концепция вошла в историю под. названием креационизма (лат. creatio— создаю, творю).
В борьбе с креационизмом идеи развития прошли долгий и трудный путь от первоначального признания самой возможности изменений, превращений (трансформации) до полного отрицания теорий творения и неизменности живого, до понимания развития как исторического процесса.
Наиболее ранние воззрения, допускающие изменяемость живого, получили название трансформизма (лат. transformatio — изменяю, преобразовываю). Трансформизм еще не связывал наблюдаемые в органическом мире изменения с поступательным характером развития и происхождением высших, более сложно организованных форм от низших, более примитивных. В теориях трансформистов (Ж. Бюффона и др.) идея развития еще не воспринимается как исторический процесс. Для эволюционных теорий, эволюционизма (лат. evolutio — развертываю) характерно признание исторического развития живого.
Первая эволюционная теория была создана Ж. Б. Ламарком в 1809 г. Однако Ламарк ошибочно полагал, что для эволюции достаточно одного прямого влияния среды, упражнения и неупражнения органов, приводящих к адекватной изменчивости. Он верил, что высшие животные могут изменяться также под влиянием внутренней тенденции к совершенствованию. Ламарк допускал наследование приобретенных признаков и считал, что это приводит к эволюции.
Эволюционная теория Ламарка была ошибочной. В его время наука еще не располагала достаточным количеством фактов для обоснования эволюционной идеи. Для полного торжества учения об эволюции потребовалось еще 50 лет накопления научных фактов.
Сущность представления Ч.Дарвина о механизме органической эволюции. Дарвин нашел доказательства эволюции, обратившись к сельскохозяйственной практике. Именно на примере культурных растений и домашних животных он показал значительную пластичность организмов, обратил внимание на многочисленность сортов культурных растений и пород одомашненных животных. Сторонники постоянства видов вынуждены были утверждать, что каждый сорт и порода имеют особого дикого предка. Дарвин показал, что все многообразие пород и сортов выведено человеком от одного или небольшого числа диких предков.
Веским доказательством этого явилось то, что все без исключения сорта и породы служат для удовлетворения каких-либо определенных потребностей человека — экономических или эстетических. Другое доказательство состоит в том, что породы и сорта отличаются друг от друга в первую очередь особенностями, которые интересуют человека. У различных сортов свеклы листья, плоды и семена весьма сходны, корнеплоды же разнообразны по форме, цвету, содержанию сахара и т. д. То же относится к моркови, редису и другим корнеплодам. У капусты большое разнообразие представляют листья, у сирени — цветы, у фасоли — семена и т. д.
Анализируя методы работы селекционеров, Дарвин пришел к заключению, что создание новых сортов и пород зиждется на использовании человеком трех факторов: изменчивости, наследственности и отбора. Убедившись в этом, он показал далее, что в природе те же факторы, т. е. наследственная изменчивость и отбор, обусловливают формирование видов, эволюцию органического мира и объясняют целесообразность строения и функций животных и растений.
Отбор, применяемый человеком, Дарвин назвал искусственным, понимая под ним процесс создания новых пород животных и сортов культурных растений путем систематического сохранечия особей с определенными, ценными для человека, признаками и свойствами в ряде поколений и путем содействия их размножению. Эта цель достигается не только выбором лучших, но и устранением (элиминацией) менее соответствующих поставленной задаче. При этом задача ставится не обязательно сознательно. С древнейших времен человек, даже не преследуя цели улучшения разводимых животных и растений, все же стремился сохранить для размножения экономически более выгодных, а в пищу использовал в первую очередь менее ценных.
В природе Дарвин открыл естественный отбор. В противоположность искусственному, когда накапливаются признаки, полезные для человека, в процессе естественного отбора накапливаются признаки, полезные для данного организма или для вида, к которому он относится. В процессе эволюции естественный отбор делает организмы все более приспособленными -к тем условиям, в которых обитают особи данного вида.
Материал для отбора наиболее приспособленных («лучших») всегда есть, так как организмам свойственно интенсивное размножение в геометрической прогрессии. В окружающей природе организмы вступают в многообразные, весьма сложные взаимоотношения, в которых могут выжить далеко не все. Совокупность этих взаимоотношений Дарвин назвал борьбой за существование.
Дарвин различал три формы борьбы за существование: взаимоотношения организмов с неживой природой; межвидовую борьбу, к которой относятся взаимоотношения между особями, принадлежащими к разным видам; внутривидовую борьбу, включающую взаимоотношения между особями одного вида.
Наконец, особи, относящиеся к одному виду, имеют совершенно одинаковые потребности и подвергаются одним и тем же опасностям, поэтому борьба между ними становится наиболее напряженной. Эти внутривидовые отношения, по Дарвину, приводят к дивергенции, т. е. служат постоянным- источником обособления групп особей внутри вида. Внутривидовую борьбу Дарвин считал основным фактором эволюции.
Итак, естественный отбор, открытый Дарвиным,— это исторический процесс, благодаря которому в результате борьбы за существование выживают и успешно размножаются, оставляют потомство организмы с признаками, полезными для их жизни, т. е. обеспечивающими существование вида. В то же время организмы с менее полезными и тем более вредными в данных условиях обитания признаками и свойствами погибают, не оставляя потомства. Естественный отбор —движущий фактор эволюции, приводящий к формированию новых видов.
Эволюция — процесс совершенствования прежних и вновь появляющихся адаптации (адаптациогенез). Адаптации (лат. adaptatio— приспособляю) выражаются в приспособлении строения и функций в живых системах к условиям среды. Они проявляются на всех уровнях: молекулярном, клеточном, тканевом, организменном, попу-ляционно-видовом. Адаптации сохраняются и совершенствуются отбором. В этом выражается творческая роль отбора. При изменении условий обитания адаптации нередко теряют свое приспособительное значение. Это указывает на относительный характер адаптации.
Открыв естественный отбор, Дарвин смог материалистически объяснить биологическую целесообразность, характерную для живых организмов. Приспособления организмов к услови-ям существования поражают гармоничностью и целесообразностью. До Дарвина это объяснялось, с точки зрения креационизма, изначальной целесообразностью, якобы присущей живому. Дарвин дал материалистическую трактовку целесообразности. Целесообразность имеет относительный характер: строение и функции организмов не могут быть целесообразными вообще, вне связи с теми условиями, где обитает организм.
Дарвин доказал, что целесообразность в природе носит относительный характер и является следствием отбора, т. е. выживания наиболее приспособленных.
Победа эволюционного учения Дарвина положила предел господству метафизических креационистстких учений в биологии. Исторический метод, утвердившийся в биологии благодаря Дарвину, во-первых, потребовал пересмотра всех прежних представлений и замены их новыми, во-вторых, явился мощным толчком для успешного развития всех разделов биологической науки. Фактический материал, добытый в последарвиновский период, не только пополнил огромный арсенал доказательств в пользу эволюционного учения Дарвина, но и значительно расширил и углубил его теоретические основы в области палеонтологии, биогеографии, сравнительной анатомии, эмбриологии и других биологических наук. Наконец, возник синтез эволюционного учения с генетикой.
Современный период синтеза дарвинизма и генетики. В XX в. в связи с развитием генетики были разработаны и уточнены многие положения эволюционного учения.
После выхода в свет «Происхождения видов...» Дарвина против его теории выступил инженер Ф. Дженкин, утверждавший, что возникший новый признак не может быть поддержан отбором. Он рассуждал так: носителем нового признака является одна особь, при скрещивании с другими особями, не имеющими этого признака, потомство будет иметь его лишь наполовину, в следующем поколении на одну четверть и т.д. В конце концов новый признак совсем растворится.
Действительно, для Дарвина и его современников оставалось загадкой, каким образом новые признаки не утрачиваются в результате скрещивания. Этот «загадочный факт» нашел объяснение в опытах Менделя. Открытие корпускулярного характера наследственного субстрата опровергло представление о растворении и слиянии наследственных факторов при скрещивании.
Один из упреков в адрес Дарвина заключался в том, что его теория не может объяснить появление и сохранение признаков, кажущихся бесполезными . В настоящее время считают, что многие морфологические признаки, как будто бы не имеющие значения для выживания, развиваются, по-видимому, у организмов вследствие плейотроп-ного действия генов или обусловлены генами, тесно сцепленными в хромосомах с генами, кодирующими жизненно важные признаки. Эти же соображения применимы для объяснений многих корреляций в организме.
Важной заслугой генетики является установление того факта, что для эволюции имеет значение только наследственная (генеративная, по Дарвину — неопределенная) изменчивость.
(45) Биологический вид. Дарвиновское учение утвердило в науке представление, что каждый вид—историческая категория, качественный этап эволюции. Каждый вид возник из другого и существует, пока не изменятся условия. При новых условиях вид либо вымрет, либо, изменяясь, даст начало качественно новым видам.
Чтобы доказать эволюцию, образование качественно новых видов, следует дать определение понятию «вид». Это определение базируется на нескольких критериях: морфологическом, цитологическом, генетическом, биохимическом, экологическом, биогеографическом.
Исходя из этих критериев особи, относящиеся к одному виду, имеют общие, только им свойственные морфологические, цитологические, физиологические, биохимические особенности и отличаются по этим признакам от особей, относящихся к другим видам. Особи одного вида обитают в одинаковых (или сходных) экологических условиях. Каждый вид имеет свою область распространения (ареал), отличающуюся от ареала других видов. Особи одного вида при скрещивании только между собой дают плодовитое потомство. В репродуктивном отношении каждый вид изолирован от других видов. В разных местах ареала особи одного вида могут несколько отличать-.ся, образуя разновидности и подвиды, но они генетически (репродуктивно) открыты, свободно между собой скрещиваются и дают плодовитое потомство. Особи одного вида отличаются между собой лишь аллелями своих генов. В этом принципиальное отличие подвидов от видов. Виды — генетически замкнутые системы; между особями разных видов гибридизация невозможна, а если и происходит, то потомство, как правило, бесплодно.
Генофонд вида достаточно разнообразен, чтобы обеспечить изменчивость, необходимую для существования вида в различных условиях его обитания, но, с другой стороны, он один обеспечивает внутривидовой гомеостаз, единство особей, относящихся к одному виду по всем критериям, его характеризующим.
Особи любого вида распространены в своем ареале не равномерно, а отдельными устойчивыми скоплениями— популяциями. Это объясняется тем, что условия существования в пределах ареала не везде равноценны и представители любого вида концентрируются на участках с наиболее благоприятными условиями. Оговоримся, что не любое скопление особей одного вида является популяцией.
Популяцией (франц. population — население) называется совокупность особей одного вида, длительно населяющих определенное пространство и свободно скрещивающихся между собой. Таким образом, вид состоит из популяций, совокупность которых и есть форма существования вида.
Каждая популяция имеет определенный ареал, возрастной и половой состав; численность особей в популяции может колебаться от нескольких сот до нескольких тысяч. Чем меньше популяция, тем больше угроза ее вымирания или гибели от каких-либо случайных причин. Местом обитания популяции может быть лес, луг, водоем и т.п.
Важное свойство популяции — генетический полиморфизм. Благодаря естественному отбору каждая локальная популяция приспособлена к тем условиям среды, в которых она обитает. Казалось бы, что длительный отбор мог бы привести к созданию какого-то одного генотипа, наиболее оптимального для данных условий, т. е. к единообразию. Однако в действительности этого не происходит. Популяции не свой ствен единообразный генотип, она характеризуется генетической разнородностью. По образному выражению С. С. Четверикова, исследовавшего популяции дрозофил: «Популяция насыщена мутациями как губка водой».
В лабораторных условиях он исследовал дикие популяции дрозофил, проводя близкородственное скрещивание. При этом в каждом поколении происходило выщепление рецессивных гомозиготных особей (безглазых, с неразвитыми крыльями, пониженной жизнеспособностью), т. е. в популяции в гетерозиготном состоянии были скрыты летальные и полулетальные мутантные гены. Этот опыт наглядно показал генетическую гетерогенность популяции при наличии внешнего фенотипического единообразия.
Причины сохранения генетического разнообразия следующие. Каждый вид, каждая популяция на протяжении многих поколений непрерывно обогащаются мутантными генами, появляющимися в половых клетках отдельных особей. Приток нового генетического материала происходит также путем миграции особей из одной популяции в другую. Сохранение резерва изменчивости осуществляется путем перевода в гетерозиготное состояние; поскольку естественный отбор направлен на фенотипи-чески проявляющиеся признаки, рецессивные гены у гетерозитот оказываются «укрытыми» от действия естественного отбора. Мутации, имеющиеся в генофонде конкретной популяции в стабильных условиях ее существования, как правило, не являются полезными. Однако в изменившихся условиях сохранившаяся наследственная изменчивость может обеспечить выживание части особей.
Правило Харди-Вайнберга. 1908 – з-н Х-В: утвердил, что в идеал. Мендел. поп. число генов и генот. остаются неизмен. из поколения в поколение при отсут. эв. фак.
Эв. фак.: 1) действие мут. – генные, геномные, хромосомные. Они могут приводить к тяж. заболев. и состав. генетич. груз. Г.г. – мера приспособлен. поп.к усл. ок. ср., он оценив. по различию приспособлен. в реальн. поп. и воображ., т.е. max приспособ. поп. Различ. 2 вида: (Гг) 1) сегредационный – когда появлен. больных обус. сегред. или расщип. генов в соответ. с з-ном Мен. Он прояв. выщиплен.(выбраковки) < приспособ. особей при наличии поп. в пользу гетероз. (серповид.анемия, фенилкетонурия). 2) мутационный – появл. больных за счет доминант. мут., кот. возник. заново в каж. поп. и появл. сразу, освободиться не может.
2) волны жизни – измен. числен. особей в поп., возник. под влиян. ср. и ведущие к измен. интенсивности ЕО и генетич. струк. поп. Различ.: периодич. (сезонные ритмы), непер-кие (слож.фак.: пищ.рес., Р жищ.), резкая вспышка числен. при отсут. врагов (природ. катастрофы). Эв.роль В.ж.: 1) резко измен. С генотипов. 2) подстав. под дейст. ЕО (резкие мут.). 3) устран. обыч. варианты в поп.
3) изоляция – 2 формы: географ. (первич.), вторич. (репродуктив., биолог.) первичный механизм: презиготич. и постзиготич. (генетич.). Презиготич. – предотвращ. образ. зиготы. Причины: 1) эколог.изол. 2) сезон. (времен.) 3) поведенческая (этологическая) 4) мекан. (физиолог.) обуслов. различ. строен. ор. размнож. – физиолог. несовмест. Постзигонич. – зигота орраз., но они либо погибают, стерильны, ↓ жизнеспособ. Значение: закреп. и усилив. начал. стадии генотипич. дифференцировки.
ИНБРИДИНГ – увел. степени родства брачных партнеров. Формы: 1) инцестные браки (отец-дочь, брак-сестра) 2) кровнородствен. Изоляты 1500чел. Частоты=98% (браки м/д близкими родствен.); >1500-4000 – Дэмэ. 3) соц. фак. (религиозность). 4) ассортотивные («+») – браки, фенотипич. сход. людей. 5) ассортатив. («-») (рыжие не женятся на рыж.). Вывод: основ. эф. имбрид. явл. гомозигация генот. и ↓ ее адоптив. ценностей (приспособленность).
4) дрейф генов – проц. случ. ненаправ. измен. частот аллелий в поп. при не> ее численности. Значение: 1) уменьшен. доля НИ в поп. и ↑ ее генетич. однородности. 2) в поп. во преки ЕО может сохран. мутантный ген, сниж. жизнеспособность особей.
5) ЕО – проц. переживания особей, генотип кот. обеспеч. им на> преспособлен. к на> благоприят. ср. и остав. > кол-во потомков.
Адоптивная ценность генотипа (W) – способ. генот. к выжив. и воспроиз. потомков по срав. с др. генот. поп., она колеб. от 0-1.
Коэф.отбора (S) – х-ет интенсивность эллюминации (выбраковки) или ↓ мутантного ал. 1-0. W=1, S=0; W=0, S=1
Формы ЕО: 1) стабилизирующ. – отбир. фенот., кот. состав. > и сохран. из покол. в покол. 2) движущий, кот. дв-ся – сохран. new формы по срав. со стар. 3)дизруктивный – разрыв. поп. и сохран. формы разрыва.
2 ф-ии: 1) стабилиз.генофонда 2) поддерж. наслед. разнообраз. (полиморфизм), а ф-ию видообраз. он утратил.
(46) Люди как объект действия эволюционных факторов. Основная масса человечества состоит из крупных популяций, в которых по закону Харди—-Вайнберга, поддерживается равновесие генетического состава. Однако это равновесие постоянно нарушается мутационным процессом, миграциями, дрейфом генов и другими факторами.
Весь полиморфизм человечества — результат мутационных изменений. Мутационный процесс протекает и сейчас.
Считается, что у человека на один гаплоидный набор за поколение возникает от 1 до 10 новых мутаций, а на диплоидный набор их в два раза больше. Кроме того, человечество несет в себе генетический груз прежде возникших мутаций, среди которых немало рецессивных, летальных, полулетальных и ряда наследственных болезней, проявляющихся лишь в гомозиготном состоянии. Благодаря использованию математических приемов (по проявлению генетического груза в родственных семьях) показано, что в генотипе каждого человека имеется около четырех летальных генов, приводящих в гомозиготном состоянии к смерти.
Проблема генетического груза у человека имеет большое значение для медицины. Для медико-генетических консультаций важно иметь представление о насыщенности генами наследственных болезней населения на тех или иных территориях. Она важна и для решения вопроса о роли факторов окружающей среды в мутационном процессе и в охране ее от загрязнения.
В изменении генофонда человеческих популяций не последняя роль принадлежит миграциям. С ними связаны разрушения прежних границ браков, появление смешанных браков. Миграции ведут к изменению состава генов как в популяциях, из которых население эмигрировало, так и в тех, куда ими-грировало. Так, в результате массового переселения народов с Востока Азии в Европу в период между 500 и 1500 гг. изменилась частота генов определяющих групп крови по системе АВО. Вместе с проникновением восточных народов повышалась частота гена JB.
В небольших популяциях (демы, изоляты) существенное значение в изменении генофонда имеет дрейф генов, о чем сказано выше. Благодаря изоляции и дрейфу генов в них резко возрастает гомозиготность, отмечаются повышенная гибель плодов в антенатальный период, мертворождения, врожденные аномалии и наследственные болезни.
Причины изоляции в человеческих популяциях могут быть различны: географические (острова, горные селения), национальные, расовые, социальные барьеры. Обычно изоляты связаны с длительной оседлостью населения, в результате чего неизбежно повышается процент родственных браков. В этом случае возрастает вероятность заключения браков между людьми — носителями каких-либо рецессивных генов и, следовательно, вероятность вышепления рецессивных гомозигот. Так, в одной деревне в Швейцарии (в долине р. Рона) среди 2200 жителей насчитывается 50 глухонемых и 200 человек имеют генетически обусловленные дефекты слуха. В Южно-Африканской Республике (ЮАР) среди белого населения распространен ген наследственного заболевания порфирии. Предполагают, что этим заболеванием страдала какая-то семья переселенцев из Голландии, прибывших сюда в XVII в.
В целом в XX в. во всем мире происходит распад изолятов вследствие развития транспорта, социального прогресса и т. п. Однако еще сохраняются в ряде стран причины, обусловившие возникновение и сохранение изолятов.
Человечество характеризуется большим полиморфизмом по морфологическим и физиологическим признакам. Сохраняется этот полиморфизм в связи с нейтральностью этих признаков по отношению к жизнеспособности. Но полиморфизм в активности иммунной системы не остается нейтральным. По-видимому, и в настоящее время осуществляется определенный отбор, связанный с большей пораженностью и летальностью людей, имеющих фенотип, менее стойкий к тем или иным инфекционным и аллергическим заболеваниям.
Генетический груз. Процесс видообразования путем естественного отбора создает разнообразие живых форм, приспособленных к условиям обитания. Как удается совместить эти два результата? Среди разных генотипов, возникающих в каждом поколении благодаря резерву наследственной изменчивости и генетической комбинаторике, лишь ограниченное их число обусловливает максимальную приспособленность к конкретной среде. Можно предположить, что дифференциальное воспроизведение этих генотипов в конце концов приведет к тому, что генофонды популяций будут представлены лишь «удачными» аллелями и их комбинациями. В итоге произойдет затухание наследственной изменчивости и повышение степени гомозиготности генотипов. В природных популяциях, однако, наблюдается противоположное состояние — большинство организмов высоко гетерозиготно. Отдельные особи гетерозиготны по разным локусам, что повышает суммарную гетерозиготность популяции. Так, методом электрофореза на 126 особях рачка ЕпрЬаи$1а хирегЬа, представляющего главную пищу китов в антарктических водах, изучали 36 локусов, кодирующих первичную структуру ряда ферментов. По 15 локусам изменчивость отсутствовала, 21 локус имел по 3—4 аллельные формы. В целом в этой популяции рачков 58% локусов были гетерозиготными и имели по два и более аллелей. В среднем каждая особь имела 5,8% гетерозиготных локусов. Средняя степень гетерози-готности у растений составляет 17%, беспозвоночных— 13,4%, позвоночных — 6,6%. У человека этот показатель равен 6,7%. Столь высокую степень гетерозиготности нельзя объяснить только мутациями в силу их относительной редкости.
Наличие в пуляции нескольких генетических форм (генотипов) в соcтоянии длительного равновесия в концентраци, превышающих по наиболее редкой форме 1 %, называют, полиморфизмом. Наследственный полиморфизм создается мутациями и комбинативной изменчивостью. Он поддерживается естественным отбором и бывает адаптационным и гетердзиготным (балансированным). Адаптационный полиморфизм возникает, если в различных, но закономерно изменяющихся условиях жизни отбор благоприятствует разным генотипам. Так, в популяциях двухточечных божьих коровок (Adalia bipunctata) при уходе на зимовку преобладают черные жуки, а весной красные. Это происходит потому, что красные формы лучше переносят холод, а черные интенсивнее размножаются в летний период. Балансированный полиморфизм возникает. если отбор благоприят-ствует гетерозиготам в сравнении c рецессивным и доминантными гомозиготами. Так, в экспериментальной численно равновесной популяции мух (Drosophila melanogaster), содержащей сначала много мутантов с более темными телами (рецессивная мутация еbony), концентрация последних быстро падала, пока не стабилизировалась на уровне 10%. Анализ показал, что в созданных условиях гомозиготы по мутации еЬопу и гомозиготы по аллелю дикого дипа менее жизнеспособны, чем гетерозиготные мухи. Это и создает состояние устойчивого полиморфизма по соответствующему локусу.
Явление селективного преимущества гетерозигот называется сверхдоминантностью. Механизмы положительного отбора гетерозигот различны. Общим правилом является зависимость интенсивности отбора от частоты соответствующего фенотипа (генотипа). К примеру, рыбы, птицы, млекопитающие предпочитают обычные фенотипические формы добычи, «не замечая» редкие, а самцы относительно редких генотипов могут повышать конкурентоспособность за самок. Селективное преимущество гетерозигот обусловливается также явлением гетерозиса. Повышенная жизнеспособность межлинейных гибридов отражает, по-видимому, результат взаимодействия аллельных и не-аллельных генов в системе генотипа в условиях гетерозиготности по многим локусам. Гетерозис наблюдается в отсутствие фенотипического проявления рецессивных аллелей. Это сохраняет скрытыми от естественного отбора неблагоприятные и даже летальные рецессивные мутации.
В силу разнообразия факторов среды обитания естественный отбор действует одновременно по многим направлениям, а его конечный результат зависит от соотношения интенсивности разных векторов отбора. Так, высокая концентрация полулетального аллеля серповидной формы эритроцитов человека в определенных районах земного шара поддерживается благодаря наложению на отрицательный отбор по этому аллелю интенсивного положительного контротбора по суммарной приспособленности в условиях высокой заболеваемости тропической малярией. Конечный результат естественного отбора в популяции зависит от наложения многих векторов отборов и контротборов, благодаря чему достигается одновременно и стабилизация генофонда, и поддержание неследственного разнообразия.
Балансированный полиморфизм придает популяции ряд ценных свойств, что определяет его биологическое значение. Генетически разнородная популяция осваивает более широкий спектр условий жизни, использует среду обитания более эффективно. В ее генофонде накапливается больший объем резервной наследственной изменчивости. В результате она приобретает эволюционную гибкость и может, изменяясь в том или ином направлении, компенсировать колебания среды в ходе исторического развития.
В генетически полиморфной популяции из поколения в поколение рождаются организмы разных генотипов, приспособленность которых к условиям среды неодинакова. В каждый момент жизнеспособность такой популяции ниже уровня, который был бы достигнут при наличии в ней лишь наиболее «удачных» генотипов. Величина, на которую приспособленность реальной популяции отличается от приспособленности идеальной популяции из «лучших» генотипов, возможных при данном генофонде, называется генетичёским гузом. Он представляет оЗббй своеобразную плату за экологическую пластичность и эволюционные перспективы. Генетический груз служит неизбежным следствием генетического полиморфизма.
(47) Элементарные эволюционные факторы: Мутационный процесс. Изменения наследственного материала половых клеток в виде генных, хромосомных и геномных мутаций происходят постоянно. Особое место в этом процессе принадлежит генным мутациям, приводящим к возникновению серий аллелей и таким образом к разнообразию содержания биологической информации.
Влияние мутационного процесса на видообразование носит двоякий характер. Изменяя частоту одного аллеля по отношению к другому, он оказывает на генофонд популяции прямое действие. Еще большее значение имеет формирование за счет мутантных аллелей резерва наследственной изменчивости. Это создает условия для варьирования аллельного состава генотипов организмов в последовательных поколениях путем комбинативной изменчивости. Благодаря мутационному процессу поддерживается высокий уровень наследственного разнообразия природных популяций. Совокупность аллелей, возникающих в результате мутаций, составляет исходный элементарный эволюционный материал, который используется в процессе видообразования как основа действия других элементарных эволюционных факторов.
Хотя отдельная мутация — событие редкое, общее число мутаций значительно. Допустим, что некая мутация возникает с частотой 1 на 100 000 гамет, количество локусов в геноме составляет 10 000, численность особей вида в одном поколении равна 100 млн., а каждая особь производит 1000 гамет. При таких условиях по всем локусам за поколение в генофонде вида произойдет 1010 мутаций. За среднее время существования вида, равное нескольким десяткам тысяч поколений, количество мутаций составит 1014 . Большинство мутаций первоначально оказывает на фенотип особей неблагоприятное действие, однако, будучи рецессивными, мутантные аллели обычно присутствуют в генофондах популяций в гетерозиготных по соответствующему локусу генотипах. Благодаря этому достигается тройственный положительный результат: 1) исключается непосредственное отрицательное влияние мутантного аллеля на фенотипическое выражение признака, контролируемого данным геном; 2) путем сохранения аллелей, не имеющих приспособительной ценности в настоящих условиях существования, но могущих приобрести такую ценность в будущем или при освоении новых экологических ниш, создается резерв наследственной изменчивости; 3) благодаря явлению гетерозиса (гибридной мощности) многие мутации, неблагоприятные по их прямому фенотипическому выражению, в гетерозиготном состоянии нередко повышают относительную жизнеспособность организмов. Хотя доля полезных мутаций мала, их абсолютное количество в пересчете на поколение или период существования вида может быть большим. Допустим, что одна полезная мутация приходится на миллион вредных. Тогда в рассмотренном выше примере среди 1010 мутаций за одно поколение 104 будут полезными. За время существования вида его генофонд обогатится 107-8 полезными мутациями.
Мутационный процесс, выполняя роль элементарного эволюционного фактора, происходит постоянно на протяжении всего периода существования жизни, а отдельные мутации возникают многократно у разных организмов. Генофонды популяций испытывают непрерывное давление мутационного процесса. Это компенсирует высокую вероятность потери в ряду поколений единичной мутации.
Популяционные волны. Популяционными волнами или «волнами жизни» (С. С. Четвериков) называют периодические или апериодические колебания численности организмов в природных популяциях. Это явление распространяется на все виды животных и растений, а также на микроорганизмы. Причины колебаний часто имеют экологическую природу. Так, размеры популяций «жертвы» (зайца) растут при ослаблении действия на них популяций «хищника» (рыси, лисицы, волка). Отмечаемое в этом случае увеличение кормовых ресурсов способствует росту численности хищников, что в свою очередь интенсифицирует истребление жертвы (рис. 107). Отдельные «вспышки» численности организмов некоторых видов, наблюдавшиеся в ряде регионов мира, были обусловлены деятельностью человека. В XIX—XX веках это наблюдалось в популяциях кроликов в Австралии, домовых воробьев в Северной Америке, канадской элодеи в Евразии. В настоящее время существенно возросли размеры популяций домовой мухи, находящей прекрасную кормовую базу в виде разлагающихся пищевых отбросов вблизи поселений человека. Напротив, численность популяций домовых воробьев в городах падает вследствие прекращения широкого использования лошадей. Масштабы колебаний численности организмов разных видов варьируют. Так, для одной из зауральских популяций майских жуков отмечены изменения количества особей в 106 раз.
Изменение генофондов популяций происходит как на подъеме, так и на спаде популяционной волны. При росте численности организмов наблюдается слияние ранее разобщенных популяций и объединение их генофондов. Так как популяции по своему генетическому составу уникальны, в результате такого слияния возникают новые генофонды с измененными по сравнению с исходными частотами аллелей. В условиях возросшей численности интенсифицируются межпопуляционные миграции особей, что также способствует перераспределению аллелей.
Рост количества организмов сопровождается расширением занимаемой территории. На гребне популяционной волны некоторые группы особей выселяются за пределы ареала вида, оказываются в нетипичных условиях существования и испытывают действие новых факторов естественного отбора. Повышение концентрации особей в связи с ростом их численности усиливает внутривидовую борьбу за существование.
При спаде численности наблюдается распад крупных популяций. Возникающие малочисленные популяции характеризуются измененными генофондами. В условиях массовой гибели организмов редкие мутантные аллели могут быть генофондом вида потеряны. При сохранении редкого аллеля его концентрация в генофонде малочисленной популяции автоматически возрастает. На спаде «волны жизни» часть популяций, как правило, небольших по размерам, остается за пределами обычного ареала вида и, испытывая действие необычных условий жизни, вымирает. Иногда, благодаря благоприятному генетическому составу, такие популяции переживают период спада численности. Будучи изолированными от основной массы вида, существуя в необычной среде, они нередко служат родоначальниками новых видов.
Популяционные волны — это эффективный фактор преодоления генетической инертности природных популяций. Вместе с тем их действие на генофонды не является направленным, поэтому они, так же как и мутационный процесс, подготавливают эволюционный материл к действию других элементарных эволюционных факторов.
Изоляция. Только в результате прекращения панмиксии, т. е. благодаря изоляции, из одной исходной популяции или их групп могут сформироваться две или более генетически отличающиеся группы организмов, а в дальнейшем — новые подвиды и виды. Изоляция сама по себе не создает новых форм. Для их создания необходимы генетическая неоднородность и отбор, но изоляция способствует дивергенции.
Выше уже говорилось, что, как правило, между видами отсутствует гибридизация, а следовательно, не происходит обмена генами. В этом смысле каждый вид представляет собой генетически закрытую систему. Представители различных популяций и подвидов, входящих в состав вида, легко скрещиваются между собой, обмениваются генами и, следовательно, являются генетически открытыми системами. В потенции каждый подвид может дать начало новому виду, т. е. из генетически открытой системы перейти в генетически закрытую. В большинстве случаев, по-видимому, такому процессу способствует изоляция.
Различают следующие основные формы изоляции: географическую, экологическую и генетическую.
Географическая изоляция возникает в результате фрагментации ареала материнского вида. Она может быть следствием разграничения физическими барьерами (горными хребтами, водными пространствами и др.). Так возникли, например, эндемичные байкальские виды ресничных червей, ракообразных, рыб. Расширение ареала какого-либо вида с последующим вымиранием его популяции на промежуточных территориях также может быть причиной географической изоляции. Примером может служить появление европейского и дальневосточного видов ландыша.
Экологическая изоляция достигается тем, что две группы организмов, хотя и обитают в одной географической области, расселяются в различных экологических условиях или сроки размножения их не совпадают. Озерная и прудовая лягушки, нередко обитающие в одних водоемах, размножаются при различной температуре воды: первая приступает к икрометанию тогда, когда у второй оно закончено. Этим обеспечивается невозможность скрещивания между ними.
Генетическая изоляция нередко обусловлена особенностями числа и формы хромосом, в силу чего у гибридов не может осуществляться мейоз (например, у мулов). Причинами изолирующего механизма становятся поли-плодия и хромосомные перестройки. В результате физиологической несовместимости тканей матери и гибридного эмбриона могут возникнуть препятствия для гибридизации у млекопитающих. В ряде случаев близкие виды лишены возможности скрещиваться из-за различия в строении половых органов.
В зависимости от характера изоляции различают две основные формы видообразования : аллопатрическое и симпатрическое.
Аллопатрическое (гр. allo — разный и patris — родина) видообразование встречается в тех случаях, когда новый вид возникает из популяций, оказавшихся территориально разобщенными. Это может быть следствием появления географических преград либо в результате расселения популяций исходного вида от прежнего центра существования и преобразования в новых условиях.
Симпатрическое (гр. sym — вместе) видообразование — возникновение новых видов внутри прежнего ареала. Чаще всего эта форма видообразования связана с изменением в числе или структурах хромосом (т. е. генетической изоляцией), но может быть и в результате сезонной изоляции. Симпатрическое видообразование нередко приводит к формированию видов-двойников, морфологически почти неотличимых, но изолированных генетически. Так, на территории европейской части нашей страны обитает несколько видов-двонников ком-ара Аnopheles maculipennis морфологически не отличимых, но разнящихся некоторыми экологическими признаками и кариотипом.
Дрейф генов. Мутации и комбинативная изменчивость, периодические колебания численности организмов, изоляция изменяют генофонды популяций случайным образом. Их действие совместно с естественным отбором в процессе видообразования придает биологической изменчивости в целом приспособительный характер. Выполнению отбором упорядочивающей роли препятствуют изменения концентрации аллелей, зависящие от случайных причин, которые обусловливают преимущественное размножение генотипов вне связи с их адаптивной ценностью. Динамика концентрации аллелей в генофондах последовательных поколений носит статистический характер, поэтому размах случайных колебаний частот аллелей увеличивается по мере сокращения численности популяции.
Расчеты показывают, что при воспроизведении 5000 потомков родительской популяцией с частотой некоего аллеля р = 0,50 в 99,994% вариантов дочерних популяций колебания концентрации этого аллеля в силу случайных причин (в отсутствии отбора по этому аллелю) не выйдут за пределы 0,48—0,52. Есл.и же родительская популяция мала и воспроизводит 50 потомков, то диапазон случайных колебаний концентрации наблюдаемого аллеля в том же проценте вариантов дочерних популяций составит 0,30—0,70. Случайные, не обусловленные действием естественного отбора колебания_ настот аллелей называют генетико-автоматическими процессами или дрейфом генов.
При значительном размахе колебаний в последовательных поколениях создаются условия для потери популяцией некоторых аллелей и закрепления других. В результате происходит гомозиготиза-ция особей и затухание изменчивости. Предположим, что популяция состоит из четырех особей и имеет аллель с частотой р = 0,125. Это означает, что указанный аллель присутствует в генофонде в единственном экземпляре у одной из особей, гетерозиготной по соответствующему локусу.
Любое случайное стечение обстоятельств, исключающее такую особь из размножения, приведет к утрате аллеля и генофонд дочерней популяции будет его лишен. Вероятность утраты составит 1/2 в случае одного, 1/4 — двух, 1/8 — трех потомков у данной особи. В популяции из 4000 организмов при р = 0,125 минимум 500 особей имеют соответствующий аллель, причем в гомозиготном состоянии. Вероятность исключения всех этих особей из размножения в силу случайных обстоятельств ничтожно мала, что гарантирует переход аллеля в генофонд следующего поколения и его сохранение.
Дрейф генов обусловливает утрату (р = 0) или фиксацию (р = 1) аллелей в гомозиготном состоянии у всех членов популяции вне связи с их адаптивной ценностью. Он играет важную роль в формировании генофондов малочисленных групп организмов, изолированных от остальной части вида.
ЕО. В популяции организмов, размножающихся половым способом, существует большое разнообразие генотипов и, следовательно, фенотипов. Благодаря индивидуальной изменчивости в условиях конкретной среды обитания приспособленность разных генотипов (фенотипов) различна. В эволюционном контексте приспособленность определяют как произведение жизнеспособности в данной среде, обусловливающей большую или меньшую вероятность достижения репродуктивного возраста, на репродуктивную способность особи. Различия между организмами по приспособленности, оцениваемой по передаче аллелей следующему поколению, выявляются в природе с помощью естественного отбора. Главный результат отбора заключается не просто в выживании более жизнеспособных особей, а в относительном вкладе таких особей в генофонд дочерней популяции.
Необходимой предпосылкой отбора служит борьба за существование — конкуренция за пищу, жизненное пространство, партнера для спаривания. Естественный отбор происходит на всех стадиях онтогенеза организмов и обеспечивает в конечном итоге дифференциальное (избирательное) воспроизведение (размножение) генотипов. Благодаря естественному отбору аллели (признаки), повышающие выживаемость и репродуктивную способность, накапливаются в ряду поколений, изменяя генетический состав популяций в биологически целесообразном направлении. В природных условиях естественный отбор осуществляется исключительно по фенотипу. Отбор генотипов происходит вторично через отбор фенотипов, которые отражают генетическую конституцию организмов.
Как элементарный эволюционный фактор естественный отбор действует в популяциях. Популяция является полем действия, отдельные особи — объектами действия, а конкретные признаки — точками приложения отбора.
Эффективность отбора по качественному и количественному изменению генофонда популяции зависит от величины давления и направления его действия. Величина давления выражается коэффициентом отбора (S), который характеризует интенсивность элиминации из репродуктивного процесса или сохранения, соответственно, менее или более приспособленных форм по сравнению с формой, принятой за стандарт приспособленности.
Отбор особенно эффективен в отношении доминантных аллелей при условии их полного фенотипичного проявления. Он идет медленно в отношении рецессивных аллелей и при неполном доминировании. На эффективность отбора влияет исходная концентрация аллеля в генофонде.
В теории, упрощая ситуацию, допускают, что отбор действует на генотипы благодаря различиям в адаптивном значении отдельных аллелей. В реальности приспособительная ценность генотипов зависит от действия и взаимодействия всей совокупности генов. Оценка величины давления отбора по изменению концентрации конкретных аллелей технически часто невыполнима. Поэтому расчет проводят по изменению концентрации организмов определенного фенотипа.
В зависимости от результата различают стабилизирующую, движущую и дизруптивную формы естественного отбора (рис. ПО). Стабилизирующий отбор сохраняет в популяции средний вариант фенотипа или признака. Он устраняет из репродуктивного процесса фенотипы, уклоняющиеся от сложившейся адаптивной «нормы», приводит к преимущественному размножению типичных организмов. Так, сотрудник одного из университетов США подобрал после снегопада и сильного ветра 136 оглушенных воробьев (Рasser domesticus). 72 выживших воробья имели крылья средней длины, тогда как 64 погибших птицы были либо длиннокрылыми, либо короткокрылыми. Стабилизирующая форма соответствует консервативной роли естественного отбора. При относительном постоянстве условий среды благодаря этой форме сохраняются результаты предшествующих этапов эволюции.
Движущий отбор обусловливает прогрессивное изменение фенотипа в определенном направлении, что проявляется в сдвиге средних значений отбираемых признаков в сторону их усиления или ослабления. Примером такого отбора служит замещение в популяции крабов (Сarcinus maenas) животных с широким головогрудным щитком на животных с узким щитком в связи с увеличением количества ила (гавань Плимут, Англия). При смене условий обитания благодаря этой форме отбора в популяции закрепляется фенотип, более соответствующий среде.
Дизруптивный отбор сохраняет несколько разных фенотипов с равной приспособленностью. Он действует против особей со средним или промежуточным значением признаков. Так, в зависимости от преобладающего цвета почвы виноградные улитки (Сераеа петогаНх) имеют раковины коричневой, желтой, розовой окраски. Дизруптивная форма отбора «разрывает» популяцию по определенному признаку на несколько групп. Она поддерживает в популяции состояние генетического полиморфизма.
В зависимости от формы отбор сокращает масштабы изменчивости, создает новую или сохраняет прежнюю картину разнообразия. Как и другие элементарные эволюционные факторы естественный отбор вызывает изменения в соотношении аллелей в генофондах популяций. Особенность его действия состоит в том, что эти изменения направленны. Отбор приводит генофонды в соответствие с критерием приспособленности, осуществляет обратную связь между изменениями генофонда и условиями обитания, накладывает на эти изменения печать биологической целесообразности (полезности). Естественный отбор действует совместно с другими эволюционными факторами. Поддерживая генотипическое разнообразие особей в ряду поколений, мутационный процесс, популяционные волны, комбинативная изменчивость создают для него необходимый материал.
Естественный отбор нельзя рассматривать как «сито», сортирующее генотипы по приспособленности. В эволюции ему принадлежит творческая роль. Исключая из репродукции генотипы с малой приспособительной ценностью, сохраняя благоприятные генные комбинации разного достоинства, он преобразует картину генотипической изменчивости, складывающуюся первоначально под действием случайных факторов, в биологически целесообразном направлении. Результатом творческой роли отбора служит процесс органической эволюции, идущей в целом по линии прогрессивного усложнения морфофизиологической организации, а в отдельных ветвях — по пути специализации.
(48) ЕО. В популяции организмов, размножающихся половым способом, существует большое разнообразие генотипов и, следовательно, фенотипов. Благодаря индивидуальной изменчивости в условиях конкретной среды обитания приспособленность разных генотипов (фенотипов) различна. В эволюционном контексте приспособленность определяют как произведение жизнеспособности в данной среде, обусловливающей большую или меньшую вероятность достижения репродуктивного возраста, на репродуктивную способность особи. Различия между организмами по приспособленности, оцениваемой по передаче аллелей следующему поколению, выявляются в природе с помощью естественного отбора. Главный результат отбора заключается не просто в выживании более жизнеспособных особей, а в относительном вкладе таких особей в генофонд дочерней популяции.
Необходимой предпосылкой отбора служит борьба за существование — конкуренция за пищу, жизненное пространство, партнера для спаривания. Естественный отбор происходит на всех стадиях онтогенеза организмов и обеспечивает в конечном итоге дифференциальное (избирательное) воспроизведение (размножение) генотипов. Благодаря естественному отбору аллели (признаки), повышающие выживаемость и репродуктивную способность, накапливаются в ряду поколений, изменяя генетический состав популяций в биологически целесообразном направлении. В природных условиях естественный отбор осуществляется исключительно по фенотипу. Отбор генотипов происходит вторично через отбор фенотипов, которые отражают генетическую конституцию организмов.
Как элементарный эволюционный фактор естественный отбор действует в популяциях. Популяция является полем действия, отдельные особи — объектами действия, а конкретные признаки — точками приложения отбора.
Эффективность отбора по качественному и количественному изменению генофонда популяции зависит от величины давления и направления его действия. Величина давления выражается коэффициентом отбора (S), который характеризует интенсивность элиминации из репродуктивного процесса или сохранения, соответственно, менее или более приспособленных форм по сравнению с формой, принятой за стандарт приспособленности.
Отбор особенно эффективен в отношении доминантных аллелей при условии их полного фенотипичного проявления. Он идет медленно в отношении рецессивных аллелей и при неполном доминировании. На эффективность отбора влияет исходная концентрация аллеля в генофонде.
В теории, упрощая ситуацию, допускают, что отбор действует на генотипы благодаря различиям в адаптивном значении отдельных аллелей. В реальности приспособительная ценность генотипов зависит от действия и взаимодействия всей совокупности генов. Оценка величины давления отбора по изменению концентрации конкретных аллелей технически часто невыполнима. Поэтому расчет проводят по изменению концентрации организмов определенного фенотипа.
В зависимости от результата различают стабилизирующую, движущую и дизруптивную формы естественного отбора (рис. ПО). Стабилизирующий отбор сохраняет в популяции средний вариант фенотипа или признака. Он устраняет из репродуктивного процесса фенотипы, уклоняющиеся от сложившейся адаптивной «нормы», приводит к преимущественному размножению типичных организмов. Так, сотрудник одного из университетов США подобрал после снегопада и сильного ветра 136 оглушенных воробьев (Рasser domesticus). 72 выживших воробья имели крылья средней длины, тогда как 64 погибших птицы были либо длиннокрылыми, либо короткокрылыми. Стабилизирующая форма соответствует консервативной роли естественного отбора. При относительном постоянстве условий среды благодаря этой форме сохраняются результаты предшествующих этапов эволюции.
Движущий отбор обусловливает прогрессивное изменение фенотипа в определенном направлении, что проявляется в сдвиге средних значений отбираемых признаков в сторону их усиления или ослабления. Примером такого отбора служит замещение в популяции крабов (Сarcinus maenas) животных с широким головогрудным щитком на животных с узким щитком в связи с увеличением количества ила (гавань Плимут, Англия). При смене условий обитания благодаря этой форме отбора в популяции закрепляется фенотип, более соответствующий среде.
Дизруптивный отбор сохраняет несколько разных фенотипов с равной приспособленностью. Он действует против особей со средним или промежуточным значением признаков. Так, в зависимости от преобладающего цвета почвы виноградные улитки (Сераеа петогаНх) имеют раковины коричневой, желтой, розовой окраски. Дизруптивная форма отбора «разрывает» популяцию по определенному признаку на несколько групп. Она поддерживает в популяции состояние генетического полиморфизма.
В зависимости от формы отбор сокращает масштабы изменчивости, создает новую или сохраняет прежнюю картину разнообразия. Как и другие элементарные эволюционные факторы естественный отбор вызывает изменения в соотношении аллелей в генофондах популяций. Особенность его действия состоит в том, что эти изменения направленны. Отбор приводит генофонды в соответствие с критерием приспособленности, осуществляет обратную связь между изменениями генофонда и условиями обитания, накладывает на эти изменения печать биологической целесообразности (полезности). Естественный отбор действует совместно с другими эволюционными факторами. Поддерживая генотипическое разнообразие особей в ряду поколений, мутационный процесс, популяционные волны, комбинативная изменчивость создают для него необходимый материал.
Естественный отбор нельзя рассматривать как «сито», сортирующее генотипы по приспособленности. В эволюции ему принадлежит творческая роль. Исключая из репродукции генотипы с малой приспособительной ценностью, сохраняя благоприятные генные комбинации разного достоинства, он преобразует картину генотипической изменчивости, складывающуюся первоначально под действием случайных факторов, в биологически целесообразном направлении. Результатом творческой роли отбора служит процесс органической эволюции, идущей в целом по линии прогрессивного усложнения морфофизиологической организации, а в отдельных ветвях — по пути специализации.
(49) Микро- и макроэволюция. Дарвин связывал процесс видообразования с отдельными особями. Однако применение закономерностей наследственности к изучению этого процесса показало, что видообразование начинается не с отдельных особей, а только на уровне популяции. Процессы, протекающие внутри вида, в пределах обособленных популяций и завершающиеся видообразованием, получили название микроэволюции. В отличие от них процессы, приводящие к формированию надвидовых систематических категорий, названы макроэволюцией. Иногда под макроэволюцией понимают возникновение только родов, семейств, отрядов, а образование категорий еще более высокого ранга — классов и типов — выделяют под названием мега-эволюции.
По мнению большинства исследователей, между процессами, осуществляющими на микро- и макроэволюцион-ном уровне, нет принципиальных отличий; при них действуют одни и те же закономерности. Сами по себе новые семейства, отряды, классы и типы возникнуть не могут. Появление их — результат образования новых видов, что связано с преобразованием генофонда, дивергенцией внутри популяций, Макроэволюционные изменения— следствие процессов, происходивших на микроэволюционном уровне. Накапливаясь, эти изменения приводят к макроэволюционным явлениям. Однако высказывается мнение, что в основе макроэволюции лежат иные, еще мало изученные закономерности.
Начало синтезу генетики с эволюционным учением положили работы С. С. Четверикова (1926) и Р. А. Фишера (1930). Крупный вклад в изучение этих процессов внесли И. И. Шмаль-гаузен, Н. В. Тимофеев-Ресовский, Ф. Добржанский, С. Райт, Дж. Хаксли и др. Они установили, что элементарной эволюционной структурой являются популяции, элементарным эволюционным материалом — мутации, а элементарными эволюционными факторами — мутационный процесс, популяционные волны, изоляция, естественный отбор.
Популяция как элементарная эволюционная структура. В ареале любого вида особи распространены неравномерно. Участки густой концентрации особей перемежаются с пространствами, где их немного или же они отсутствуют. В результате возникают более или менее изолированные популяции, в которых систематически происходит случайное свободное скрещивание (панмиксия). Скрещивание (т.е. обмен генами) с представителями других популяций если и происходит, то значительно реже и нерегулярно. Благодаря панмиксии в каждой популяции создается характерный для нее генофонд, отличный от других популяций. Именно популяцию следует и признать элементарной единицей эволюционного процесса.
Внутри популяции совершаются процессы, приводящие к изменению генофонда. Они должны быть признаны элементарными эволюционными событиями. Такие события обусловлены, в первую очередь, появлением мутаций, частота которых находится в прямой зависимости от факторов внешней среды.
Мутация как элементарный эволюционный материал. Гены, будучи в общем константными, периодически изменяются путем мутаций. Каждый отдельный ген мутирует очень редко, но в генотипе любого организма большое число генов. Отсюда, понятно, что в каждом поколении мутирует значительное число генов. Так, у дрозофилы отмечается примерно одна мутация на 100 гамет.
Эволюция организмов связана с заменой одних генотипов другими. Этот процесс происходит в результате сопряженного действия мутирования и отбора. Мутации, изменяя гены, дают сырой материал для рекомбинаций и отбора.
Большинство мутаций вредно: они могут быть летальными и полулетальными, вызывающими бесплодие или снижающими жизненные функции. Иные из мутаций в тех условиях, в которых обитает данная популяция организмов, окажутся более или менее нейтральными. Наконец, небольшая часть мутаций в какой-то мере полезна для жизни организма, для существования вида.
Доминантные мутации начинают контролироваться отбооом уже в пепвом поколении. И здесь же отбором устраняются организмы — носители доминантных летальных генов и генов бесплодия. Доминантные гены, частично снижающие жизнедеятельность или плодовитость, некоторое время будут сохраняться в популяции, но постепенно и они подвергнутся полной элиминации. Если доминантные гены имеют приспособительное значение, то сразу подхватываются отбором и частота их в популяции быстро возрастает.
Рецессивные мутации могут находиться в популяции в скрытом, гетерозиготном состоянии. Они начинают контролироваться отбором лишь после того, как достигнут в популяции определенной концентрации и станут переходить в гомозиготное состояние. Понятно, что чем больше популяции, тем медленнее протекает этот процесс. Элиминация вредных рецессивных генов происходит значительно медленнее, чем доминантных, а полной элиминации путем отбора, возможно, и не достигается. Нередко гетерозиготы оказываются более жизнеспособными (сверхдоминирование), чем гомозиготы. В таких случаях отбором создается определенный уровень частоты особей каждого генотипа.
(50) Эволюция групп организмов. ФОРМЫ.
Выделяют несколько форм эволюции групп живых существ. Одной из них является филитическая эволюция, затрагивающая представителей одного таксона, который во времени изменяется в определенном направлении как единое целое. Примером может служить линия развития семейства лошадиных, в процессе которого наблюдается постепенная смена древесноядных форм травоядными и сокращение числа пальцев до одного. На микроэволюционном уровне этой форме макроэволюции соответствует филити-ческое видообразование. Еще одна форма эволюции представлена дивергентной эволюцией, которая заключается в образовании в процессе исторического развития нескольких новых групп от одной предковой. Она создает разнообразие таксонов низшего ранга в более крупных таксонах, например подклассов и отрядов в классе, семейств в отряде. На микроэволюционном уровне ей соответствует дивергентное видообразование. Рассмотренные формы эволюции отражают ход исторического развития отдельных групп организмов. Формами соотносительного развития нескольких таксонов являются параллелизм и конвергентная эволюция. В первом случае два таксона, дивергировавшие от общего предка и, следовательно, имеющие общую генетическую основу, в дальнейшем претерпевают филитическую эволюцию в сходном направлении. В оли-гоцене, например, саблезубость возникла у махайродонтов (Нор1орЬопе-и5) и лжесаблезубых настоящих кошек (Dinictus). Этап параллельного развития в эволюции групп может смениться этапом конвергенции, которая представляет собой филитическую эволюцию неродственных таксонов в сходном направлении. Конвергенция наблюдается, когда представители разных групп встречаются со сходными экологическими задачами. Так, конвергентное развитие формы тела происходило у первичноводных (акуловые) и вторичноводных (китообразные) животных. Генофонды конвергентно эволюционирующих неродственных групп различны, поэтому конвергентное сходство обычно распространяется лишь на некоторые признаки. Так, акуловые и китообразные, сходные по форме тела, имеют резкие различия в строении кровеносной системы, мускулатуры, покровов.
ТИПЫ. В зависимости от масштаба адаптации, на основе которых происходит очередной этап эволюции, выделяют два ее т и п а — алло-генез и арогенез.
Под аллогенезом понимают развитие с сохранением у всех представителей таксона высокого ранга главных черт структурно-физиологической организации. На этом фоне отдельные группы организмов внутри таксона развиваются путем приобретения сопоставимых по масштабу адаптации. В результате эволюция осуществляется в пределах одной адаптивной зоны — совокупности экологических ниш, различающихся в деталях, но сходных по степени давления среды на организмы определенного морфофизиологического типа. Примером аллогенеза служит разнообразие экологических форм в отряде насекомоядных млекопитающих животных. Если аллогенез происходит путем приобретения приспособлений к узколокальным условиям существования, то говорят о развитии по типу специализации. Примером крайних форм специализации служит удивительное соответствие строения цветка некоторых видов растений определенному виду опылителей.
Под арогенезом понимают развитие с появлением у представителей некоторых групп внутри крупного таксона таких черт строения или физиологии, которые делают возможным их выход в другую адаптивную зону. Так, своим возникновением и направлениями дальнейшего исторического развития класс птиц обязан появлению крыла, четырехкамерного сердца, совершенствованию отделов головного мозга, участвующих в координации двигательной активности, теплокровности. Арогёнезами более крупного масштаба являются возникновение эукариотического типа клеточной организации, мно-гоклеточности.
Выход группы живых существ в новую адаптивную зону в результате арогенеза сопровождается ее развитием по типу аллогенеза и специализации с освоением всех подходящих экологических ниш. Так, среди птиц выделяют лесных, водоплавающих, горных,
равнинных.
Тип эволюции, при котором переход в новую адаптивную зону сопровождается упрощением строения и физиологии организмов, называется морфофизиологическим регрессом. Последний свойствен многим паразитам, которые составляют, по-видимому, не менее 4—5% всех современных видов животных. Основные типы эволюции групп представлены на рис. 124.
Адаптации, составляющие основу разных типов эволюции групп, в равной мере заключаются в изменении структурных или функциональных параметров органов, систем органов, механизмов реагирования на действие факторов среды обитания. Приспособительные изменения органов и систем организма, обусловливающие развитие по типу аллогенеза, называют идиоадаптациями (алломорф о з а м и), по типу арогенеза — ароморфозами, по типу регресса —морфофизиологической дегенерацией. В процессе исторического развития крупного таксона набл сдается смена типов развития. Группа живых существ, вышедшая на данном этапе вследствие ароморфозов в новую адаптивную зону, на следующем этапе характеризуется обычно в целом развитием по типу аллогенеза, а в некоторых своих ветвях — по типу специализации или морфофизиологического регресса. К определенному моменту внутри такой группы может сложиться совокупность организмов, накапливающих новые ароморфозы, что создает предпосылки к смене типа эволюции на арогенез. Специализация и регресс соответствуют тупиковым ветвям эволюции, поэтому группы, развивающиеся таким образом, при смене условий обитания вымирают.
Сменой типов эволюции, различиями в стабильности адаптации и условий обитания объясняется значительная пестрота современного органического мира по уровням структурно-физиологической организации и разнообразию специализаций. Так, сосуществуют высшие и низшие позвоночные, например млекопитающие и амфибии. Вместе с представителями процветающей группы костистых рыб в фауне планеты сохраняется кистеперая рыба латимерия, отличающаяся строением, типичным для группы, вымершей почти целиком 200—300 млн. лет назад.
ПРАВИЛА. Эмпирическим путем установлен ряд правил эволюции групп. Правило необратимости эволюции [Л. Долло, 1893] утверждает, что в процессе исторического развития невозможен возврат какой-либо группы организмов в состояние, уже пройденное ею ранее.
Генетическую основу его составляет бесконечно малая статистическая вероятность возникновения двух идентичных генофондов или даже генотипов. Благодаря наличию обратных мутаций в филогенезе, однако, возможно повторное возникновение отдельных простых признаков.
Согласно правилу прогрессивной специализации [Ш. Депере, 1876] группа, начавшая эволюционировать по этому типу, в дальнейшем идет только по пути углубления специализации. Генетическую основу этого правила составляет ограниченность генофонда соответствующей группы организмов и его формирование в филогенезе под действием определенных факторов конкретной адаптивной зоны или экологической ниши. Большое значение имеют также экологические связи, которые накладывают свои ограничения. Так, в целом эволюция позвоночных животных шла по пути увеличения размеров тела. Однако освоение грызунами подземного образа жизни сопровождалось уменьшением размеров тела. Аналогичным образом изменялся указанный признак в ряду предков хищника ласки (Mustela nivalis), питающегося мышевидными грызунами.
Правило происхождения от неспециализированных предков [Э. Коп, 1904] утверждает, что новые группы организмов происходят от менее специализированных представителей предковой формы. Основой его служит большее разнообразие способов борьбы за существование в малоспециализированных группах. Отсутствие глубоких специализаций облегчает появление разнообразных адаптации, включая и принципиально новые.
(51) Филогенез покрова тела. Начиная с низших хордовых обнаруживается подразделение наружных покровов или кожи на поверхностный эпителиальный слой эктодермального происхождения (эпидермис) и подстилающий его соединительнотканный, развивающийся из мезодермы (кориум или собственно кожа).У ланцетника покровные ткани развиты слабо, эпителий однослойный, цилиндрический, содержит отдельные железистые клетки. Кориум представлен незначительным слоем студенистой соединительной ткани.
В подтипе Позвоночных продолжается дифференцировка кожи на отчетливо различимые эпидермис и кориум. Эпидермис становится многослойным, его нижний слой состоит из цилиндрических клеток, активно размножающихся и пополняющих поверхностные слои клеток. Кориум представлен основным веществом, волокнами и клетками. Кожа образует ряд придатков, главными из которых являются защитные образования и железы.
Рыбы. У хрящевых рыб эпидермис содержит большое количество одноклеточных слизистых желез. ('Кориум плотный, волокнистый. Все тело покрыто плакоидной чешуей, представляющей собой пластинки, несущие шип или зубец. Ее основание лежит в кориуме, а шип прободает эпидермис и выходит наружу. Чешуя состоит из дентина — соединения органического вещества с известью, более твердого, чем кость, и не содержащего клеток.
Закладка плакоидной чешуи образуется на границе эпидермиса и кориума. Нижний слой эпидермиса приобретает форму колпачка, в который внедряется в виде сосочка масса мезодермальных клеток. Клетки, образующие стенки колпачка, становятся цилиндрическими. Подлежащие клетки мезодермы (склеробласты) также располагаются упорядоченно, сплошным слоем. Клетки этого слоя образуют
дентиновую пластинку — основание чешуи, охватывающее мезо-дермальный сосочек. Беспорядочно расположенные в его середине клетки образуют пульпу. Дальнейшее утолщение дентина происходит за счет слоя склеробластов, на поверхности которых возникают все новые слои дентина, благодаря чему шип растет и проходит через эпидермис. Снаружи шип покрыт эмалью, еще более твердой, чем дентин.
У костных рыб тело также покрыто чешуей, но в отличие от хрящевых рыб — костной. Чешуя имеет вид округлых тонких пластинок, черепицеобразно налегающих друг на друга и снаружи покрытых тонким слоем эпидермиса. Развитие костной чешуи идет целиком за счет кориума, без участия эпидермиса. Филогенетически костная чешуя связана с более примитивной плакоидной чешуей.
Амфибии. Кожа земноводных голая, лишена чешуи. Ороговение верхнего слоя выражено слабо. Кориум представлен волокнами соединительной ткани, идущими строго параллельно, и клеточными элементами. В коже много слизистых желез. Кожные железы создают на поверхности жидкостную пленку, которая способствует газообмену (кожное дыхание) и защищает кожу от высыхания, так как слабое ороговение не предохраняет земноводных от потери воды. Кроме того, бактерицидные свойства секрета желез препятствуют проникновению микробов. Ядовитые железы защищают животное от врагов.
Рептилии. В связи с переходом к наземному образу жизни у рептилий увеличивается степень ороговения эпидермиса (защита от высыхания и от повреждений). Чешуя становится роговой. Эпидермис отчетливо подразделяется на два слоя: нижний (мальпигиев), клетки которого интенсивно размножаются, и верхний (роговой), содержащий клетки, постепенно отмирающие в результате особого рода перерождения. В клетках появляются капли кератогиалина — рогового вещества, количество которого постепенно увеличивается, ядро исчезает, клетка уплощается и превращается в твердую роговую чешуйку, которая затем слущивается. Благодаря размножению клеток альпигиевого слоя клетки рогового слоя постоянно восполняются. Развитие роговой чешуи поначалу идет также как и костной. Отличия развития наблюдаются на завершающей стадии и заключаются в преобразовании эпидермиса. У рептилий отсутствуют кожные железы.
Млекопитающие. Кожные покровы млекопитающих имеют особенно сложное строение. Оба слоя — эпидермис и кориум хорошо развиты. Эпидермис дает начало многим производным кожи -волосы, ногти, когти, копыта, рога, чешуя, различные железы. Собственно кожа приобретает значительную толщину и состоит преимущественно из волокнистой соединительной ткани. В нижней части кориума формируется слой подкожной жировой клетчатки.
Характерной особенностью млекопитающих является волосяной покров, основная функция которого — защита тела от потери тепла. Волосы представляют собой роговые придатки сложного строения. У взрослого человека волосяной покров имеется на всем теле, кроме ладоней и подошв, но сильно редуцированный.
В коже содержится большое количество многоклеточных желез -потовые, сальные и млечные. Потовые железы млекопитающих гомологичны кожным железам амфибий. Иногда потовые железы образуют местные скопления. Секрет потовых желез, как правило, имеет жидкую консистенцию и может быть слизистым или белковым по составу, или содержит жир. Потовые железы играют важную роль в процессах выделения и терморегуляции. Испарение пота связано с большой потерей тепла.
Сальные железы выделяют секрет, который смазывает волосы и поверхность кожи, защищая ее от воздействия среды. Появление сальных желез является отличительным признаком млекопитающих.
Млечные железы гомологичны потовым железам. Наиболее близкое сходство с потовыми железами имеют млечные железы клоачных млекопитающих (ехидна, утконос), у которых они расположены группой на так называемом железистом поле, которое находится в сумке для вынашивания яиц и детенышей. Секрет стекает на поверхность и слизывается детенышами. У сумчатых животных имеется сосок, где каждая железа открывается собственным отверстием. По краям развивающегося соска можно встретить все последовательные переходы между обычными потовыми и типичными млечными железами.
У живородящих по бокам брюха закладывается парная полоска утолщенного эпителия — млечная линия, а на ней млечные железы и соски.
Основное направление эволюции наружных покровов — дифференцировка слоев кожи и ее производных (железы, чешуя, перья, волосы), обеспечивающих защиту от разнообразных воздействий среды — высыхания, механических воздействий, потери тепла и перегревания.
Филогенез скелета. Среди беспозвоночных чаще встречается наружиый скелет в виде кутикулярных образований эктодермального эпителия. Наиболее развит подобный скелет у членистоногих. Он состоит из хитина, защищает тело от механических повреждений, высыхания и служит местом прикрепления мышц.
У низших хордовых (бесчерепных) появляется внутренний осевойскелетв виде хорды и плотных волокнистых тяжей, поддерживающих плавники и жаберные щели. Хорда представляет собой упругий тяж, состоящий из особых вакуолизированных клеток (производных энтодермы). Она тянется по спинной стороне от переднего конца тела до заднего. По поверхности хорду облегает эластичная оболочка. Опорная функция хорды обеспечивается упругостью оболочек и клеточных вакуолей, поддерживающих в клетках значительное внутреннее давление (тургор).
У высших хордовых (позвоночных) скелет высокой степени дифференцировки.
Осевой скелет. У низших позвоночных — круглоротых и низших рыб — хорда сохраняется в течение всей жизни. Но одновременно появляются верхние (у круглоротых) и нижние (у рыб) дуги позвонков в виде парных хрящей, расположенных метамерно над хордой и под хордой. Функционального значения дуги не имеют. У высших рыб, кроме дуг, развиваются тела позвонков — или за счет разрастания оснований дуг, образующих вокруг хорды кольцо хрящевой или костной ткани, или частично за счет дуг, а частично из скелетогенной ткани, окружающей хорду. После образования тела позвонка к нему прирастают дуги. Концы верхних дуг срастаются между сосбой, образуя канал спинного мозга и остистый отросток, нижние дуги дают боковые выросты (поперечные отростки). Таким образом, первоначально каждый позвонок складывается из нескольких элементов. У р ы б хорда сдавливается позвонками и приобретает вид четкообразного шнура. Позвоночник дифференцируется на туловищный и хвостовой отделы. Все позвонки туловищного отдела несут ребра. В хвостовом отделе ребра отсутствуют.
В позвоночнике амфибий дифференцируются два новых отдела — шейный и крестцовый, представленные каждый одним позвонком. Шейный отдел обеспечивает подвижность головы, необходимую в более сложных условиях наземной среды. Позвонок несет ребра. Крестцовый отдел возникает на границе хвостового и туловищного, дает опору тазовым костям и задним конечностям. Туловищный отдел представлен пятью позвонками, которые несут ребра незначительной длины. Они не доходят до грудины и кончаются свободно.
У рептилий число отделов позвоночника увеличивается; появляется новый отдел — поясничный. Количество позвонков в отделах увеличивается до 8—12. В шейном отделе происходят прогрессивные преобразования. Тело первого шейного позвонка не соединяется дугами, а срастается с телом второго шейного позвонка, образуя зубовидный отросток. Первый шейный позвонок приобретает форму кольца и может свободно вращаться на втором позвонке, что резко увеличивает подвижность головы. Ребра в шейном отделе редуцируются. В грудном отделе все позвонки несут хорошо развитые ребра. Большинство из них соединяется с грудиной, образуя грудную клетку. Появление грудной клетки обеспечивает более совершенный механизм дыхания. Для поясничного отдела характерны массивные поперечные отростки, образованные за счет прирастания рудиментарных ребер.
У млекопитающих во взрослом состоянии хорда сохраняется только в виде nucleus pulposus позвонков. Позвоночник состоит из пяти отделов — шейный, грудной, поясничный, крестцовый, хвостовой. Характерно постоянное число позвонков в шейном отделе, равное?. Ребра шейных позвонков полностью редуцированы. В грудном отделе количество позвонков колеблется от 9 до 14, чаще 12—13. Позвонки несут ребра, большинство их соединяется с грудиной. Поясничный отдел содержит от 2 до 9 позвонков, имеющих мощные поперечные отростки. Крестец образован сросшимися позвонками, в числе 10 и более. Количество позвонков в хвостовом отделе варьирует.
Скелет свободной конечности. Впервые конечности возникают у рыб в виде парных плавников — грудных и брюшных, которые в процессе эволюции преобразуются в пятипалые конечности — органы передвижения наземных животных.
У большинства рыб в скелете грудного плавника различают проксимальный отдел, состоящий из небольшого числа (1—3) сравнительно крупных хрящевых пластинок, и дистальный отдел, построенный из большого числа радиально расположенных тонких лучей. Каждый луч состоит их большого числа мелких элементов, расположенных по его оси. Все части скелета плавника неподвижно соединены между собой и образуют единую плоскость. С плечевым поясом плавник соединен неподвижно, поскольку в сочленении участвует несколько элементов проксимального отдела. У подавляющего большинства рыб плавники не могут служить опорой для тела, а используются как средство для изменения направления движения (повороты). Исключение составляют плавники ископаемых кистеперых рыб (Crossopterigia), широко распространенных в девонском периоде (примерно 300 млн. лет назад) и затем вымерших. Лишь одна из ветвей кистеперых сохранилась до наших дней в районе юго-восточного побережья Африки.
Первые амфибии (стегоцефалы) обладали конечностями пятипалого типа. Их скелет по плану строения и соотношению костей имел большое сходство с плавниками кистеперых (см. рис. 132, в). Так же как и у кистеперых рыб, проксимальный отдел представлен одним крупным элементом (плечо), за ним следует 2 костных элемента, составляющих предплечье, затем идет 3—4 ряда мелких костей, сохраняющих правильное радиальное расположение (запястье). После запястья следует пястье (5 костей) и, наконец, фаланги пальцев, также сохраняющие радиальный тип расположения костей. Такой план строения скелета единый для всех наземных позвоночных.
Наряду с упрощением строения и уменьшением числа элементов важным моментом в процессе преобразования плавников в конечности наземного типа явилась замена прочного соединения элементов скелета между собой подвижными сочленениями в виде суставов. В результате конечность из простого рычага превратилась в сложный рычаг, части которого подвижны относительно друг друга. Процесс упрощения скелета конечности кистеперых продолжался и позднее. Основные изменения затронули дистальный отдел. Так произошло дальнейшее уменьшение количества лучей. Предки наземных форм имели 7 пальцев, соединенных перепонкой. При выходе на сушу крайние пальцы редуцировались и превратились в рудименты. Сократилось также количество костных элементов в запястье. Амфибии имеют 3 ряда костей запястья — проксимальный, средний и дистальный. У высших позвоночных исчезает средний ряд, а количество костей в каждом ряду последовательно уменьшается, так же как и фаланг. Одновременно в процессе эволюции наземных форм происходит значительное удлинение костей проксимальных отделов - плеча, предплечья, а также дистального отдела (пальцы), в то время как кости среднего отдела укорачиваются.
Рука человека сохраняет план строения конечности предков - плечо, предплечье, запястье, пястье, фаланги пальцев. Вместе с тем она имеет отличия, связанные с ее новой функцией — превращением в орган труда. Особенности строения и исключительное многообразие конкретных функций руки человека возникли в процессе освоения трудовой деятельности. Рука, таким образом, как отмечал Ф. Энгельс, является не только органом, но также и продуктом труда.
Скелет головы (череп). Череп позвоночных состоит из 2 основных отделов — осевого и висцерального черепа. Осевой отдел (черепная коробка) представляет собой продолжение осевого скелета и служит для зашиты головного мозга и органов чувств. Висцеральный отдел (лицевой череп) образует опору для передней части пищеварительного тракта.
Оба отдела черепа развиваются независимо друг от друга и различными путями. Наиболее значительные преобразования в процессе эволюции происходят в висцеральном черепе, элементы которого преобразуются в челюстной аппарат, а у высших, кроме того, дают начало элементам органа слуха.
На ранних этапах развития висцеральный и осевой отделы черепа не связаны между собой, но позднее такая связь возникает.
Общие для всех зародышей закладки осевого и висцерального черепа в процессе постэмбрионального развития претерпевают изменения в соответствии с особенностями исторического развития каждого класса.
У низших рыб (хрящевых) осевой череп во взрослом состоянии более плотно охватывает мозг. Появляется затылочный отдел, слуховые капсулы включаются в боковые стенки, обонятельные хрящи присоединяются к передней части черепа. Висцеральный череп состоит из ряда хрящевых висцеральных дуг, охватывающих глотку наподобие обруча (см. рис. 135), из которых 1-я (челюстная) дуга состоит всего из двух крупных хрящей, вытянутых в передне-заднем направлении -верхнего (небноквадратного) и нижнего (меккелева). Верхние и нижние хрящи каждой стороны сращены между собой и выполняют функции челюстей (первичные челюсти). 2-я висцеральная дуга состоит из двух парных и одного непарного хряща, соединяющего снизу парные хрящи между собой. Верхний элемент пары, более крупный, — гиомандибу-лярный хрящ, нижний парный элемент — гиоид, непарный — копула. Верхний край гиомандибулярного хряща соединен с черепной коробкой, нижний с гиоидной, а передний — с лежащей впереди челюстной дугой. Таким образом, гиомандибулярный хрящ выполняет роль подвеска для челюстной дуги, она присоединяется к черепу с помощью подъязычной дуги. Такой тип соединения челюстей с черепом называется гиостилией (гиостильный череп) и свойствен низшим позвоночным, Остальные дуги (3—7) образуют опору для дыхательного аппарата.
У высших рыб (костные), наряду с первичным, хрящевым черепом, гомологичным осевому черепу низших рыб, появляется вторичный череп из накладных костей. Вторичный череп значительно шире первичного. Он покрывает первичный череп сверху (парные теменные, лобные, носовые кости), снизу (большая непарная кость — парасфеноид) и с боков (надвисочная, чешуйчатая кости). Основные изменения висцерального черепа касаются челюстной дуги. Верхняя челюсть вместо одного крупного небноквадратного хряща состоит из 5 элементов — небный хрящ, квадратная кость и 3 крыловидных кости. Впереди от первичной верхней челюсти образуются 2 крупные накладные кости — предчелюстная и челюстная, снабженные крупными зубами, которые становятся вторичными верхними челюстями. Дистальный конец первичной нижней челюсти также покрывает большая зубная кость, она выдается далеко вперед и образует вторичную нижнюю челюсть. Таким образом, функция челюстей у высших рыб переходит к вторичным челюстям, образованным накладными костями. Подъязычная дуга сохраняет прежнюю функцию подвеска челюстей к черепу. Следовательно, череп высших рыб также гиостильный.
У земноводных значительные изменения касаются в основном висцерального отдела, поскольку с переходом к наземному образу жизни происходит замена жаберного дыхания кожно-легочным. Первичный череп амфибий почти не подвергается окостенению и не отличается от первичного черепа рыб. Для вторичного черепа характерно выраженное сокращение числа костных элементов.
В отношении висцерального черепа одно из главных отличий заключается в новом способе соединения челюстной дуги с черепом. Амфибии в отличие от гиостильного черепа рыб имеют череп аутостильный, т. е. у них челюстная дуга соединена с черепом
непосредственно, без помощи подъязычной дуги, благодаря срастанию небного хряща челюстной дуги (первичная верхняя челюсть) на всем протяжении с осевым черепом. Нижнечелюстной отдел сочленяется с верхнечелюстным и, таким образом, тоже получает связь с черепом без помощи подъязычной дуги. Благодаря этому гиомандибулярный хрящ освобождается от функции подвеска челюстей.
У зародышей рептилий также закладываются четыре пары жаберных дуг и жаберные щели, из которых прорывается наружу только одна, а именно первая, расположенная между челюстной и подъязычной дугами, тогда как остальные быстро исчезают. Осевой череп в отличие от земноводных состоит только из костной ткани. Висцеральный череп рептилий, так же как и амфибий является аутостильным. Однако есть и некоторые отличия. Передний элемент первичной верхней челюсти — небный хрящ — редуцируется. Поэтому в причленении верхней челюсти к черепу участвует только задний отдел — квадратная кость. Соответственно площадь поверхности причленения уменьшается. С квадратной костью верхней челюсти соединяется нижняя челюсть и таким путем присоединяется к черепу. Единственная жаберная щель, прорывающаяся наружу в эмбриональном периоде, преобразуется в полость среднего уха, а гиомандибулярный хрящ — в слуховую косточку. Остальная часть висцерального скелета образует подъязычный аппарат, который состоит из тела подъязычной кости и трех пар отростков. Тело подъязычной кости образуется за счет срастания копул подъязычной дуги и всех жаберных дуг. Передние рожки этой кости соответствуют нижнему парному элементу подъязычной дуги — гиоиду, а задние — парным элементам двух первых жаберных дуг.
В осевом черепе млекопитающих происходит уменьшение числа костей за счет их слияния. Резко меняется конфигурация черепа, что связано с прогрессивным увеличением объема мозга. В частности, передняя стенка черепной коробки приближается к обонятельным капсулам, мозговая полость постепенно надвигается на носовую, а у форм с наиболее развитым мозгом (человек) оказывается расположенной над носовой полостью, в то время как у низших мозговая полость находится позади носовой. Главная особенность висцерального черепа млекопитающих заключается в появлении принципиально нового типа сочленения нижней челюсти с черепом, а именно нижняя челюсть присоединяется к черепу непосредственно, образуя подвижный сустав с чешуйчатой костью черепной коробки. В этом сочленении участвуют только дистальный отдел покровной зубной кости (вторичная нижняя челюсть). Ее задний конец у млекопитающих изогнут вверх и заканчивается сочленовным отростком. Благодаря образованию указанного сустава квадратная кость первичной верхней челюсти теряет функцию подвеска нижней челюсти и превращается в слуховую косточку, которая получила название наковальни (рис. 137). Первичная нижняя челюсть в процессе эмбрионального развития полностью выходит из состава нижней челюсти и также преобразуется в слуховую косточку, которая получила название молоточек. И, наконец, верхний отдел подъязычной дуги — гомолог гиомандибулярного хряща — преобразуется в третью слуховую косточку — стремечко. Таким образом, у млекопитающих вместо одной образуются три слуховые косточки, которые составляют функционально единую цепь.
Нижний отдел подъязычной дуги у млекопитающих преобразуется в передние рожки подъязычной кости. Первая жаберная дуга дает начало задним рожкам, а ее копула — телу подъязычной кости; 2-я и 3-я жаберные дуги образуют щитовидный хряш, впервые в процессе эволюции появляющийся у млекопитающихся, а 4-я и 5-я жаберные дуги дают материал для остальных гортанных хрящей, а также, возможно, для трахеальных.
Как видно из приведенного сравнительно-анатомического обзора, скелет человека полностью гомологичен скелету млекопитающих. У человека нет ни одной кости, которая отсутствовала бы у представителей класса (рис. 138). Вместе с тем в процессе антропогенеза в скелете человека появляется ряд особенностей. Большинство из них прямо или косвенно связано с прямохождением. Согласно Ф. Энгельсу, переход к прямохождению явился главным фактором, обусловившим перестройку человеческого тела.
Прямым следствием перехода человека к передвижению на двух ногах являются:
1) изменения стопы, которая потеряла хватательную функцию и превратилась в орган с чисто опорной функцией, что сопровождалось появлением продольного свода стопы (амортизирует сотрясение внутренних органов при ходьбе);
2) мощное развитие большого (I) пальца по сравнению с другими, поскольку он становится главной точкой опоры, и потеря им значительной подвижности и способности к противопоставлению;
3) S-образный изгиб позвоночника, смягчающий толчки внутренних органов при ходьбе;
4) наклон таза под углом 60° к горизонтали в связи с перемещением центра тяжести;
5) перемещение затылочного отверстия и изменение положения головы относительно позвоночника;
6) появление сосцевидного отростка височной кости — места прикрепления грудино-ключично-сосцевидной мышцы, удерживающей голову в вертикальном положении.
Косвенно с прямохождением связаны: специализация верхних конечностей как органа труда в связи с освобождением их от функции передвижения; особенности мозгового черепа; характерные пропорции тела — более короткие руки и более длинные ноги.
Независимо от изменений, связанных с прямохождением, шло формирование подбородочного выступа нижней челюсти, возникшего в связи с членораздельной речью.
Процесс приспособления человека к прямохождению еще не закончился, о чем свидетельствуют относительно частые случаи возникновения грыжи при поднятии больших тяжестей, выпадения матки.
(52) Филогенез НС. Нервная система беспозвоночных. Нервные клетки кишечнополостных соединены между собой в единую сеть («д и ф ф у з н а я» нервная система). В процессе последующей эволюции происходит концентрация нервных клеток и образование нервных центров, форма которых может быть разнообразной. У плоских червей, в связи с дифференцировкой переднего и заднего конца тела, происходит концентрация нервных клеток и образование нервного центра в виде головного ганглия или окологлоточного нервного кольца. От них отходят вдоль тела нервные стволы, состоящие из нервных волокон и клеток. У кольчатых червей нервная система состоит из парного головного ганглия и брюшной нервной цепочки, представленной двумя нервными стволами, идущими по брюшной стороне и образующими в каждом сегменте по нервному узлу. Каждая пара узлов соединена между собой поперечными связями (лестничный тип нервной системы). У многих аннелид продольные стволы брюшной нервной цепочки сближаются между собой, образуя непарную структуру. У членистоногих нервная система в принципе не отличается от таковой кольчатых червей. Характерно слияние узлов нервной цепочки между собой.
В переднем отделе слияние ганглиев приводит к значительному укрупнению и усложнению строения головного ганглия (головного мозга).
У хордовых возникает принципиально новый тип нервной системы в виде нервной трубки. У позвоночных ее передний конец прогрессивно развивается и превращается в головной мозг. щается в головной мозг.
Головной мозг позвоночных. Гомология нервной системы позвоночных нервной системы низших хордовых проявляется уже при закладке отделов головного мозга в эмбриональном периоде. У всех классов позвоночных закладка нервной системы последовательно проходит стадии нервной пластинки, желоба и нервной трубки с полостью невроцелем. Затем начинается период дифференцировки нервной трубки на головной и спинной мозг, когда прямая до сих пор трубка образует ряд вздутий, изгибов и дает утолщения стенки в определенных местах. Формирование головного мозга у всех позвоночных начинается с образования на переднем конце трубки трех вздутий, или мозговых пузырей. Первый из них носит название переднего (prosencephalon), второй — среднего (mesencephalon) и третий — заднего мозгового пузыря (rhombencephalon). После стадии трех мозговых пузырей следует стадия пяти мозговых пузырей. Они дают начало дефинитивным отделам мозга. Передний мозговой пузырь делится поперечной перетяжкой на два отдела. Первый их них (передний) образует передний отдел головного мозга (telencephalon), который у большинства позвоночных образует так называемые полушария большого мозга. Из задней части переднего мозгового пузыря развивается промежуточный мозг (diencephalon). Средний мозговой пузырь не делится и целиком преобразуется в средний мозг (mesencephalon). Задний мозговой пузырь также подразделяется на два отдела: в передней части он образует задний мозг, или мозжечок (metencephalon), а из заднего отдела формируется продолговатый мозг (medula oblongata), который без резкой границы переходит в спинной мозг.
Головной мозг рыб имеет примитивное строение, что выражается в незначительном объеме мозга и слабом развитии его переднего отдела.
Передний мозг по сравнению с другими отделами мал и не разделен на полушария. Желудочек мозга представляет собой одну общую полость. Крыша переднего мозга тонкая, у костистых рыб она не содержит нервной ткани и состоит только из эпителия. Основную массу переднего мозга составляет дно, где нервные клетки образуют два скопления, получивших название полосатых тел (corpora striata). От переднего мозга вперед отходят небольшие обонятельные доли. По существу передний мозг рыб связан только с органом обоняния и служит обонятельным центром.
За передним мозгом следует промежуточный, который прикрыт сверху передним и средним мозгом. От крыши промежуточного мозга отходит вырост — верхняя мозговая железа (эпифиз), от дна — воронка с прилежащим к ней гипофизом и зрительные нервы, образующие перекрест. Нижняя часть промежуточного мозга — гипоталамус — содержит нейросекреторные клетки и тесно связана с эндокринной системой.
Средний мозг представляет наиболее сильно развитый отдел мозга рыб. Он состоит из двух полушарий (зрительных долей), покрытых корой, и служит зрительным центром. Орган зрения у рыб играет ведущую роль при поисках пищи, поэтому величина среднего мозга достигает значительных размеров. Кроме того, средний мозг представляет собой ведущий интегрирующий отдел головного мозга,
Таким образом, у всех классов позвоночных головной мозг состоит из пяти основных отделов: переднего, промежуточного, среднего, заднего и продолговатого, расположенных в одной и той же последовательности, поскольку именно сюда поступает информация от всех органов чувств, осуществляется ее анализ и вырабатываются ответные реакции. По принятой классификации такой тип мозга, где ведущими являются задние отделы, носит название ихтиопсидного.
Мозжечок, который у всех позвоночных осуществляет координацию (согласование) движений, у рыб развит особенно хорошо, поскольку движения их отличаются большой сложностью. Продолговатый мозг содержит центры дыхания и кровообращения.
Прогрессивные изменения у амфибий выражаются в увеличении общего объема головного мозга и дальнейшем развитии его переднего отдела, что связано с адаптацией к условиям наземной среды.
Передний мозг амфибий по сравнению с рыбами значительно увеличивается. Одновременно происходит разделение его на два полушария, в связи с чем общая полость желудочка также подразделяется на два боковых желудочка. Крыша переднего мозга состоит из нервной ткани. Поверхностное положение занимают нервные волокна (белое вещество), в глубине, выстилая полость желудочка, лежит слой нервных клеток. В основании переднего мозга лежат полосатые тела. Как и у рыб, передний мозг амфибий выполняет функции обонятельного центра. Промежуточный мозг хорошо виден сверху, так как меньше прикрыт средним мозгом. Крыша его образует придаток — эпифиз, а дно — часть гипофиза. Средний мозг еще сохраняет крупные размеры, но несколько уменьшен в объеме по сравнению с тем же отделом рыб. Как и у рыб, средний мозг может быть признан ведущим интегрирующим отделом центральной нервной системы, сохраняя при этом значение зрительного центра. Таким образом, амфибии имеют ихти-опсидный тип мозга. Мозжечок развит слабо и имеет вид
небольшого поперечного валика у переднего края продолговатого мозга. Слабое развитие мозжечка соответствует простым движениям амфибий, не требующим сложной координации (лягушка передвигается путем однообразных движений — прыжков, большинство же амфибий ведет малоподвижный образ жизни).
Рептилии являются первыми истинно наземными позвоночными, поэтому условия их обитания по сравнению с водной средой характеризуются большим разнообразием и непостоянством действующих факторов. Резкие и быстрые колебания температуры, влажности, соотношения химических агентов, разнообразие звуковых и зрительных раздражителей вызывают у наземных форм прогрессивное развитие органов чувств и головного мозга.
Передний мозг становится наиболее крупным отделом по сравнению с остальными. Кпереди от него отходят хорошо развитые обонятельные доли. Увеличение переднего мозга происходит в основном за счет развития полосатых тел, т. е. дна. Крыша остается тонкой. На поверхности крыши впервые в процессе эволюции появляется кора, которая еще не покрывает всей поверхности полушарий, а образует только два островка — на медиальной и латеральной сторонах каждого полушария. Функциональное значение имеет только ее медиальный участок, представляющий собой высший обонятельный центр. В целом кора переднего мозга имеет примитивное строение и получила название древней, или archicortex. Полосатые тела переднего мозга сильно развиты и принимают на себя функцию интегрирующего центра нервной деятельности. Таким образом, передний мозг становится ведущим отделом центральной нервной системы. Подобный тип мозга получил название зауропсидного (стриарного).
Средний мозг теряет свое значение ведущего отдела, одновременно уменьшается его значение как зрительного центра, в связи с чем размеры его сокращаются. Мозжечок развит значительно лучше, чем у амфибий. Головной мозг млекопитающих, так же как и мозг птиц, отличается значительным, непропорциональным развитием Полушарий переднего мозга. Но увеличение размеров у млекопитающих происходит не за счет дна, как у птиц, а за счет крыши, которая достигает мощного развития. На всей поверхности крыши появляется кора, которая развивается за счет клеток латерального островка древней коры рептилий. Последний, разрастаясь по всей поверхности полушарий, оттесняет медиальный участок к перемычке между полушариями, где он сохраняется под названием гиппокампа и выполняет функцию высшего центра обоняния.
Возникшая кора, в отличие от древней коры рептилий, получила название новой коры, или neocortex. По строению новая кора представляет собой сложную структуру, состоящую из многих слоев нервных клеток различного типа. У низших млекопитающих поверхность коры гладкая, у высших она образует многочисленные извилины, резко увеличивающие ее поверхность. Количество нервных клеток в коре человека исчисляется в миллиардах. Вместе с развитием коры развивается сложная система волокон, соединяющих правое и левое полушария (комиссура), а также ассоциативные волокна между различными отделами мозга. Кора приобретает значение интегрирующего отдела головного мозга, в ней находятся высшие чувствительные (зрения, слуха, осязания) и двигательные центры, а также центры, связанные с высшей нервной (психической) деятельностью.
Тип мозга, где высшие центры нервной деятельности расположены в крыше переднего мозга, получил название маммального. Это наиболее прогрессивная ступень эволюции нервной системы.
Промежуточный мозг прикрыт сверху передним и имеет характерные для всех нижеперечисленных классов придатки в виде эпифиза и гипофиза. Средний мозг резко уменьшен в размерах. Его крыша, в отличие от предыдущих классов, кроме продольной борозды, имеет еще и поперечную, поэтому вместо двух полушарий (зрительные доли) образуется четыре бугра (четверохолмие). Передние бугры связаны со зрительными рецепторами, а задние — со слуховыми. Мозжечок прогрессивно развивается, что выражается в резком увеличении размеров органа и его сложной внешней и внутренней структуре.
В продолговатом мозгу по бокам обособляются пучки нервных волокон, идущих к мозжечку, а на нижней поверхности — продольные валики, получившие название пирамид.
У человека происходит дальнейшее развитие коры, что привело к появлению новой высшей формы нервной деятельности — абстрактному мышлению. Таким образом, материальный субстрат сложной психической деятельности возник в результате постепенных преобразований в процессе эволюции нервных структур, обладавших первоначально лишь простой формой раздражимости. В последнее время выявлена качественная особенность мозга млекопитающих и человека — функциональная асимметрия. Оказалось, что левое и правое полушария неравнозначны по своим функциям. Правое отвечает за образное мышление, левое — за абстрактное. В левом полушарии находятся центры письменной и устной речи.
Филогенез эндокринных желез. Щитовидная железа развивается за счет эпителия жаберного отдела глотки. У рыб закладка щитовидной железы имеет вид продольного желобка на брюшной стороне глотки — между первой и второй жаберными щелями. Желобок выстлан мерцательным эпителием и содержит железистые клетки. В последующем этот участок обособляется от глотки и превращается в замкнутый пузырек. Стенки его утолщаются и в них появляются отдельные фолликулы — структуры, характерные для щитовидной железы. Клетки стенок фолликулов выделяют секрет, накапливающийся в их полостях. У последующих классов меняется положение железы, появляются доли и перешеек.
Тимус у рыб развивается в виде множественных закладок — плотных эпителиальных выступов спинной части всех жаберных мешков. Выросты отшнуровываются и на каждой стороне соединяются Между собой, образуя полоску с узкой полостью внутри. От полости наружу растут многочисленные выпячивания, состоящие из лимфо-идной ткани, которая делится на дольки врастающей соединительной тканью. У амфибий и рептилий количество зачатков, из которых формируется тимус, значительно уменьшается, иногда развиваются только закладки второй и третьей пары жаберных мешков. У млекопитающих в образовании тимуса принимают участие выросты трех пар мешков (в основном второй пары). Эти выросты лежат на брюшной сто
роне впереди сердца непосредственно над грудиной.
Гипофиз, или дижний придаток мозга, образует с нейросекре-торной зоной промежуточного мозга — гипоталамусом — единую ги-поталамо-гипофизарную систему. Гипофиз состоит из трех долей: передней (аденогипофиз), средней (промежуточной) и задней (нейроги-пофиз). Он соединен с нижней поверхностью промежуточного мозга выростом дна этого отдела мозга, или воронкой. Доли гипофиза в процессе фило- и онтогенеза развиваются из разных источников. В процессе эволюции гипофиз впервые появляется у круглоротых, но имеет весьма примитивное строение и состоит только из передней доли. У рыб гипофиз закладывается как широкое мешковидное выпячивание крыши ротовой полости. По мере роста его дистальный конец оказывается под дном промежуточного мозга, образующего вырост — воронку. Последняя имеет широкую полость и плоское тонкое дно. Воронка выпячивает дно кармана так, что образуется двустенная структура.
У высших позвоночных и человека надпочечники представляют парный компактный орган, расположенный на верхних полюсах почек. Железа состоит из двух слоев — коркового (наружного) и мозгового (внутреннего). Слои возникают в процессе филогенеза из разных зачатков. Корковое вещество образуется за счет утолщения эпителия брюшины, расположенного на участке между корнем брыжейки и мочеполовым бугорком, мозговое — за счет обособления комплексов клеток от зачатков симпатических ганглиев.
У низших хордовых зачатки коркового и мозгового слоев появляются как ничем не связанные между собой, самостоятельные образования в виде так называемых межпочечных и надпочечных тел.
У рыб закладки мозгового вещества (надпочечные тела) образуют ряд парных зачатков, расположенных метамерно, т. е. вдоль спинной поверхности первичных почек, в тесной связи с их сосудами. Межпочечные тела (корковое вещество) развиваются также в виде метамерно расположенных утолщений эпителия брюшины поблизости от половых валиков по обе стороны корня брыжейки. Затем зачатки межпочечных тел каж.стороны сливаются о образ.тях, лежащий м/д почками.
(53) Филогенез кровеносной системы. Органы кровообращения беспозвоночных. У кишечнополостных (гидроидные), тело которых состоит всего из двух слоев, пищевые вещества, кислород и экскреты передаются путем диффузии от одного слоя к другому. У медуз в связи с мощным развитием мезоглеи функцию распределения, хотя и несовершенную, берут на себя каналы гастроваскулярной системы. У плоских червей паренхима, заполняющая промежуток между органами, не допускает перемещения веществ на большие расстояния. Это компенсируется появлением сильно разветвленной пищеварительной и выделительной систем. Однако такой механизм не может обеспечить единства внутренней среды организма. У круглых червей с появлением первичной полости тела функцию перемещения продуктов обмена по организму начинает выполнять полостная жидкость, которая, перемещаясь при движениях червя, омывает все части тела и становится посредником между ними. Однако правильной циркуляции и определенных путей передвижения продуктов обмена здесь еще нет.
Кровеносная система ланцетника замкнутая, построена по тому же принципу, что и система кольчатых червей (рис. 143, а, см. на цвет. вкл.). Она представлена брюшным и спинным сосудом, соединенным анастомозами в стенках кишки и тела, и одним кругом кровообращения. Роль сердца выполняет пульсирующий сосуд — брюшная аорта. По брюшной аорте венозная кровь от органов проходит в приносящие жаберные артерии (150 пар), где окисляется. По выносящим жаберным артериям окисленная кровь поступает в парные корни спинной аорты, которые на уровне заднего конца глотки сливаются в непарный сосуд — спинную аорту. Последняя идет вдоль тела к его заднему концу, образуя многочисленные артерии, направляющиеся к органам, где кровь, отдавая кислород, превращается в венозную. Венозная кровь от передней части тела поступает в парные передние кардинальные вены, а от задней части тела — в задние кардинальные. Передняя и задняя кардинальная вены каждой стороны на уровне заднего конца глотки соединяются в проток (кювьеров), впадающий в брюшную аорту. От внутренних органов, в основном от кишечника, венозная кровь поступает в подкишечную вену, которая входит в печень под названием воротной вены печени и там разветвляется на густую сеть капилляров, образуя воротную систему печени. Затем капилляры собираются вновь в венозный сосуд — печеночную вену, по которой кровь поступает в брюшную аорту. Воротная система печени имеет важное значение для организма. Кровь, поступающая из кишечника, содержит наряду с питательными веществами токсические продукты распада, которые нейтрализуются клетками печени, т. е. печень выполняет роль барьера и препятствует интоксикации организма.
Кровеносная система позвоночных. Имеется большое сходство в строении кровеносной системы позвоночных и низших хордовых (рис. 143, б—е, см. на цвет. вкл.). Вместе с тем в пределах этой группы животных можно проследить ряд прогрессивных изменений.
Такие изменения в кровеносной системе рыб направлены на обеспечение более интенсивного метаболизма в связи с активным образом жизни. Появляется сердце, обеспечивающее большую скорость передвижения крови по сосудам. Сердце состоит из двух камер — предсердия и желудочка. От желудочка у низших рыб начинается мускулистая трубка — артериальный конус, стенки которого содержат
поперечнополосатую мускулатуру и способны к пульсации. Внутри конуса находится ряд клапанов. Конус переходит в брюшную аорту. У высших рыб артериальный конус рудиментарен. Брюшная аорта в начальном отделе образует эластичное вздутие — луковицу аорты.
В сердце рыбы содержится только венозная кровь. Она поступает от органов по венам в предсердие, оттуда в желудочек и затем идет по брюшной аорте в жаберные артерии, распадающиеся на капилляры, где кровь окисляется.
У земноводных в процессе приспособления к наземным условиям существования исчезает жаберное дыхание и появляется второй (легочный) круг кровообращения. Одновременно в строении сердца и сосудов появляются изменения, направленные на разделение артериальной и венозной крови.
Сердце амфибий трехкамерное, состоит из двух предсердий и желудочка. Оба предсердия открываются в желудочек общим отверстием. Левое предсердие содержит артериальную кровь, поступающую из легких, правое — венозную, поступающую от органов большого круга кровообращения. Изливающаяся из предсердий в желудочек артериальная и венозная кровь не успевают смешиваться полностью, поэтому желудочек содержит 3 вида крови: слева — артериальную, в середине — смешанную, справа — венозную. Из желудочка выходит только один сосуд — артериальный конус, от которого отходят 3 пары сосудов: кожно-легочные артерии (ближние к сердцу), дуги аорты и сонные артерии. Каждая пара сосудов выносит из сердца определенный вид крови: кожно-легочные — венозную, дуги аорты — смешанную, сонные — артериальную. Механизм распределения крови по сосудам следующий: артериальный конус отходит от правой стороны желудочка, поэтому при сокращении последнего в него сначала поступает венозная кровь, которая направляется в ближайшую пару сосудов — кожно-легочные. Затем выходит порция смешанной крови. В это время спиральный клапан, находящийся в артериальном конусе, закрывает отверстия легочных сосудов и смешанная кровь идет в дуги аорты. Последней из желудочка выходит порция артериальной крови, которая не может пройти в легочные артерии (спиральный клапан) и дуги аорты (самая крупная по объему порция смешанной крови создает большое давление в сосудах) и направляется в сонные артерии. Дуги аорты огибают сердце: одна — слева, другая — справа, затем соединяются за сердцем в непарный сосуд — спинную аорту, несущую смешанную кровь. Она идет по спинной стороне тела, отдавая артерии к внутренним органам, затем делится на 2 подвздошные артерии, идущие к задним конечностям.
Основные венозные стволы у амфибий также меняются по сравнению с рыбами — вместо кардинальных вен появляются полые вены. Венозная кровь от задней половины тела собирается в две парные подвздошные вены, которые соединяются в непарную заднюю полую вену, впадающую в правое предсердие. Кровь от кишечника по воротной вене идет в печень, образует там воротную систему печени и выходит по печеночной вене в заднюю полую вену. Венозная кровь от передней части тела выносится по двум передним полым венам, в которые впадает артериальная кровь из кожных вен. Передние полые вены впадают в правое предсердие.
У рептилий происходит дальнейшее, более полное, разделение артериальной и венозной крови. Изменения касаются как строения сердца, так и дифференцировки сосудов. Сердце рептилий трехка-мерное, имеет два предсердия и желудочек, но отличается от сердца амфибий. Предсердия обособлены полностью, каждое открывается в желудочек собственным отверстием. В желудочке появляется неполная перегородка (выпячивание дна), разделяющая его на левую и правую половины. Поэтому у рептилий над перегородкой образуется небольшая порция смешанной крови. В момент сокращение желудочка перегородка полностью разделяет желудочек на две половины — правую и левую. У некоторых рептилий, например у крокодилов, перегородка полная. Артериальный ствол подразделен на три сосуда, каждый из которых отходит от желудочка самостоятельно. Из левой половины желудочка отходит правая дуга аорты, несущая артериальную кровь. Этот сосуд огибает сердце с правой стороны и поэтому получил название правой дуги аорты. От него отходят сосуды к голове и передним конечностям. Из середины желудочка, над перегородкой, берет начало левая дуга аорты, огибающая сердце слева и несущая смешанную кровь. Из правой половины желудочка выходит легочная артерия, несущая венозную кровь. Правая и левая дуги аорты соединяются позади сердца и образуют спинную аорту. Кровь в спинной аорте рептилий смешанная, но отличается более высоким содержанием кислорода по сравнению с амфибиями, так как одна дуга несет смешанную кровь, а другая — артериальную.
Развития сердца. Развитие сердца. В процессе развития сердца человека можно проследить повторение ряда этапов филогенетических преобразований. У низших позвоночных закладка сердца происходит непосредственно под глоткой. Листки брюшной брыжейки на этом участке расходятся и между ними и кишкой (энтодермой) появляется скопление мезо-дермальных клеток. Сначала они образуют пластинку, затем — трубчатую структуру, стенки которой состоят из одного слоя клеток. Это будущий эндокард. Стенки целома, прилежащие к трубке, утолщаются за счет превращения мезенхимных элементов в мышечные и дают начало миокарду. Часть стенки целомической полости обособляется и образует околосердечную сумку, а ее стенки преобразуются в перикард.
У высших позвоночных и человека сердце развивается из парных закладок, первоначально далеко отстоящих друг от друга. Сначала обособляются правая и левая перикардиальные полости, в каждой из них образуется эндокардиальная трубка. Энтодерма в это время незамкнута, она распластана на поверхности желтка. По мере того как энтодерма смыкается, обе закладки сердца сближаются, перемещаясь под кишку, и сходятся, образуя единую трубку, расположенную посередине. Продолжение трубки вперед и назад дает начало крупным сосудам. Сначала сердце позвоночных имеет вид прямой трубки. На переднем и заднем концах трубка фиксирована связанными с ней сосудами, а ее средняя часть свободно лежит в перикардиальной полости. Затем трубка начинает быстро расти, причем различные ее участки растут с неодинаковой быстротой. В результате образуются изгибы и сердце принимает 5-образную форму. После этого задняя часть трубки смещается на спинную сторону и вперед, образуя предсердие. Стенки этой части трубки остаются тонкими. Передняя
часть не подвергается смещению, стенки ее утолщаются и она дает начало желудочку. К предсердию примыкает тонкостенный венозный синус. У хрящевых рыб передняя часть желудочка преобразуется в мускульную трубу — артериальный конус. У костных рыб он рудиментарен. Внутри конуса закладываются многочисленные клапаны, играющие важную роль в процессе кровообращения.
Наиболее часто встречающиеся аномалии развития сердца у человека: дефекты межпредсердной и межжелудочковой перегородок, транспозиция сосудов.
Дефекты межпредсердной перегородки чаще встречаются в области овального отверстия или внизу, где не произошло ее срастания с атриовентрикулярным кольцом. Дефекты межжелудочковой перегородки чаще отмечаются в области срастания ее трех зачатков — перепончатой части. Обычно они сочетаются с нарушением процесса разделения артериального ствола, хотя могут возникать и изолированно.
Транспозиция сосудов заключается в неправильном отхождении аорты (от правого желудочка) и легочного ствола (от левого желудочка). Причиной транспозиции служит неправильное формирование артериального конуса и дефекты перегородки, разделяющей артериальный ствол и участвующей в образовании межжелудочковой перегородки. Если складка артериального ствола разделяет его неравномерно, образуется сужение аортального или легочного сосуда. Иногда ствол остается неразделенным.
Из сосудистых нарушений наибольшее значение имеют отклонения в развитии аорты и крупных сосудов, являющихся производными жаберных дуг. В процессе эмбрионального развития у человека в норме только некоторые фрагменты жаберных дуг и корней аорты идут на образование магистральных сосудов и их ветвей, а остальные части подвергаются редукции. Однако в ряде случаев редукции соответствующих участков не происходит, и тогда формируется та или иная аномалия развития. С другой стороны, возможно исчезновение обычно сохраняющихся отделов, что также будет служить причиной врожденного дефекта.
Если у эмбрионов человека не происходит редукции правой артерии четвертой жаберной дуги и корня аорты справа, то вместо одной (левой) дуги аорты развиваются две дуги аорты. Одна из них, выходя из сердца, охватывает пищевод и трахею справа, а другая — слева, после чего они соединяются в непарную спинную аорту. В результате трахея и пищевод оказываются в кольце (отсюда этот порок развития получил название «аортальное кольцо»), которое с возрастом постепенно сжимается. Это приводит к нарушению глотания и требует хирургического вмешательства.
(54) Филогенез мочеполовой системы. Органы выделения беспозвоночных. У кишечнополостных, тело которых состоит всего из 2 слоев, продукты диссимиляции удаляются во внешнюю среду диффузно.
У плоских червей появляется выделительная система в виде протонефридиев. У круглых червей наряду с измененными протонефридиями существуют гигантские кожные клетки.
Кольчатые черви имеют сегментарную выделительную систему в виде метанефридиев. В каждом сегменте расположена пара метанефри-диев. Каждый состоит из воронки, открывающейся в целом и отходящего от нее выделительного канальца и выделительной поры.
Органы выделения членистоногих представлены видоизмененными метанефридиями, особыми (мальпигиевыми) сосудами и жировым телом.
Органы выделения позвоночных. Органом выделения позвоночных служат почки. По своему внешнему виду почки (парный компактный орган) отличаются от нефридиев беспозвоночных и низших хордовых, но по строению во многом сходны с ними. Основной структурной единицей почек, так же как и нефридиев, является воронка, открывающаяся в полость тела, с отходящим от нее выделительным канальцем. Все выделительные канальцы впадают в один общий выводной проток — мочеточник, в то время как каждый каналец нефридия имеет самостоятельное отверстие. Первоначально воронки с канальцами закладываются метамерно, однако позднее в филогенезе метамерность утрачивается.
Предпочка или головная почка (ргоперЬгох) имеет наиболее примитивное строение. Она закладывается у всех позвоночных на ранних стадиях эмбрионального развития в головном конце тела и состоит всего из 6—12 нефронов, представляющих собой структурно-функциональные единицы органа выделения. Нефрон предпочки начинается воронкой (нефростом) с ресничками, открывающейся в целом, а короткий и прямой выделительный каналец, отходящий от воронки, открывается в общий для них всех мочеточник, который растет вдоль позвоночника и открывается в кпоаку. Рядом с воронкой, за брюшиной, развивается несколько сосудистых клубочков. Продукты диссимиляции из клубочков поступают в целомическую жидкость, а затем, смешиваясь с ней, попадают в нефростомы, канальцы и мочеточник. Несовершенство предпочки заключается в отсутствии прямой связи между кровеносной и выделительной системами. Продукты распада постоянно присутствуют в целомической жидкости.
У современных позвоночных предпочка существует только в эмбриональном периоде. Во взрослом состоянии пронефрос функционирует лишь у некоторых круглоротых. У эмбриона человека канальцы пронефроса функционального значения не имеют.
Первичная, или туловищная, почка (mesonephros) — второй этап эволюции выделительной системы позвоночных. Она закладывается в туловищных сегментах тела. Строение нефрона усложняется — на спинной стенке выделительного канальца появляется слепой вырост в виде двустенной чаши (капсулы почечного клубочка).
В эту капсулу врастает сосудистый клубочек, образуя вместе с капсулой почечное тельце. Благодаря этому возникает прямая связь между кровеносной и выделительной системами. Теперь продукты диссимиляции из крови сразу поступают в почки, не попадая в целвм. Удаление продуктов распада из организма происходит более полно и быстро. Воронки первичной почки утрачивают свое значение, и в течение жизни в некоторых нефронах происходит их редукция, связь с целомом частично утрачивается Количество нефронов в первичной почке по сравнению с предпочкой увеличивается, так как на каждом первичном канальце позднее возникает один или несколько добавочных нефронов путем своеобразного почкования.
Вторичная, или тазовая, почка (metanephros) закладывается у высших позвоночных в сегментах тела, лежащих кзади от туловищной почки.
Отличительный признак нефронов — отсутствие воронки, благодаря чему связь с целомом полностью утрачивается. Нефрон начинается прямо с почечного тельца. Выделительный каналец дифференцируется на ряд отделов — проксимальный извитой каналец, дистальный извитой каналец, петля нефрона и т. д. Клубочковый аппарат упрощается, в частности количество капиллярных петель в клубочке уменьшается, фильтрационная способность отдельного клубочка снижается, зато усложняется строение канальцев, увеличивается их длина. Усиливается секреция клеток стенок канальцев, выделяющих продукты распада в просвет канальцев. Таким образом, в тазовой почке продукты диссимиляции поступают в нефрон двумя путями: путем фильтрации плазмы в полость капсулы клубочка и за счет выделения веществ в просвет канальцев. Одновременно в канальцах интенсивно происходят процессы обратного всасывания. Моча в полости капсулы клубочка содержит некоторое количество полезных для организма низкомолекулярных соединений: сахара, витамины, аминокислоты, хлориды и т. д. При прохождении мочи по отделам канальцев происходит реабсорбция этих веществ и большей части воды обратно в кровь.
Связь выделительной и половой систем. Выделительная система позвоночных связана с органами половой системы. У некоторых позвоночных, например осетровых рыб, закладка половых желез происходит непосредственно за счет эпителия нефростомов первичной почки. У большинства позвоночных эта связь выражается в том, что некоторые части предпочки и первичной почки принимают на себя функцию выведения половых продуктов.
Половые железы позвоночных, как правило, закладываются в виде парных складок на вентральных краях мезонефросов. Зачаток гонад состоит из утолщенного эпителия с большим количеством соединительной ткани. Сначала мужские и женские половые железы имеют одинаковое строение, позднее происходит специализация их и возникает связь с различными для каждого пола частями выделительной системы, которые становятся половыми протоками.
У самок анамнйй после появления первичной почки предпочка освобождается от функции выведения мочи и редуцируется. Обычно остается лишь одна воронка, которая сильно увеличивается в размерах (иногда она образуется за счет соединения нескольких воронок) и вместе с мочеточником предпочки (парамезонефральный канал) преобразуется в яйцевод. Подобная смена функций объясняет отсутствие непосредственной связи между яичником и яйцеводом у позвоночных. При созревании яйцеклеток в яичнике происходит разрыв его стенок. Яйцеклетки выходят в полость тела, попадают в воронку, а затем в яйцевод.
Продукты диссимиляции у самок анамнйй выводятся через первичную почку и ее мочеточник, или мезонефральный (вольфов) проток.
У самцов анамнйй в эмбриональном периоде происходит полная редукция предпочки — исчезают не только выделительные канальцы, но и мочеточник.
Одновременно возникает связь между семенником и первичной почкой. Из эпителия, выстилающего стенку полости тела, образуются тяжи, соединяющие выделительные канальцы первичной почки и семенные канальцы. Затем в этих тяжах образуется просвет, и они превращаются в семявыносящие канальцы. Созревшие сперматозоиды по семявыносящим канальцам попадают в почку и по мочеточнику выделяются наружу. Поскольку первичная почка функционирует как орган выделения, в мочеточник одновременно поступает моча и он служит как для выведения мочи, так и половых клеток (мочеполовой проток).
У высших позвоночных (амниот) с появлением вторичной почки не только предпочка, но и первичная почка освобождается от функции выведения мочи.
У самок амниот, так же как и у анамний, из остатков предпочки и ее мочеточника развивается яйцевод. Первичная почка и ее мочеточник у взрослых самок редуцируются, лишь часть канальцев первичной почки сохраняется в виде незначительных рудиментов ероорЬогоп и рагаорЬогоп. Существует представление, что эти рудименты склонны к злокачественному перерождению.
Яйцеводы у амниот дифференцируются на отделы. У млекопитающих в связи с появлением функции живорождения дифференцировка яйцеводов становится наиболее сложной. Яйцеводы подразделяются на 3 отдела — маточные трубы, матку и влагалище. У высших млекопитающих — плацентарных — происходит срастание дистальных отделов яйцеводов на разных уровнях. У некоторых видов срастается только влагалищная часть, а матки остаются парными — двойная матка (грызуны); у некоторых матки слиты в дисталь-ном отделе, образуя общую полость, в то время как их проксимальные отделы сохраняют самостоятельность — двурогая матка (хищники, парнокопытные).
Наконец, матки могут быть полностью слиты в одну. На всем протяжении — простая матка (полуобезьяны, обезьяны, человек и некоторые летучие мыши).У человека встречаются различные аномалии матки и влагалища, соответствующие филогенетическим этапам изменения этого органа в процессе эволюции. Как правило, аномалии связаны с ненормальным срастанием парамезонефральных протоков. Наиболее часто встречается двурогая матка, иногда двойная.
У самцов амниот пронефрос и ее мочеточник полностью редуцируются. У млекопитающих и человека за счет остатков дистального отрезка парамезонефрального канала формируется слепое выпячивание, являющееся гомологом матки и влагалища.
Канальцы передней части первичной почки у самцов сохраняются и преобразуются в придаток семенника — эпидидимис, а мочеточник первичной почки (мезонефральный канал) превращается в семяпровод.
(55) Филогенез пищеварительной системы. Органы пищеварения беспозвоночных. Впервые пищеварительная система начинает формироваться у кишечнополостных. В процессе гаструляции за счет впячивания энтодермы образуется первичная кишка (гастральная полость). Она сообщается с внешней средой только одним отверстием — ротовым, которое одновременно служит для выбрасывания непереваренных остатков пищи. Заднепроходного отверстия нет. Большинство типов животного мира, как и кишечнополостные, относятся к первичноротым, так как рот, образовавшийся в эмбриогенезе, функционирует всю жизнь. Иглокожие, погонофоры и хордовые составляют группу вторичноротых (см. рис. 127). У них ротовое отверстие сначала образуется на одном конце зародыша, а затем на противоположном конце происходит впячивание эктодермы, и образуется второе ротовое отверстие (вторичный рот). Первичный рот зарастает, а на его месте позднее формируется анальное отверстие.
У кишечнополостных внутриклеточное пищеварение начинает замещаться внутриполостным. Пища первоначально подвергается воздействию ферментов и измельчается в полости, а затем захватывается клетками энтодермы, где переваривается в пищеварительных вакуолях. У плоских червей (трематод) пищеварительная трубка также заканчивается слепо и состоит из двух отделов — переднего эктодермального, представленного хорошо развитой глоткой, и среднего (кишечник), развивающегося из энтодермы. Пищеварение внутриполостное и внутриклеточное. У круглых червей появляется третий отдел пищеварительного тракта — задний. Он образуется путем впячивания эктодермы на заднем конце тела, соединяется с полостью средней кишки и заканчивается на заднем конце тела анальным отверстием. С появлением задней кишки пиша продвигается только в одном направлении, что обеспечивает более полное ее усвоение. Пищеварение становится только внутриполостным. Передний и задний отдел кишки, имеющие эктодермальное происхождение, выстланы кутикулой. У кольчатых червей в стенке кишки появляются мышечные элементы, обеспечивающие перистальтику, и развивается сеть кровеносных сосудов. У членистоногих происходит дальнейшая дифференцировка кишечной трубки и одновременно появляются приспособления для измельчения пищи (челюсти) и железы, секретирующие пищеварительные ферменты.
Органы пищеварения позвоночных. В связи с полупаразитическим или паразитическим образом жизни у круглоротых челюсти отсутствуют. Вместо ротовой полости имеется присасыва-тельная воронка, на дне которой находится рот. Пищеварительная трубка не дифференцирована. Желудок отсутствует, глотка, пронизанная жаберными щелями, непосредственно переходит в кишечник, который не разделен на отделы и имеет незначительную длину. Кишечная трубка прямая, не образует изгибов. Печень развивается как вырост начального отдела средней кишки и сохраняет примитивное строение ветвистой трубчатой железы. Поджелудочная железа находится в зачаточном состоянии.
Пищеварительный тракт рыб начинается ротовой полостью, крыша которой образована непосредственно основанием черепа (первичное небо).
По краю челюстей, а у некоторых на всей поверхности ротовой полости расположены зубы. Зубная система у рыб гомодонтная, т. е. зубы одинаковы по строению и функции. Обычно они имеют коническую форму, обращены назад и служат лишь для удержания пищи. По своему происхождению и развитию зубы гомологичны плакоидной чешуе хрящевых рыб. Смена зубов происходит в течение всей жизни. В ротовой полости рыб расположен примитивный язык в виде двойной складки слизистой оболочки. Железы отсутствуют.
По сравнению с низшими хордовыми пищеварительный тракт рыб значительно дифференцирован, особенно у хрящевых. Ротовая полость переходит в глотку, стенки которой пронизаны жаберными щелями. За ней следует короткий пищевод, затем желудок, степень обособленности которого различна. В кишечнике выделяют тонкий отдел и толстый, заканчивающийся анусом. Длина кишечника увеличивается, он образует петли. В петле тонкой кишки лежит поджелудочная железа. Печень азвита хорошо, имеется желчный пузырь. У костистых рыб кишечник менее дифференцирован.
У амфибий ротовая полость не отделяется от глотки. Зубная система гомодонтная. Появляются слюнные железы. Их секрет служит для смачивания пищи, не оказывая на нее химического воздействия. В рото-глоточную полость открываются хоаны, евстахиевы трубы и гортанная щель. Полость продолжается в пищевод, переходящий в желудок. Собственно кишечник имеет большую длину по сравнению с рыбами и отчетливо подразделяется на тонкий отдел и толстый, открывающий в клоаку. Печень имеет больший объем, разветвленная поджелудочная железа лежит в петле тонкого кишечника.
Ротовая полость рептилий более обособлена от глотки, у большинства гомодонтная зубная система. Однако у некоторых, в основном вымерших форм, обнаруживается начальная дифференци-ровка зубов. Язык имеет иное происхождение, чем язык анамний. Он развивается из зачатка, лежащего в области 2-й и 3-й жаберных дуг. Форма и степень подвижности языка у разных видов рептилий различна. Ротовые железы развиты лучше. Среди них выделяют подъязычные, зубные и губные. У ядовитых змeй задняя пара зубных желез преобразуется в ядовитую железу. Из яда змей выделен ряд биологически активных веществ, например, фактор роста нервов. Названный фактор, а также другие вещества, которые могут быть отнесены по физиологическому действию к гормонам, обнаружены в гомологах ядовитых желез — слюнных железах млекопитающих. У рептилий появляются зачатки вторичного неба. Оно образуется боковыми складками верхней челюсти, которые доходят до середины и делят ротовую полость на верхний отдел — дыхательный и нижний -вторичную ротовую полость.
Строение глотки, пищевода и желудка не имеет существенных отличий по сравнению с амфибиями. Собственно кишечник подразделяется на тонкую и толстую кишки. На границе тонкого и толстого отдела появляется небольшой слепой вырост. Длина кишечника по сравнению с амфибиями увеличивается. Задняя кишка оканчивается клоакой.
Пищеварительный тракт млекопитающих достигает наибольшей степени дифференцировки. Он начинается предротовой полостью или преддверьем рта, расположенным между губами, щеками и челюстями.
Мясистые губы, свойственные только млекопитающим, служат для захвата пищи. Ротовая полость ограничена сверху твердым небом. Кзади твердое небо продолжается в мягкое небо — двойную складку слизистой, отделяющую ротовую полость от глотки. На твердом небе имеются поперечные валики, которые способствуют перетиранию пищи. У человека при рождении также имеются такие валики, впоследствии исчезающие.
Зубы млекопитающих неодинаковы по строению и функции — гетородонтная зубная система. Различают резцы, клыки, малые коренные (ложнокоренные) и большие коренные (истинные коренные). Соотношение зубов различного типа составляет зубную формулу. Резцы — передние зубы — имеют долотовидную форму и служат для захвата и разрезания пищи. Следующие — клыки — сохранили коническую форму, но имеют большие размеры и используются для разрывания пищи. Задние зубы приобрели сложную бугристую или складчатую поверхность и служат для перетирания пищи. Они подразделяются на малые жевательные — (премоляры) и большие жевательные (моляры).
Ротовые железы у млекопитающих достигают наивысшего развития. Имеются как мелкие слизистые железы, так и крупные слюнные — подъязычная, заднеязычная, подчелюстная и околоушная. У высших млекопитающих в ротовой полости появляются крупные скопления лимфатической ткани — миндалины. В глотку открываются носоглоточные ходы, евстахиевы трубы, гортанная щель. Желудок млекопитающих хорошо обособлен от других отделов и у разных видов имеет свои специфические отличия. Общим служит разнообразие желез слизистой оболочки, участвующих в образовании желудочного сока. Собственно кишечник дифференцируется на отделы — двенадцатиперстная, тонкая, толстая, слепая и прямая кишки. Слепая кишка имеет вид непарного слепого выроста, расположенного на границе толстрй и тонкой кишки, достигающего у некоторых животных (травоядные, грызуны) больших размеров — от 10 до 27% всей длины кишечника. У многих видов на слепой кишке имеется вырост — червеобразный отросток, в стенке которого содержится большое количество лимфо-идной ткани. Длина кишечника по сравнению с рептилиями резко увеличена.
Филогенез дыхательной системы. У низших беспозвоночных специальные органы дыхания отсутствуют, газообмен происходит через покровы — диффузное дыхание (кишечнополостные, плоские, круглые черви). У кольчатых червей кожа богато снабжена кровеносными капиллярами, в которые поступает кислород. Диффузное дыхание встречается также у мелких членистоногих, имеющих тонкий хитин и относительно большую поверхность тела. Энергетический обмен таких животных отличается малой интенсивностью. У многих беспозвоночных появляются приспособления, увеличивающие дыхательную поверхность в виде местных специализированных органов дыхания. У водных форм органы дыхания представлены жабрами, у наземных — легкими и трахеями. Впервые жабры появляются у многощетинковых кольчецов и представляют собой разрастания эпителия, пронизанные кровеносными сосудами. Многие виды одновременно сохраняют диффузное дыхание. У наземных (паукообразные) появляются листовидные легкие, у насекомых — трахеи.
Функцию органов дыхания у низших хордовых (ланцетник) принимает на себя передняя часть кишечной трубки. В стенках глотки имеется 100—150 пар отверстий, или жаберных щелей. Органами дыхания служат межжаберные перегородки, в которых проходят кровеносные сосуды — жаберные артерии. Вода, проходя через жаберные щели, омывает названные перегородки и кислород диффундирует через стенки артерий. Поскольку жаберные артерии ланцетника не разветвляются на капилляры, общая поверхность, через которую поступает кислород, невелика, окислительные процессы идут на низком уровне. Соответственно этому ланцетник ведет малоподвижный, пассивный образ жизни.
Прогрессивные изменения органов дыхания у р ы б заключаются в появлении на межжаберных перегородках многочисленных эпителиальных выростов — жаберных лепестков. Жаберные лепестки, расположенные на одной перегородке, составляют жабру. Жаберные артерии рыб в отличие от ланцетника образуют в жаберных лепестках густую сеть капилляров. Дыхательная поверхность за счет лепестков резко увеличивается, поэтому число жаберных перегородок у рыб сокращается до четырех. Изменения дыхательной системы сочетаются у рыб с прогрессивными изменениями органов кровообращения, о чем будет сказано ниже.
Жаберные щели у рыб возникают путем выпячивания стенки глотки. Сначала образуются парные слепые выросты — жаберные мешки, растущие по направлению к периферии. Навстречу каждому из них образуется впячивание кожных покровов. Выросты глотки и выросты кожи растут друг другу навстречу. На месте их соединения ткань прорывается и образуется щель, соединяющая полость глотки с наружной средой, т. е. жаберная щель. Позднее на перегородках образуются жаберные лепестки. У большинства рыб закладываются пять пар жаберных мешков. У кистеперых рыб появляются наряду с жабрами органы для использования атмосферного кислорода. Таким дополнительным органом дыхания у них служит плавательный пузырь, представляющий собой парный мешковидный вырост брюшной стороны глотки, стенки которого богаты кровеносными сосудами. Пузырь соединен с глоткой короткой широкой камерой. Кровоснабжение происходит за счет 4-й жаберной артерии, окисленная кровь поступает прямо в сердце.
Земноводные обладают способностью, хотя и ограниченной, жить в наземных условиях, что обусловило дальнейшее развитие органов атмосферного дыхания в виде легких и кожи. Легкие земноводных гомологичны плавательному пузырю кистеперых рыб. Они представляют собой два мешка, соединенных с глоткой небольшой гортанно-трахейной камерой. Так же, как плавательный пузырь кистеперых рыб, они снабжаются кровью от 4-й жаберной артерии. Легкие амфибий весьма примитивны. Как правило, стенки легочных мешков гладкие, с небольшими перегородками, дыхательная площадь мала. Поверхность легких относится к поверхности тела, как 2 к 3. Количество кислорода, поступающего через легкие, составляет примерно лишь 30—40% от его общего количества. Воздухоносные пути слабо дифференцированы. В связи с недостаточным развитием легких основным органом дыхания служит кожа, в которой имеется большое количество мелких кровеносных сосудов-капилляров.
Урептилий с переходом к жизни на суше происходит дальнейшее развитие дыхательной системы. Кожа рептилий выключается из дыхания, поскольку толстая роговая чешуя, защищающая рептилий от высыхания, препятствует газообмену, и легкие становятся основным органом дыхания. Дыхательная поверхность легочных мешков резко увеличивается благодаря появлению на их стенках большого количества разветвленных перегородок, в которых проходят кровеносные сосуды.
Одновременно у рептилий наблюдаются прогрессивные изменения в воздухоносных путях. В трахее формируются хрящевые кольца, разделяясь, она дает два бронха. Начинается формирование внутриле-гочных бронхов. Отдельные крупные перегородки вдаются глубоко в полость легкого, оставляя свободным лишь узкий центральный вход. Дистальные края перегородок покрыты мерцательным эпителием, а в наиболее крупных из них появляются хрящи. В результате образуются стенки внутрилегочных бронхов.
Млекопитающие обладают легкими наиболее сложного строения. Характерен древовидный тип разветвления бронхов. Основной бронх делится на довольно большое количество вторичных бронхов, те в свою очередь распадаются на еще более мелкие бронхи 3-го порядка, а последние дают многочисленные мелкие бронхи 4-го порядка и т. д., и, наконец, идут тонкостенные трубочки — бронхиолы. На концах бронхиол находятся мелкие пузырьки, выстланные эпителием, или альвеолы. Стенки каждой альвеолы оплетены густой сетью капилляров, где и происходит газообмен. Количество альвеол достигает огромного числа, благодаря чему дыхательная поверхность резко возрастает. У ряда млекопитающих поверхность легких в 50—100 раз больше поверхности тела. У человека площадь легких составляет 90 м2 и превышает поверхность тела во много раз, ветвления бронхов составляют 23 порядка.
Таким образом, основное направление эволюции дыхательной системы заключается в увеличении дыхательной поверхности, обособлении воздухоносных путей.
(56) Биогенетический з-н. Изучая филогенез ракообразных, Ф. Мюллер обратил внимание на сходство некоторых современных личиночных форм с формами их вымерших предков. На основании этих наблюдений ой сделал заключение о том, что ныне живущие ракообразные в эмбриогенезе как бы повторяют путь, пройденный в историческом развитии их предками. Преобразования индивидуального развития в эволюции, по мнению Ф. Мюллера, происходят путем добавления новых стадий к онтогенезу родителей. Повторение в онтогенезе потомков признаков нескольких . предков объясняется накоплением таких надставок.
Э. Геккель сформулировал основной биогенетический закон, в соответствии с которым онтогенез представляет собой краткое и быстрое повторение филогенеза.
В качестве доказательств справедливости биогенетического закона используют примеры рекапитуляции. Они заключаются в повторении структуры органов взрослых предков на определенных стадиях индивидуального развития потомков. Так, в эмбриогенезе птиц и млекопитающих закладываются жаберные щели и соответствующие им скелетные образования и кровеносные сосуды. Многие признаки личинок бесхвостых амфибий соответствуют признакам взрослых хвостатых амфибий. В эмбриогенезе человека эпидермис кожи сначала представлен однослойным цилиндрическим, затем многослойным неороговевающим, многослойным слабо ороговевающим и, наконец, типичным ороговевающим эпителием. Соответствующие типы эпителия встречаются у взрослых хордовых — ланцетника, костистых рыб, хвостатых амфибий.
Согласно Э. Геккелю, новые признаки, имеющие эволюционное значение, возникают во взрослом состоянии. По мере усложнения организации взрослых форм зародышевое развитие удлиняется за счет включения дополнительных стадий.
Признаки предковых форм, повторяющиеся в онтогенезе потомков, Э. Геккелем названы палингенезами. Нарушение биогенетиче-ского закона зависит от тех изменений, не имеющих эволюционного значения, которые возникают в ходе индивидуального развития под действием внешних условий. Они могут заключаться в сдвигании процессов зародышевого развития во времени (гетерохронии) и в пространстве (г е т е р о т о п и и). Нарушения, обусловленные приспособлениями зародышей к условиям развития, Э. Геккель назвал ценогенеза-м и. Примером гетерохронии служит более ранняя закладка нервной системы и запаздывание в формировании половой системы у высшие позвоночных и человека по сравнению с низшими, гетеротопий — закладка легких, представляющих собой видоизменение задней пары жаберных мешков, расположенных по бокам кишечника, на его брюшной стороне, ценогенезов — амнион, хорион, аллантоис зародышей наземных позвоночных.
Основываясь на биогенетическом законе, Э. Геккель предложил гипотезу филогенеза многоклеточных организмов. Стадии морей, бластеи, гастреи исторического развития рекапитулируют, по его мнению, в онтогенезе многоклеточных животных как стадии морулы, бластулы, гаструлы.
Теория филэмбриогенезов. Решающее значение для раскрытия связи между онтогенезом и филогенезом имеют труды А. Н. Северцова. Согласно А. Н. Северцову, источником филогенетических преобразований служат изменения, возникающие на ранних этапах онтогенеза, а не у взрослых форм. Если они приводят к развитию признаков, имеющих полезное значение во взрослом состоянии и наследуются, они передаются из поколения в поколение и закрепляются. Такие признаки включаются в филогенез соответствующей группы организмов. Эмбриональные изменения, отражающиеся в дальнейшем на строении взрослых форм и имеющие эволюционное значение, называются филэмбриoгенезами, которые бывают трех типов.
Эмбриогенез может изменяться путем включения дополнительной стадии к уже имевшимся стадиям без искажения последних (анаболия), или же ход эмбриогенеза нарушается в средней его части (девиация). Отклонение от обычного хода развития в начале эмбриогенеза называется архаллаксисом.
Как видно, биогенетическому закону удовлетворяют изменения онтогенеза по типу анаболии. В этом случае зародышевое развитие представляет, по-существу, ряд последовательных рекапитуляции. В случае девиации рекапитуляции наблюдаются, но в ограниченном объеме, а при архаллаксисе они отсутствуют.
Согласно теории филэмбриогенезов изменения на ранних стадиях индивидуального развития составляют основу филогенетических преобразований органов. Таким образом, онтогенез не только отражает ход эволюции организмов определенного вида, но, претерпевая изменения, оказывает влияние на процесс исторического развития той или иной группы животных. Из сказанного следует, что в известном смысле филогенез можно рассматривать как причину онтогенеза (Э. Геккель). Вместе с тем коль скоро эволюционно значимые изменения строения органов во взрослом состоянии происходят путем изменения эмбриогенеза этих органов, филогенез представляет собой функцию онтогенеза (А. Н. Северцов).
(59) Понятие о расах и видовое единство чел-ва. Современное человечество принадлежит к одному виду Homo sapiens. Это доказывается рождением плодовитого и полноценного потомства в скрещиваниях между представителями резко различающихся по некоторым признакам этногеографических групп населения. Видовое единство людей основывается на воспроизведении трех главных признаков рода Homo — выпрямленного положения тела, хватательного типа верхних конечностей, развитой речевой функции и мышления. Названным признакам принадлежит ведущая роль в обеспечении выживания и развития всех гоминид. Значительным консерватизмом обладают особенности строения опорно-двигательного аппарата и головного мозга, от которых зависит прямохождение, орудийная деятельность, социабильность. Представители разных этногеографических групп характеризуются одинаковым интеллектуальным потенциалом. Вместе с тем Человек разумный — это резко политипический вид, что проявляется в наличии трех «больших» рас людей и некоторого числа более мелких групп, различающихся главным образом комплексом внешних признаков.
Выделяют европеоидную (евразийскую), австрало-негроидную (экваториальную) и монголоидную (азиатско-американскую) «большие» расы.
Европеоиды имеют светлую или смуглую кожу, прямые или волнистые волосы, развитый волосяной покров на лице, узкий выступающий нос, тонкие губы. Монголоиды отличаются светлой или смуглой кожей, прямыми, нередко жесткими волосами, уплощенным лицом с выступающими скулами, косым разрезом глаз, выраженным «третьим веком» (эпикантом), средними показателями ширины носа и губ. У австрало-негроидов кожные покровы темные, волосы курчавые шерстистые или волнистые, губы толстые, нос широкий, маловыстугш-юший, с поперечным расположением ноздрей. Представители различных рас отличаются по некоторым физиологическим и биохимическим признакам. Так, основной обмен у негров и у большей части других народов экваториальной зоны ниже, чем у европейцев. У последних содержание холестерина в плазме крови достигают 4,64 ммоль/л, тогда как у первых — 3,48 ммоль/л.
Общность основных человеческих признаков и главной линии исторического развития, полноценность потомства в межрасовых браках указывают на то, что разделение на расы относится к достаточно продвинутым стадиям эволюции гоминид. На основании сравнительно-биохимических и антропологических данных предполагают, что первоначально в человечестве выделились монголоидная и европеоидно-негроидная расы. Позже из последней выделились евразийская и австрало-негроидная. Указанные события имели место, по-видимому, на стадии перехода от палеоантропов к неоантропам.
До эпохи великих географических открытий «большие» расы характеризовались определенным расселением по планете. Представители монголоидной расы размещались на территории Северной, Центральной, Восточной и Юго-Восточной Азии, Северной и Южной Америки, австрало-негроидной — в Старом Свете к югу от тропика Рака, европеоидной - на территории Европы, Северной Африки, Передней Азии, Северной Индии. Многие расовые признаки адаптивно целесообразны в той части Ойкумены, в которой складывались и обитали расы на протяжении многих тысячелетий. К таковым относятся пигментация кожных покровов и шерстистые волосы негроидов (повышенный уровень солнечной радиации), крупные размеры носовой полости европеоидов (действие охлажденного в зимний период воздуха), эпикант, узкая глазная щель, своеобразное отложение жировой ткани на лице монголоидов (предохранение глаза от ветра, пыли, отраженного от снега солнечного света и от переохлаждения тканей лица). Можно предположить, что формирование расовых комплексов признаков происходило под действием естественного отбора. Вместе с тем следует избегать упрощенного понимания адаптивной природы таких комплексов в целом. Некоторые признаки, входящие в расовый комплекс, могли появиться в силу коррелятивной изменчивости. Так, главную роль в развитии уплощенности лица монголоидов играли, по-видимому, первичные изменения жевательного аппарата и общей конструкции лицевого скелета. В выделении внутри «больших» рас различных морфологических типов и групп могли играть роль метисация, длительное размножение в популяции с высокой степенью генетического родства, а в отношении народностей, размещавшихся по окраинам Ойкумены, — дрейф генов.
(60) Учение о биосфере. Термин «биосфера» введен австралийским геологом Э. Зюссом в 1875 г. для обозначения особой оболочки Земли, образованной совокупностью живых организмов, что соответствует биологической концепции биосферы. В указанном смысле названный термин используется рядом исследователей и в настоящее время.
Представление о широком влиянии жизни на природные процессы было сформулировано В. В. Докучаевым, который показал зависимость процесса почвообразования не только от климата, но и от совокупного' влияния растительных и животных организмов.
В. И. Вернадский развил это направление и разработал учение о биосфере как глобальной системе нашей планеты, в которой основной ход геохимических и энергетических превращений определяется живым веществом. Он распространил понятие биосферы не только на сами организмы, но и на среду их обитания, чем придал концепции биосферы биогеохимический смысл. Большинство явлений, меняющих в масштабе геологического времени облик Земли, рассматривались ранее как чисто физические, химические или физико-химические (размыв, растворение, осаждение, выветривание пород и т. д.). В. И. Вернадский создал учение о геологической роли живых организмов и показал, что деятельность последних представляет собой важнейший фактор преобразования минеральных оболочек планеты.
С именем В. И. Вернадского связано также формирование социальн о-э кономической концепции биосферы, отражающей ее превращение на определенном этапе эволюции в ноосферу (см. главу 10) вследствие деятельности человека, которая приобретает роль самостоятельной геологической силы. Учитывая системный принцип организации биосферы, а также то, что в основе ее функционирования лежат круговороты веществ и энергии, современной наукой сформулированы биохимическая, термодинамическая, биогеоценотическая, кибернетическая концепции биосферы.
Биосферой называется оболочка Земли, которая населена и активно преобразуется живыми существами. Согласно В. И. Вернадскому, биосфера — это такая оболочка, в которой существует или существовала в прошлом жизнь и которая подвергалась или подвергается воздействию живых организмов. Она включает: 1) живое вещество, образованное совокупностью организмов; 2) биогенное вещество, которое создается и перерабатывается в процессе жизнедеятельности организмов (газы атмосферы, каменный уголь, нефть, сланцы, известняки и др.); 3) косное вещество, которое образуется без участия живых организмов (продукты тектонической деятельности, метеориты); 4) биокосное вещество, представляющее собой совместный результат жизнедеятельности организмов и абиогенных процессов (почвы).
Структура и ф-ии б/с. Биосфера представляет собой многоуровневую систему, включающую подсистемы различной степени сложности. Границы биосферы определяются областью распространения организмов в атмосфере, гидросфере и л«тосфере. Верхняя граница биосферы проходит примерно на высоте 20 км. Таким образом, живые организмы расселены в тропосфере и в нижних слоях стратосферы. Лимитирующим фактором расселения в этой среде является нарастающая с высотой интенсивность ультрафиолетовой радиации. Практически все живое, проникающее выше озонового слоя атмосферы, погибает. В гидросферу биосфера проникает на всю глубину мирового океана, что подтверждается обнаружением живых организмов, и органических отложений до глубины 10—11 км. В литосфере область распространения жизни во многом определяется уровнем проникновения воды в жидком состоянии -живые организмы обнаружены до глубины примерно 7,5 км.
Атмосфера. Эта оболочка состоит в основном из азота и кислорода. В меньших концентрациях она содержит углекислый газ и озон. Состояние атмосферы оказывает большое влияние на физические, химические и, особенно, биологические процессы на земной поверхности и в водной среде. Наибольшее значение для биологических
процессов имеют: кислород атмосферы, используемый для дыхания организмов и минерализации омертвевшего органического вещества, углекислый газ, расходуемый при фотосинтезе, а также озон, экранирующий земную поверхность от жесткого ультрафиолетового излучения. Вне атмосферы существование живых организмов невозможно. Это видно на примере лишенной жизни Луны, у которой нет атмосферы. Исторически развитие атмосферы связано с геохимическими процессами, а также жизнедеятельностью организмов. Так, азот, углекислый газ, пары воды образовались в процессе эволюции планеты благодаря в значительной мере вулканической активности, а кислород— в результате фотосинтеза.
Гидросфера. Вода является важной составной частью всех компонентов биосферы и одним из необходимых факторов существования живых организмов. Основная ее часть (95%) заключена в мировом океане, который занимает примерно 70% поверхности земного шара. Общая масса океанических вод составляет свыше 1300 млн. км3. Около 24 млн. км3 воды содержится в ледниках, причем 90% этого объема приходится на ледяной покров Антарктиды. Столько же воды содержится под землей. Поверхностные воды озер составляют приблизительно 0,18 млн. км3 (из них половина соленые), а рек -0,002 млн. км3. Количество воды в телах живых организмов достигает примерно 0,001 млн. км3 . Из газов, растворенных в воде, наибольшее значение имеют кислород и углекислый газ. Количество кислорода в океанических водах изменяется в широких пределах в зависимости от температуры и присутствия живых организмов. Концентрация углекислого газа также варьирует, а общее количество его в океане в 60 раз превышает его количество в атмосфере. Гидросфера формировалась в связи с развитием литосферы, выделившей за геологическую историю Земли значительный объем водяного пара и так называемых ювенильных (подземных магматических) вод.
Литосфера. Основная масса организмов, обитающих в пределах литосферы, сосредоточена в почвенном слое, глубина которого обычно не превышает нескольких метров. Почвы, будучи, по терминологии В. И. Вернадского, биокосным веществом, представлены минеральными веществами, образующимися при разрушении горных пород, и органическими веществами - продуктами жизнедеятельности организмов.
Живые организмы (живое вещество). В настоящее время описано около 300 тыс. видов растений и более 1,5 млн. видов животных. Из этого количества 93% представлено сухопутными, а 7% водными видами животных. Живое вещество по массе составляет 0,01—0,02% от косного вещества биосферы, однако играет ведущую роль в биогеохимических процессах благодаря совершающемуся в живых организмах обмену веществ. Так как субстраты и энергию, используемые в обмене веществ, организмы черпают из окружающей среды, они преобразуют ее уже тем, что живут. Ежегодная продукция живого вещества в биосфере равняется 232,5 млрд. т сухого органического вещества. За это же время в масштабе планеты в процессе фотосинтеза синтезируется 46 млрд. т органического углерода.
Биотический круговорот. Главная функция биосферы заключается в обеспечении круговоротов химических элементов. Глобальный биотический круговорот осуществляется при участии всех населяющих
планету организмов. Он заключается в циркуляции веществ между почвой, атмосферой, гидросферой и живыми организмами. Благодаря биотическому круговороту возможно длительное существование и развитие жизни при ограниченном запасе доступных химических элементов. Используя неорганические вещества, зеленые растения за счет энергии Солнца создают органическое вещество, которое другими живыми существами (гетеротрофами-потребителями и деструкторами) разрушается, с тем чтобы продукты этого разрушения могли быть использованы растениями для новых органических синтезов.
Важная роль в глобальном круговороте веществ принадлежит циркуляции воды между океаном, атмосферой и верхними слоями литосферы. Вода испаряется и воздушными течениями переносится на многие километры. Выпадая на поверхность суши в виде осадков, она способствует разрушению горных пород, делая их доступными для растений и микроорганизмов, размывает верхний почвенный слой и уходит вместе с растворенными в ней химическими соединениями и взвешенными органическими частицами в океаны и моря.
Круговорот углерода начинается с фиксации атмосферной двуокиси углерода в процессе фотосинтеза. Часть образовавшихся при фотосинтезе углеводов используется самими растениями для получения энергии, а часть потребляется животными. Углекислый газ выделяется в процессе дыхания растений и животных. Мертвые растения и животные разлагаться, углерод их тканей окисляется и возвращается в атмосферу. Аналогичный процесс происходит и в океане.
Круговорот азота также охватывает все области биосферы. Хотя его запасы в атмосфере практически неисчерпаемы, высшие растения могут использовать азот только после соединения его с водородом или кислородом. Исключительно важную роль е этом процессе играют азотфиксирующие бактерии. При распаде белков этих микроорганизмов азот снова возвращается в атмосферу.
Благодаря биотическому круговороту биосфере присущи определенные геохимические функции: газовая — биогенная миграция газов в результате фотосинтеза и азотфиксации; концентрационная —аккумуляция живыми организмами химических элементов, рассеянных во внешней среде; окислительно-восстановительная — превращение веществ, содержащих атомы с переменной валентностью (например, железо, марганец); биохимическая — процессы, протекающие в живых организмах.
Стабильность биосферы. Биосфера представляет собой сложную экологическую систему, работающую в стационарном режиме. Стабильность биосферы обусловлена тем, что результаты активности трех групп организмов, выполняющих разные функции в биотическом круговороте — продуценты (автотрофы), потребители (гетеротрофы) и деструкторы (минерализующие органические остатки) — взаимо-уравновешиваются. Гомеостатическое состояние биосферы не исключает способности ее к эволюции.
(61) Эволюция б/с. На протяжении значительного времени существования нашей планеты основными факторами, влияющими на эволюцию биосферы, были геологические и климатические процессы. С ними связана эволюция живых организмов.
Первые живые организмы — прокариоты — появились в архейскую эру. Ими были анаэробы, получавшие энергию путем брожения. В качестве пищи они использовали органические вещества абиогенного происхождения.
Со временем в первородном океане стали иссякать органические вещества абиогенного происхождения. Появление аутотрофных организмов, особенно зеленых растений, обеспечило дальнейший непрерывный синтез органических веществ благодаря использованию солнечной энергии. Так создалась предпосылка к дальнейшему развитию и усложнению форм жизни.
С возникновением фотосинтеза произошла дивергенция органического мира на два ствола, отличающихся способом питания. Благодаря появлению аутотрофных фотосинтезирующих растений вода и атмосфера стали обогащаться свободным кислородом. Этим была предопределена возможность появления аэробных организмов, способных к более эффективному использованию энергии в процессе жизнедеятельности. Среди этих организмов смогли появиться многоклеточные.
Накопление кислорода в атмосфере привело к образованию в верхних ее слоях озонового экрана, не пропускающего губительных для жизни ультрафиолетовых лучей. Это подготовило возможность выхода первых живых организмов (вначале одноклеточных) на сушу, что осуществилось в кембрийском периоде.
Появление фотосинтезирующих растений обеспечило возможность существования и прогрессивного развития гетеротрофных организмов. Жизнь заполнила различные среды обитания.
Уже в середине палеозойской эры содержание кислорода в атмосфере стабилизировалось на уровне примерно 20 %. Биосфера приобрела динамическое равновесие в деятельности трех групп организмов, осуществляющих различные функции в круговороте веществ в природе — продуцентов (ауто-трофов), потребителей (гетеротрофов) и деструкторов, минерализующих органическое вещество. Благодаря этому установилось гомеостатическое состояние биосферы.
С возникновением человеческого общества в истории биосферы появился новый мощный фактор, равный по своему воздействию грандиозным геологическим процессам. Этот фактор (человеческая деятельность) в известной мере нарушил биосферный гомеостаз.
(62) Человек и б/с. С появлением человека биосфера приобрела новое качество. Первоначально воздействие человека на окружающую среду не отличалось от влияния других организмов. Извлекаемые человеком из природы средства существования восстанавливались естественным путем, а продукты его жизнедеятельности поступали в общий круговорот веществ. Биосферный гомеостаз не нарушался. Со временем рост численности населения и все возрастающее использование природных ресурсов человеческим обществом вылились в мощный экологический фактор, нарушивший прежнее равновесие в биосфере.
На современном этапе существования нашей планеты наибольшие преобразования в биосфере осуществляются именно человеком. Распахивая огромные территории, вырубая леса, создавая крупные населенные пункты и промышленные предприятия, добывая полезные ископаемые, сооружая каналы, водохранилища, изменяя русла рек, проводя лесонасаждения, человек значительно изменяет природу. Деятельность его сказывается на климате, рельефе местности, составе атмосферы, видовом и численном составе флоры и фауны. Использование атомной энергии, особенно испытания атомного оружия, повлекло за собой накопление радиоактивных веществ в атмосферном воздухе и Мировом океане.
Извлекая из недр и сжигая уголь, нефть, газы, добывая руду и выплавляя чистые металлы, создавая сплавы и синтетические вещества, которых не существовало в природе, и новые химические элементы, рассеивая, наконец, продукты своей деятельности, человек значительно усиливает биогенную миграцию элементов. За время существования человечества общая масса живых организмов сокращается, за последние 300 лет биомасса планеты уменьшилась примерно на четверть.
В. И. Вернадский пришел к заключению, что человечество образует в совокупности новую оболочку Земли — ноосферу (гр. по— разум), т. е. сферу разумной жизни.
Естественные ресурсы делятся на невосполнимые и восполнимые. К первым относятся полезные ископаемые, запасы которых ограничены. Восполнимые богатства связаны с жизнедеятельностью организмов. Но при нерациональном использовании и они истощаются, что может повлечь непоправимые изменения в биосфере. В результате нерациональной деятельности человека только на протяжении нескольких последних столетий истреблено много видов животных и растений. Нередко гидротехнические сооружения лишают рыбу возможности добраться до нерестилища. Недостаточно очищенные промышленные отходы при спуске их в водоемы губят в них живые существа. Вырубка лесов без учета их воспроизведения приводит к обмелению рек .и эрозии почв. Уменьшение площади лесов, все увеличивающиеся площади возделываемых культур, испаряющих значительное количество воды, рост городов, дорог и других территорий с покрытиями, препятствующими проникновению воды в почву, приводят к обеднению почвы водой, что затрудняет вегетацию растений. Вместе с тем потребность в воде увеличивается. Перед человечеством встала проблема снабжения пресной водой.
Возникает проблема и с количеством кислорода в атмосфере. Растительный покров -планеты уже не успевает пополнять атмосферу свободным кислородом. Поэтому если учесть, что ежегодно человечество увеличивает расход кислорода на 5 %, то через 165 лет
состав его в атмосфере достигнет критического для существования человека предела. Окружающая среда (атмосфера, поверхностные и подземные воды, почва) нередко загрязняются отходами промышленных предприятий.
Существенным фактором воздействия на окружающую среду являются войны. В результате применения американской армией боевых химических веществ во Вьетнаме уничтожено до 25 % лесов на территории Южного Вьетнама, а накопление в окружающей среде мутагенов и тератогенов привело к учащению рождения детей с аномалиями.
В настоящее время перед человечеством возникает вопрос о возможности экологического кризиса, т. е. такого состояния окружающей среды, когда из-за происшедших в ней изменений она может стать непригодной для жизни.
Деятельность человека приводит как к положительным, так и к отрицательным изменениям в биосфере. К числу положительных следует отнести создание новых высокопродуктивных сортов культурных растений, пород животных, штаммов микроорганизмов, искусственное разведение рыбы в морях и Мировом океане, создание культурных биогеоценозов и т. д. К отрицательным последствиям приводят: нерегулируемые лесоразработки, массовый сбор дикорастущих растений, охотничий и рыбный промыслы; загрязнение вод, атмосферы/и почвы промышленными, сельскохозяйственными и бытовыми отходами, нерациональная обработка земли, приводящая к эрозии, и т. д. Естественно, что отрицательные воздействия на биосферу необходимо ограничивать.
Быстрый рост населения и интенсивное развитие промышленности влекут за собой все возрастающее использование ресурсов живой природы. При этом нередко нерациональное потребление природных богатств приводит к нарушению биологического равновесия в некоторых сообществах и даже к их истощению и гибели. В связи с этим необходимо выяснить мировые ресурсы биосферы для разработки наиболее рациональных методов их использования. С этой целью в 1964 г. была создана специальная организация — Международная биологическая программа (МБП) сроком на 8 лет. Ее задача заключалась в том, чтобы определить биологическую продуктивность естественных и созданных человеком наземных и водных растительных и животных сообществ.
Изучение природных биологических ресурсов планеты показало, что недостаточное питание значительной части человечества в настоящее время не результат бедности природных ресурсов, а результат капиталистического способа производства и распределения продуктов. Подсчеты показывают, что современный уровень технологии сельскохозяйственного производства может обеспечить полноценным питанием население, численность которого в несколько раз больше современного..
Кроме того, благодаря развитию на-уки (агротехника, селекция) уже в ближайшие годы резко повысится урожайность сельскохозяйственных культур. Перспективен переход от промысла рыбы и других обитателей океана к искусственному выращиванию морских организмов. Это будет важным вкладом в решение мировой продовольственной проблемы.
(63) Основные понятия экологии. Живые существа, населяющие территории с разнообразными условиями обитания, испытывают на себе влияние последних и сами оказывают действие на окружающую среду. Закономерности взаимоотношений организмов и среды их обитания, законы развития и существования биогеоценозов, представляющих собой комплексы взаимодействующих живых и неживых компонентов в определенных участках биосферы, изучаются специальной биологической наукой экологией.
Экологические закономерности проявляются на уровне особи, популяции особей, биоценоза (сообщества), биогеоценоза. Биоценозом (сообществом организмов) называется пространственно ограниченная ассоциация взаимодействующих растений и животных, в которой доминируют определенные виды или физический фактор. Предметом экологии, таким образом, являются физиология и поведение отдельных организмов в естественных условиях обитания (аутоэкология), рождаемость, смертность, миграции, внутривидовые отношения (динамика популяций), межвидовые отношения, потоки энергии и круговороты веществ (син-экология).
К основным методам экологии относятся полевые наблюдения, эксперименты в природных условиях, моделирование процессов и ситуаций, встречающихся в популяциях и биоценозах, с помощью вычислительной техники.
Среда — это вся совокупность элементов, которые действуют на особь в месте ее обитания. Элемент среды, способный оказывать прямое влияние на живой организм хотя бы на одной из стадий индивидуального развития, называется экологическим фактором. В соответствии с распространенной и удобной классификацией экологические факторы делят на биотическиеи абиотические, хотя указанное деление до некоторой степени условно. Абиотический фактор температура может, например, регулироваться изменением состояния популяции организмов. Так, при снижении температуры воздуха ниже 13°С интенсифицируется двигательная активность пчел, что повышает температуру в улье до 25—30°С. Учитывая социальную сущность человека, проявляющуюся в его активном отношении к природе, целесообразно выделение также антропогенных экологических факторов. По мере роста народонаселения и технической вооруженности человечества удельный вес антропогенных экологических факторов неуклонно возрастает.
Согласно другой классификации различают первичные и вторичные периодические и непериодические экологические факторы. С действием первичных факторов жизнь столкнулась на ранних стадиях эволюции. К ним относятся температура, изменение положения Земли по отношению к Солнцу. Благодаря им в эволюции возникла суточная, сезонная, годичная периодичность многих биологических процессов. Вторичные периодические факторы являются производными первичных факторов. Например, уровень влажности зависит от температуры, поэтому в холодных областях планеты атмосфера содержит меньше водяных паров. Непериодические факторы действуют на организм или популяцию эпизодически, внезапно. К ним относят стихийные силы природы — извержение вулкана, ураган, удар молнии, наводнение, а также хищник, настигающий жертву, и охотник, поражающий цель.
Благодаря многообразию экологических факторов наблюдается закономерное расселение видов по планете. Колебания интенсивности их действия проявляются в исчезновении некоторых видов с определенных территорий, изменении плотности популяций, показателей рождаемости, смертности. Под влиянием экологических факторов в эволюции сложились такие адаптивные модификации, как зимняя или летняя спячка, диапауза.
Любая особь, популяция, сообщество испытывают одновременное воздействие многих факторов, но лишь некоторые из них являются жизненно важными. Такие факторы называются лимитирующими, и их отсутствие или наличие концентрации ниже и выше критических уровней делает невозможным освоение среды организмами определенного вида. На рис. 163 представлены типы растительности в зависимости от структуры почвы и особенностей климата, выполняющих функцию лимитирующих факторов. Благодаря наличию лимитирующих экологических факторов для каждого биологического вида существуют оптимум и пределы выносливости. Так, устрицы наилучшим образом развиваются в воде с содержанием солей 1,5—1,8%. При снижении концентрации солей до 1,0% более 90% личинок погибает в течение двух недель, а при концентрации 0,25% все поголовье их гибнет за одну неделю. Повышение концентрации соли по сравнению с оптимальной величиной также оказывает неблагоприятное действие на устриц. В общем виде зависимость выживаемости организмов определенного вида от интенсивности лимитирующего экологического фактора представлена графически на рис. 164. Взаимодействие нескольких экологических факторов усложняет картину. Так, некоторые виды тропических орхидей в природе при относительно высокой температуре воздуха растут только в тени. При искусственном понижении температуры окружающего воздуха они прекрасно развиваются в условиях прямой инсоляции.
Способность вида осваивать разные среды обитания выражается величиной экологической валентности. Виды с малой экологической валентностью называются стенотопными, с большой — эвритопными. Эвритропные виды могут быть представлены несколькими экотипами — разновидностями, приспособленными к выживанию в средах, различающихся по некоторым факторам. Так, сложноцветное растение тысячелистник образует равнинные и горные экотипы. При выращивании горного экотипа в равнинных условиях растения сохраняют присущие им особенности на протяжении ряда поколений.
КОНЦЕПЦИЯ БИОГЕОЦЕНОЗА Всю полноту взаимодействий и взаимозависимости живых существ и элементов неживой природы в области распространения жизни отражает концепция биогеоценоза (В. Н. Сукачев).
К понятию биогеоценоза близко по смыслу понятие экосистемы, которое введено в науку английским ботаником А. Тенсли в 1935 г. В отличие от биогеоценозов, границы которых задаются рамками растительных сообществ (фитоценозов), экосистемы не имеют определенного объема и могут охватывать пространства разной протяженности — от капли воды или аквариума до океана или всей поверхности планеты.
Биогеоценоз — это динамическое и устойчивое сообщество растений, животных и микроорганизмов, находящееся в постоянном взаимодействии и непосредственном контакте с компонентами атмосферы, гидросферы и литосферы. Биогеоценоз состоит из биотической (биоценоз) и абиотической (экотоп) части, которые связаны непрерывным обменом веществом и представляет собой энергетически и вещественно открытую систему. В него поступают энергия солнца, минеральные вещества почвы и газы атмосферы, вода. Из него выделяются тепло, кислород, углекислый газ, биогенные вещества, переносимые водой, перегной. Основными функциями биогеоценоза являются поток энергии и круговороты веществ.
Биогеоценоз содержит следующие обязательные компоненты: 1) абиотические неорганические и органические вещества среды; 2) автотрофные организмы — продуценты биотических органических веществ; 3) гетеротрофные организмы — потребители (консументы) готовых органических веществ первого (растительноядные животные) и следующих (плотоядные животные) порядков; 4) детритоядные организмы — разрушители (деструкторы), разлагающие органическое вещество.
Особая роль в экономике биогеоценоза принадлежит цепям или сетям питания (рис. 166). Они составляют трофическую структуру, по которой происходит перенос энергии и круговороты веществ. Пищевая цепь состоит из ряда трофических уровней, последовательность которых соответствует направлению потока энергии.
Энергия, накопленная в растительной биомассе, составляет чистую первичную продукцию биогеоценоза. Фитоби-омасса используется в качестве источника энергии и материала для создания биомассы потребителей первого порядка — растительноядных животных и далее по пищевой цепи. Количество энергии, расходуемой на поддержание собственной жизнедеятельности, в цепи трофических уровней растет, а продуктивность падает. Обычно продуктивность последующего трофического уровня составляет не более 5—20% предыдущего. Это находит отражение в соотношении на планете биомасс растительного и животного происхождения. Прогрессивное снижение ассимилированной энергии в ряду трофических уровней находит отражение в структуре экологических пирамид. Таким образом, пирамиды биомассы и численности организмов для данного биогеоценоза повторяют в общих чертах конфигурацию пирамиды продуктивности.
Размеры биогеоценозов, выделяемых экологами, различны. Совокупности определенных биогеоценозов образуют главные природные экосистемы, имеющие глобальное значение в обмене энергии и вещества на планете, к которым относятся: 1) тропические леса; 2) леса умеренной климатической зоны; 3) пастбищные земли (степь, саванна, тундра, травянистые ландшафты); 4) пустыни и полупустыни; 5) озера, болота, реки, дельты; 6) горы; 7) острова; 8) океан.
Понятие биогеоценоза применимо к хозяйственным угодьям, создаваемым человеком, - пашням, лесопосадкам, паркам, прудам, водохранилищам. Их называют агробиогеоценозами или культурбиогеоценозами. Благодаря целенаправленному вмешательству человека, создающему благоприятные условия для произрастания культурных растений путем вспашки, рыхления почвы, прополки сорняков, внесения ядохимикатов, удобрений, агробиогеоце-нозы существенно отличаются от природных биогеоценозов по видовому составу, показателям вещественно-энергетического обмена, устойчивости к внешним воздействиям.
(64) Предмет экологии чел. В настоящее время термином «экология человека» обозначают комплекс полностью еще не очерченных вопросов, касающихся взаимодействия человека с окружающей средой. Главной особенностью экологии человека как самостоятельной области науки служит ее междисциплинарный характер, так как в ней сходятся социологические, философские, географические, естественнонаучные, медико-биологические проблемы. Экология человека изучает закономерности возникновения, существования и развития антропоэкологических систем, которые представляют собой сообщество людей, находящееся в динамической взаимосвязи со средой и удовлетворяющее благодаря этому свои потребности.
Главной отличительной чертой антропоэкологических систем по сравнению с природными экосистемами служит наличие в их составе человеческих сообществ, которым в развитии всей системы принадлежит доминирующая роль. Сообщества людей различаются по способу производства материальных ценностей и структуре социально-экономических отношений, от которых зависят способ организации труда, объем и способ распределения производимой продукции между членами сообщества. Активностью сообществ людей на занимаемой территории определяется уровень воздействия их на окружающую среду. Развивающиеся сообщества (например, в период индустриализации) характеризуются наряду с ростом численности населения, увеличением потребностей его в продуктах питания, сырье, водных ресурсах, размещении отходов. Это повышает нагрузку на природную среду, интенсифицирует использование биотических и абиотических факторов.
В процессе существования антропоэкологических систем взаимодействие людей и природной среды осуществляется по двум главным направлениям. Во-первых, происходят изменения биологических и социальных показателей отдельных индивидуумов и сообщества в целом, направленные на удовлетворение требований, предъявляемых человеку средой. Во-вторых, осуществляется перестройка самой среды для удовлетворения требований человека. На протяжении истории человечества соотношение названных изменений менялось в сторону преобладающей роли второго направления. Естественная среда, в которой зарождалось человечество, в результате перехода к культурному земледелию и скотоводству уступила место частично очеловеченной среде сельских жителей. С возникновением городов современного типа произошел переход к существованию сообществ людей в полностью очеловеченной среде, границы распространения которой неуклонно расширяются.
Общим результатом биологических и социальных процессов в антропоэкологических системах служит индивидуальная и групповая приспособленность человеческих сообществ к жизни в средах обитания, различающихся по природным условиям, формам хозяйствования и культуры. Особенность такой приспособленности в отличие от приспособленности к среде популяций любых других живых организмов состоит в.том, что человек адаптируется к условиям жизни не только физиологически, но прежде всего экономически, технически, эмоционально. Различные стороны и направления индивидуальной и групповой адаптации человека, вся совокупность условий жизни и экологических связей людей являются предметом изучения экологии человека. Именно это делает ее междисциплинарной наукой. В курсе биологии допустимо ограничиться рассмотрением отдельных вопросов, имеющих непосредственное отношение к задачам охраны здоровья людей. Среди них важное значение принадлежит биологической изменчивости популяций людей в связи с биогеографическими особенностями среды, а также медико-биологической характеристике антропогенных экологических систем. Экологические вопросы паразитологии включены в соответствующий раздел учебника и излагаются ниже.
Биологические аспекты экологии чел. Экология чел. – новая, еще мало разработанная наука, занимающаяся изучением взаимоотношений человека с окружающей средой, включающей в себя абиотические, биотические и социальные условия существования. Действие природной среды на человека всегда в большей или меньшей степени видоизменено благодаря использованию одежды, огня, постройке жилищ, а ближайшая окружающая среда изменена жилыми, хозяйственными, промышленными строениями, древонасаждениями, сельскими угодьями, работой промышленных предприятий и транспорта.
В отличие от любых живых организмов, занимающих лишь определенный ареал, связанный с определенными природными условиями существования,человек смог расселиться по всей планете, имеет самый широкий космополитический ареал. Но все же успешно существовать в любых географических условиях человек может лишь в том случае, если ему удастся поддерживать окружающую среду на уровне, близком к тому, в котором протекала его эволюция.
Основные закономерности взаимодействия человека с биогеографическими и антропогенными факторами среды рассмотрим на различных уровнях организации: организменном, популяци-онно-видовом, биоценотическом и биосферном.
На организменном уровне протекают онтогенез и физиологические процессы. Для осуществления их человек, как любой живой организм, нуждается в определенных условиях: пище, воде, свете, температуре и...
Индивидуальные реакции организма на факторы среды четко выявляются в условиях геохимических провинций, связанных с избытком или нехваткой тех или иных химических элементов. В этих условиях нарушается обмен веществ, организм не в состоянии отрегулировать обмен веществ, возникают эндемичные (местные) заболевания.
Индивидуальные реакции организма четко выступают при перемене среды обитания, особенно когда человек попадает в экстремальные, крайне тяжелые условия. Приспособление (акклиматизация) обусловлено физиологическими резервами организма. При изменении температуры среды вступают в действие терморегуляционные механизмы. При перемещении в новый часовой пояс или при подъеме в горы для акклиматизации может потребоваться несколько суток, при переселении в иные климатические условия — иногда недели или месяцы либо она может и вовсе не наступить. Компенсаторные механизмы к различным факторам среды не у всех одинаковы, они индивидуальны.
На популяционно-видовом уровне в эпоху верхнего палеолита, т. е. на заре человеческой истории, сформировались основные расовые черты, имеющие приспособительный характер.
Темная кожа экваториальной расы препятствует проникновению ультрафиолетового излучения, а курчавые волосы, не прилегая плотно к голове, служат преградой лучам солнца. Усиленное потоотделение способствует охлаждению организма, отдаче лишнего тепла.
Тонкие губы, узкий разрез глаз, эпи-кантус монголоидной расы сформировались как приспособление к сухому и холодному климату северо-восточных степей и пустынь, где пыль и холод могут повредить слизистую оболочку глаза, а плоская форма лица (как это подтверждено в специальных экспериментах) уменьшает опасность обмораживания.
Белая кожа европеоидной расы, возможно, сформировалась как результат приспособления к северному климату, где недостаток кальциферолов (вит. Б) в пище приводит к заболеванию рахитом. Под влиянием солнечных лучей этот витамин может синтезироваться в толще кожи, но для этого она не должна быть защищена темным пигментом.
Помимо расовых признаков на популяционно-видовом уровне у человека сформировались адаптивные типы. Они представляют собой реакции, конвер-гентно возникающие в различных популяциях, находящихся в сходных условиях обитания, независимо от их генетического родства и расовой принадлежности.
Адаптации у человека проявляются в двух формах: неспецифической и специфической. Неспецифические связаны с общим повышением иммунных свойств и усилением устойчивости организма к неблагоприятным условиям. Специфические адаптации узко направлены на приспособление к определенным условиям среды (на холод — повышением теплопродукции, в жарком климате — на увеличение поверхности испарения, в условиях гипоксии — на повышенное содержание гемоглобина и увеличение емкости легких и т.
Биоценотический уровень связан с тем, что человек, став биосоциальным существом, все же является частью природы. Находясь в биоценозе, человек (как живое существо) вступает в те или иные взаимоотношения с другими организмами. С некоторыми видами у человека постоянная и тесная связь, поскольку он сам представляет биоценоз, в котором обитают бактерии-симбионты (например, кишечная палочка, компонент нормальной кишечной флоры), кроме того, у человека могут быть экто- и эндопаразиты. Вся среда, окружающая человека, практически представляет собой искусственные, созданные человеком ценозы (биоценозы) или естественные биогеоценозы, в той или иной степени видоизмененные его деятельностью. Абсолютно неизменных биогеоценозов на нашей планете уже нет. В этих биогеоценозах (либо их можно назвать антропобиогеоценозами) про-текагт жизнь, осуществляется быт и хозяйственная деятельность, с ним связаны факторы здоровья и восстановления работоспособности.
С медико-биологических позиций все биогеоценозы можно подразделить на три группы (Логачев, Иоганзен 1978): а) природные биоценозы, еще мало подвергающиеся влиянию человека; б) сельские сообщества; в) городские и промышленные сообщества.
Первая группа ценозов характеризуется еще большим разнообразием диких видов растений и животных. Эти ценозы встречаются в различных ланд-шафтно-географических зонах и в этом отношении представляют собой большое разнообразие. На территории Советского Союза различают следующие ландшафтные зоны: арктических пустынь, тундры, лесотундры, тайги, смешанных и широколиственных лесов, лесостепей, степей, полупустынь, субтропических лесов, муссонных и смешанных лесов.
С природными биогеоценозами связано существование природно-очаговых болезней. Эти очаги на протяжении многих веков могли существовать в природе независимо от человека.
Вторая группа ценозов — сельские сообщества, или агроценозы,— характеризуются небольшими остатками диких растений и животных, значительными территориями, занятыми под культурные растения, большим количеством домашних животных (видовой состав которых ограничен), и возделываемых растений. Такой состав фауны и особенности хозяйственной деятельности могут способствовать распространению некоторых видов зоонозов (эхи-нококкоз, туляремия), геогельминто-зов (аскаридоз, трихоцефалез, анки-лостомидоз), а в странах сжарким климатом и орошаемым земледелием и био-гельминтозов (шистосомоз).
Хозяйственная деятельность в этих ценозах направлена на повышение урожайности культурных растений и продуктивности домашних животных.
Третья группа ценозов— городские и промышленные ценозы, или урбано-ценозы, характеризуется большими скоплениями людей, сравнительно незначительной площадью искусственно насаженной растительности, бедностью фауны, нередко загрязнением окружающей среды, выбросами промышленности и транспорта.
Загрязнение среды и производственные факторы могут быть причиной профессиональных и аллергических заболеваний и травматизма.
Скученность, шум, напряженный темп городской жизни, гиподинамия создают предпосылки для нервных, психических и сердечно-сосудистых заболеваний.
В особый тип биоценозов должны быть выделены космические корабли. Космическая биология — самая молодая область биологической науки, которая изучает действие факторов космического пространства на земные организмы. В задачу космической биологии входит также изучение возможных внеземных форм жизни. В условиях земных биогеоценозов круговорот веществ осуществляется деятельностью трех звеньев организмов: синтетиков, потребителей (гетеротрофов, в том числе человека) и разрушителей органического вещества.
Таким образом, проблема создания космического корабля с замкнутой системой круговорота веществ и жизне-обитания теоретически близка к разрешению и практическое воплощение ее в реальность — дело недалекого будущего.
Находясь в кабине космического корабля, человек на разных этапах полета испытывает влияние различных факторов (перегрузки, вибрация, невесомость). Невесомость— это состояние, когда на тело человека не действует сила тяжести, или эквивалентные ей инерционные силы. Масса тела в этих условиях равна нулю, гидростатическое давление крови в сосудах нивелируется, кровь распределена равномерно во всех частях тела. Таким образом, по сравнению с наземными условиями, кровенаполнение верхней половины туловища становится больше. Усиливается процесс выведения жидкости из организма, а также ионов натрия и кальция. Кроме невесомости на организм человека во время космического полета действуют также ускорение (при взлете, при посадке), шумы, и на отдельных участках полета происходит нарушение биоритмов, вибрация
(68) ПАРАЗИТИЗМ КАК ФОРМА БИОТИЧЕСКИХ СВЯЗЕЙ.
Качественная особенность живых организмов состоит в непрерывной связи с окружающей средой — живой и неживой природой. Биотические связи (между живыми организмами) характеризуются большой сложностью и разнообразием, но в основе их лежат прежде всего пространственные и пищевые отношения. Такие типы связей объединяют между собой различные компоненты биогеоценозов и антропобиогеоценозов.
Различают следующие формы взаимоотношений между особями различных видов: симбиоз, квартирантство, комменсализм, хищничество и паразитизм.
Симбиоз (от греч. syn — вместе, bios — жизнь) — обоюдопо-лезное сожительство, при котором оба партнера приносят пользу друг другу. Так, в кишечнике человека живут кишечные бактерии эшерихии, которые питаются его содержимым и в свою очередь способствуют выработке витаминов группы В, а также обладают способностью подавлять активность возбудителей кишечных заболеваний, например брюшного тифа и бактериальной дизентерии.
Следует иметь в виду, что иногда употребляют термин «симбиоз» в широком смысле слова, объединяя этим понятием все формы отношений между организмами. В этом случае взаимовыгодное сожительство или собственно симбиоз обозначают термином «мутуализм».
Квартирантство — пространственная форма связи, поскольку оба партнера в этом случае могут быть индифферентны друг к другу или извлекает пользу только один партнер, который использует организм или убежище другого в качестве места обитания. Так, норы грызунов используются другими животными (пауки, москиты, блохи и др.); молодь некоторых морских рыб держится около щупалец медуз и в случае опасности прячется под их зонтом.
Комменсализм (от фран. commensal — сотрапезник) -выражается не только в пространственных, но и в пищевых связях. Один из партнеров использует для питания или излишки, или отходы пищи другого, не причиняя ему вреда. В качестве примера можно привести ротовую амебу, обитающую в ротовой полости человека.
Хищничество — однократное использование добычи хищником, так как используемый организм погибает.
Паразитизм (от греч. parasitos — тунеядец) — представляет собой форму взаимоотношений между организмами различных видов, при которой один организм (паразит) использует другого (хозяина) как источник питания и место обитания, причиняя ему вред, но, как правило, не уничтожая его.
Паразитический образ жизни обычно служит специфическим признаком вида, он свойствен всем особям без исключения и закреплен филогенетически.
Формы проявления паразитизма чрезвычайно многообразны. Паразиты могут обитать в различных тканях и органах хозяина, питаться его тканями или переваренной пищей, проводить на теле или в теле хозяина всю свою жизнь или только часть ее, а также быть постоянными паразитами или временными. Даже такое свойство паразитов, как вредоносность, проявляется не всегда, а зависит от вида и состояния паразита и хозяина и окружающей среды. Так, например, мелкая вегетативная форма дизентерийной амебы при определенных условиях не обладает вредоносным действием, а под влиянием провоцирующих факторов приобретает патогенные свойства.
Наиболее близки к паразитизму хищничество и комменсализм, и в ряде случаев бывает трудно провести границу между этими формами биотических связей.
Паразитизм. Подобно тому как для водных организмов средой обитания является вода, для почвенных организмов — почва, для паразитов среда обитания — другие живые организмы. Учение об организме как среде обитания наиболее полно разработано Е. Н. Павловским. Средой по отношению к паразиту будут как органы хозяина, так и другие наделяющие его паразиты. Это среда первого порядка. Но паразиты связаны и с внешней средой, окружающей хозяина (среда второго порядка), которая действует на паразитов опосредованно, через тело хозяина.
Совокупность всех паразитов, одновременно обитающих в каком-либо организме, Е. Н. Павловский назвал па-разитоценозом. Поскольку в любом организме одновременно наряду с паразитами присутствуют и другие симбионты, то А. П. Маркевич предложил совокупность их вместе с организмом хозяина именовать симбиоценозом. Компонентами симбиоценоза являются вирусы, риккетсии, спирохеты, бактерии, грибы, простейшие, гельминты, членистоногие и др. Внутри симбиоценоза между отдельными компонентами и организмом хозяина устанавливаются сложные взаимоотношения.
Взаимоотношения между организмом хозяина и всем комплексом симбиоценоза являются источником патологического процесса (болезни) в организме хозяина. Очень показательны в этом отношении опыты по заражению морских свинок культурой простейших возбудителей болезни амебиаза. Когда заражали свинок, искусственно лишенных кишечных бактерий, то болезнь не наступала, в то время как свинки с «нормальной» микрофлорой поражались тяжелой формой заболевания.
Развитие патогенных грибков в теле человека сдерживается симбиотиче-скими бактериями-комменсалами. Существование их может быть подавленным при лечении больного антибиотиками, чем создаются благоприятные условия для патогенных грибков, по-этому внедрение в медицинскую практику антибиотиков неожиданно повлекло за собой учащение заболеваний, вызываемых паразитическими грибами, в частности рода Candida (канди-дамикоз).
Многочисленные факты убеждают в том, что заболевания, вызываемые паразитами, развиваются вследствие мно-,гообразных отношений между макроорганизмом и комплексом всего симбиоценоза. Установлено, что люди, страдающие гельминтозами (т. е. поражение паразитическими червями — гельминтами), более тяжело болеют туберкулезом, брюшным тифом, некоторыми заболеваниями нервной системы и многими другими болезнями. Это обязательно должен учитывать врач и при лечении какой-либо болезни — необходимо избавлять пациента и от сопутствующих болезней, вызванных паразитическими организмами. При этом не следует забывать, что каждый организм вместе со всем своим симбиоценозом является частью биоценоза (со всеми его биотическими и абиотическими факторами). Когда же дело касается человека, то помимо перечисленных факторов играют роль и социальные условия.
(69) Био- и геогельминты. К. И. Скрябин и Р. С. Шульц (1931) среди паразитических червей выделили две группы в зависимости от характера развития: геогельминтов и биогельминтов.
Геогельминты развиваются без промежуточных хозяев. Для развития их яиц наиболее естественной средой служит почва, что и дало основание назвать их геогельминтами. Заражение человека геогельминтами происходит через немытые овощи и фрукты, на которых могут находиться яйца геогельминтов (например, аскариды, власоглава), либо при непосредственном контакте с почвой, где находятся личинки (например, кривоголовки).
Биогельминты проходят жизненные циклы со сменой хозяев. Между хозяевами биогельминтов существуют трофические (пищевые) связи, благодаря чему осуществляется передача паразитов. Например, человек заражается невооруженным цепнем, поедая говядину.
Жизненные циклы паращитов. включают в себя личинoчные стадии и половозрелые формы. Часть жизненного цикла с определенными стадиями паразит проходит в теле одних хозяев, часть — у других. Организм, в теле которого паразит находится в половозрелой стадии и размножается половым путем, получил название окончательного, или дефинитивного, хозяина (лат. definitivus — окончательный). Организм, в теле которого паразит проходит личиночные стадии или размножается бесполым путем, называется промежуточным хозяином. В жизненном цикле некоторых паразитов личиночные стадии последовательно переходят от одного хозяина к другому. В таком случае первого из них называют первым промежуточным, а второго — вторым промежуточным, или дополнительным, хозяином.
У некоторых паразитов могут существовать резервуарные хозяева. Они не являются обязательными в жизненном цикле паразитов, но, попав в организм такого хозяина, паразит не погибает, хотя и не получает дальнейшего развития. Число таких паразитов в теле резервуар кого хозяина может увеличиваться. При поедании резерву-арного хозяина окончательным хозяином паразит завершает развитие. Резервуарный паразитизм облегчает паразиту проникновение в организм окончательного хозяина.
В кишках человека может паразитировать ленточный червь — лентец широкий. Человек для него — окончательный хозяин. Первым промежуточным хозяином является рачок-циклоп, вторым промежуточным— многие виды рыб. Окончательный хозяин заражается, поедая рыбу. Но рыбу может съесть другая рыба, например щука. Личинки лентеца широкого — плеро-церкоиды — при этом не погибают, а переселяются в мышцы щуки. Здесь плероцеркоиды могут накапливаться. Окончательный хозяин заражается при поедании сырого мяса и икры щуки. Следовательно, для лентеца широкого щука может быть как дополнительным, так и резерву арным хозяином.
Способы проникновения паразита в организм хозяина зависят от биологических особенностей паразита. Передача биогельминтов чаще всего осуществляется при поедании одного хозяина другим. Иногда живые организмы могут быть механическими переносчиками возбудителей заболевания. (Например, мухи и тараканы могут переносить на поверхности тела и в кишках болезнетворных бактерий, цисты простейших и яйца гельминтов. Но участие этих переносчиков не является обязательным, значительно чаще заражение осуществляется без них. Такие необязательные и неспецифические переносчики получили название факультативных.
В других случаях требуется участие специфических переносчиков. Так, передача кровепаразитов связана с питанием специфических переносчиков из типов членистоногих на теплокровных животных. Обычно в теле таких переносчиков паразит претерпевает определенные стадии развития или размножается (например, малярийный плазмодий в теле комара). Специфические обязательные переносчики получили название облигатных.
Итак, в распространении некоторых паразитов принимают участие обли-гатные переносчики. Например, возбудителя малярии — малярийного плазмодия — передает человеку малярийный комар Anopheles. Такой путь передачи возбудителей болезни получил название трансмиссивного (лат. transmissio — передача), а болезни, передающиеся этим путем, называются трансмиссивными.
(70) Трансмиссивные заболевания. Возбудители трансмиссивных заболеваний передаются посредством переносчиков. К ним относятся как паразитарные, так и инфекционные болезни. Различают облигатно-трансмиссивные и факультативно-трансмиссивные заболевания.
Облигатно-трансмиссивные болезни передаются от одного хозяина к другому только через переносчика. Например, малярией или сыпным тифом человек может заразиться только через укус насекомого, так как возбудитель должен попасть в кровь.
Факультативно трансмиссивные болезни могут передаваться как через переносчика, так и без него другими путями, т. е. участие переносчика не обязательно. Примером таких заболеваний могут служить туляремия и чума. Возбудители туляремии могут передаваться от зараженных животных к человеку как с помощью кровососущих членистоногих, так и через загрязненные фекалиями пищевые продукты и воду. Чума может передаваться человеку от грызунов через укус блох, а также контактным путем при снятии шкурок с больных животных, при соприкосновении с больным человеком.
Специфические связи между возбудителем и хозяином позволяют выделить следующие группы трансмиссивных заболеваний:
— зоонозы — болезни, свойственные только животным (малярия птиц);
— антропозоонозы — болезни, возбудители которых могут поражать как животных, так и человека. В этом случае переносчик может передавать возбудителя от животных к человеку и обратно (таежный энцефалит, лейшманиоз, чума);
— антропонозы — болезни, которые свойственны только человеку (трихомонадоз, амебиаз).
Таким образом, переносчикам принадлежит исключительно важная роль в распространении многих, иногда принимающих массовый характер, эпидемических заболеваний.
Природноочаговые заболевания. Основоположником учения о природной очаговости заболеваний является Е. Н. Павловский. На основании экспедиционных, полевых, лабораторных и экспериментальных работ в 1939 г. им была выделена новая категория заболеваний — заболевания с природной очаговостью.
Заболевания этой группы имеют ряд характерных особенностей: 1) циркулируют в природе независимо от человека; 2) резервуаром служат дикие животные, составляющие с возбудителями и переносчиками биоценотический комплекс; 3) распространены не повсеместно, а на ограниченной территории большей или меньшей протяженности, с определенным географическим ландшафтом, что связано с ареалом распространения компонентов биоценоза.
Таким образом, условиями возникновения и существования очага служит присутствие возбудителя, восприимчивого к возбудителю животного-резервуара, переносчика и соответствующих природных (климатических, ландшафтных) условий, обеспечивающих существование компонентов данного биоценоза. Так, природный очаг таежного энцефалита представляет собой участок неосвоенной тайги с соответствующими обитателями. Природный очаг лейшманиоза — это часть территории полупустыни или пустыни, населенная песчанками, зараженными лейшманиями, и москитами, обитающими в их норах.
Существующий природный очаг потенциально опасен для человека. Если человек оказывается на его территории (геологическая разведка, охота, экспедиция, лесоразработки и т. д.), то ему может быть передан возбудитель антропозбонозов и человек заболевает.
Первоначально природная очаговость была установлена по отношению только к трансмиссивным заболеваниям, таким, как таежный весенне-летний энцефалит, клещевой возвратный тиф, лейшманиоз и др. Позднее выяснилось, что природно-очаговый характер имеют заболевания, распространяемые без участия переносчика, — нетрансмиссивные, в том числе гельминтозы, такие, как описторхоз, парагонимоз, дифиллоботриоз и др. В природных очагах нетрансмиссивных заболеваний (токсоплазмоз, бешенство, гельминтозы) передача возбудителя осуществляется в основном пищевым и контактным путем. Перечень заболеваний с природной очаговостью в настоящее время расширился. Сюда относятся чума, туляремия, клещевой возвратный тиф, лейшманиоз, таежный энцефалит, геморрагические нефрозо-нефриты, многие гельминтозы и т. д.
Учение Е. Н. Павловского о природной очаговости заболеваний сыграло огромную роль в дальнейшем развитии медицинской паразитологии. Оно определило совершенно новый подход к профилактике этой группы заболеваний. Если раньше основной мерой предупреждения заболеваний считалось лечение больных и уничтожение переносчиков, теперь основной целью стало уничтожение животных-резервуаров.
Учение Е. Н. Павловского о природно-очаговых болезнях. Е.Н. Павловский выделил особую группу болезней, характеризующихся природной очаговостью. Природно-очаговы-ми называются болезни, связанные с комплексом природных условий. Они существуют в определенных биогеоценозах независимо от человека, но когда люди попадают в эти биогеоценозы, то могут подвергнуться заражению. Возбудители природно-очаговых болезней циркулируют среди диких животных и являются сочленами естественных биогеоценозов.
Существование очагов таких болезней обусловлено наличием трех групп организмов: а) организмов, возбудителей болезней; б) организмов, являющихся хозяевами возбудителя (естественный резервуар возбудителя болезни); в) организмов, переносчиков возбудителя болезни, если данное заболевание распространяется трансмиссивным путем. Так, в некоторых районах Средней Азии встречается заболевание — пендинская язва. Возбудитель ее — один из видов простейших — лей-шмания (Leischmania major). Природным резервуаром для лейшманий служат мелкие грызуны, обитающие в пустыне,— песчанки. Обдигатными переносчиками являются насекомые из отряда двукрылых — москиты.
Многие из паразитарных болезней являются природно-очаговыми. При разработке мероприятий по борьбе с природно-очаговыми болезнями необходимо учитывать биологические особенности возбудителя, переносчика и животных, служащих резервуаром возбудителя. Прекращение распространения природно-очаговой болезни можно достигнуть, если выключить какое-либо звено в цепи циркуляции возбудителя.
Подавляющее большинство природно-очаговых болезней передается трансмиссивным путем, но существуют при-родно-очаговые болезни и с другими путями передачи (описторхоз, дифил-лоботриоз, трихинеллез).
Природно-очаговые болезни, распространяемые облигатно-трансмиссивным путем, могут встречаться только внутри ареалов их переносчиков или там, где обитают соответствующие промежуточные хозяева. Распространение природно-очаговых болезней ограничено и другими, прежде всего климатическими, условиями. Особенности трансмиссивных и природно-очаговых болезней необходимо учитывать при постановке диагноза и разработке профилактических мероприятий.
Паразитология и медицина. Из почти полутора миллионов видов животных около 60 000 ведут паразитический образ жизни, в том числе около 500 видов могут паразитировать у человека и локализуются во многих органах (рис. 16. 1). В связи с этим одним из разделов науки о паразитах — паразитологии — является медицинская паразитология.
Характерная черта паразитов — их патогенность (гр. pathos — страдание, genos — рождение), т. е. способность вызывать заболевание. Название болезней, вызываемых паразитами, образуется из корня родового названия паразита, к которому прибавляется суффикс — os, иногда — es или — аs. Отсюда заболевание, вызванное одноклеточным паразитом, лейшманией, называется лейшманиозом, дизентерийной амебей — амебиазом, печеночным сосальщиком, или фасциолой,— фас-циолезом и т. д.
Заболевания, возбудители которых поражают только человека, называются антропонозами. Биологическим хозяином и источником возбудителей этих болезней является зараженный человек.
Заболевания, возбудители которых поражают организм животных и человека, называются зоонозами. При этом источником возбудителей заболеваний являются домашние и дикие животные. Многим из зоонозов свойственна природная очаговость. Заболевания, вызываемые вирусами и возбудителями растительной природы, например спирохетами, бактериями, риккетсиями, называются инфекционными. Болезни, связанные с возбудителями животной природы — простейшими, гельминтами, членистоногими; получили название инвазионных.
Стадии развития паразита, в которых он способен проникнуть в тело хозяина и после этого продолжает свое развитие, носят общее название инвазионных. Так, малярийный плазмодий в-организме человека претерпевает ряд стадий, но только стадия гаметоцита, попав в тело комара, будет продолжать дальнейшее развитие. Следовательно, для комара инвазионной стадией является гаметоцит. В теле комара плазмодий также проходит ряд стадий, но из них только стадия спорозоита является инвазионной для человека.
Для предупреждения заражения паразитарными болезнями проводят профилактические мероприятия. Различают личные и общественные профилактические мероприятия. К числу личных относятся те мероприятия, которые должен выполнять каждый. Общественные профилактические мероприятия проводятся в больших коллективах, в масштабах населенного пункта, определенного административного или географического района или даже всей страны. В их организации и контроле за их выполнением большая роль принадлежит медицинским работникам. Морфология, биологические особенности, географическое распространение паразитов человека, равно как и вызываемые ими заболевания (паразитозы), меры профилактики, лечение и пути ликвидации паразитов человека составляют предмет изучения медицинской паразитологии.
(71) Тип Простейшие (Protozoa). К этому типу относится примерно 20—25 тыс. видов. Простейшие широко распространены на нашей планете и обитают в самых различных средах — в морях и океанах, пресных водах, а некоторые виды — в почве. Многие простейшие приспособились к обитанию в теле других организмов — растений, животных, человека.
В связи с большим распространением и практическим значением простейших выделилась специальная наука о них — протозоология и как ее раздел — медицинская протозоология.
К типу простейших организмов относятся организмы, тело которых состоит из цитоплазмы и одного или нескольких ядер. Это дает основание говорить, что простейшие сохраняют черты клеточного уровня организации. Протоплазма в теле простейших образует одну клетку, поэтому их называют одноклеточными (Monocytozoa). В этом отношении их противопоставляют всем другим типам животных, включающим многоклеточные организмы (Metazoa).
Однако нужно отметить, что при морфологическом сходстве клеток простейших с клетками многоклеточных они существенно отличаются друг от друга. Клетка простейшего — самостоятельная особь, выполняющая все функции целостного организма, в то время как клетки многоклеточного животного составляют только части целого, полностью от него зависящие и выполняющие специализированные функции.
Подавляющее большинство простейших имеет микроскопические размеры, колеблющиеся в пределах от 3 до 150 мкм. Лишь наиболее крупные представители этого типа, например, раковинные корненожки, обитающие в полярных морях у берегов СССР, и ископаемые нуммулиты достигают в диаметре 2—Зсм.
Части тела простейшего, выполняющие различные функции, называют органеллами, или органоидами. Имеются органоиды двух типов: общего значения, характерные для любых клеток (митохондрии, центросомы, рибосомы и др.), и специального значения, выполняющие жизненные функции одноклеточных как самостоятельных организмов.
Органоидами движения у различных представителей типа могут быть ложноножки (псевдоподии), жгутики, реснички. Органоиды пищеварения состоят из пищеварительных вакуолей. В теле некоторых простейших имеются сократительные (пульсирующие) вакуоли, играющие роль органоидов саморегуляции, выделения и дыхания. Многие сзободноживущие простейшие имеют наружный скелет в виде раковины.
В протоплазме простейших можно отличить два слоя — эктоплазму и эндоплазму. Эктоплазма расположена снаружи; она однородна (гомогенна) и более плотна, чем внутренний слой, т. е. эндоплазма. Поверхность эктоплазмы наиболее, уплотнена. Из нее образуется периферическая пленка — пелликула, являющаяся частью живой протоплазмы. На поверхности пелликулы иногда образуется кутикула. Кутикула не обладает свойствами живой протоплазмы.
Характерной чертой большинства простейших является прохождение сложных циклов развития.
Многие простейшие в неблагоприятных условиях образуют цисты, т. е. становятся неподвижными, принимают округлую форму, перестают питаться, процессы обмена веществ у них замедляются, снаружи они покрываются плотной оболочкой, защищающей от высыхания, неблагоприятной температуры, воздействия вредных веществ. В инцистированном состоянии простейшие легко расселяются. Заражение рядом протозойных заболеваний, т. е. таких, возбудители которых относятся к типу простейших, происходит при попадании цист в организм человека с загрязненной пищей и водой. При попадании цист в благоприятные условия происходит эксцистиро-вание и превращение в вегетативную форму, способную к передвижению, питанию и другим жизненным функ-
Явления раздражимости у простейших проявляются в виде таксисов. Заглатывание пищи нередко происходит путем фагоцитоза. Иногда органические вещества всасываются осмотически, у некоторых из свободноживу-щи.х простейших имеется хлорофилл, и они способны в известной мере к аутотрофному типу питания, путем фотосинтеза.
Деление типа простейших на классы базируется в основном на строение органоидов и особенностях размножения. Тип простейшие делится на четыре класса: саркодовые (Sarcodina), жгутиковые (Flagelata), споровики (Sporozoa) и инфузории (Infuzoria).
(72) Тип Простейшие (Protozoa). Класс Саркодовые (Sarcodina).
Дизентерийная амеба Entamoeba histolytica – open петер-ким ученым Ф.А.Лешем в 1875.
Лок. – толстые кишки чел.
Геог. – повсеместно, но чаще в стр.с жарким климатом.
Морф. – цисты им. 4 адра. Размеры цист = 8-16 мкм. В кишки чел. амеба может попасть в стадии цисты. Здесь оболочка проглоченной цисты р-ся и из нее вых 4 малые амебы (E.histolytica forma minuta). Их диаметр=12-25мкм. Обитает в содержимом кишок. Пит. бак., видимо ущерба здоровью не наносит. Если усл. не благо-ют переходу в тканевую форму, то она попад. в ниж. отделы кишок и вывод. с фекалиями во внеш. ср. Если усл. способ. переходу в тканевую форму (E.histolytica forma magna), то размеры ↑ до 23мкм, приобрет. способ. выдел. ферменты, р-щие тканевые белки. => разруш.эпителий слизистой оболочки, амеба проник. в тк.и → кровоточащие язвы толстой кишки.
Д-ка – х-ен кровавый стул, частота =3-10 раза в сутки. Болезнь может fin смертью. Диагноз ставится в случае нахождения вегетативных форм и цист в фек-ях.
Проф-ка – Личная – мытье рук, термич. обработка пищи и питьевой Н2О, тщат. мытье овощей, фруктов. Предохран. прод. от попад. на них мух. Общественная – наблюд. за санитарным состоянием источников водоснабжения, пищ. предприятий, лечение больных амебиозом и цистоносителей.
Кишечная амеба Entamoeba coli – непатогенна, морф-ки сходна с дезентер. Также → вегетатив. формы и цисты, но расщип. белок фер. не выдел. и в стенку кишек не проник. Заглочен. эритроц. в ее протоплазме никогда не наблюд. Циста содер. 8 ядер, размеры=13-25мкм.
Ротовая амеба Entamoeba gingivales – часто встеч. в кариозныз зубах и в белом налете, покрыв. зубы. Размеры=6-60мкм. Пит.бак.и лейкоцитами. Патогенное действие не ясно. Свободноживущ. пресновод. амебы способны давать мутантные формы, посел. в орг. чел. и вызыв. тяж. забол. ЦНС.
Тип Простейшие (Protozoa). Класс Жгутиковые (Flagellata) Трихомонады – Кишечная тр. (Trichomonas hominis): Лок. – в толстых кишках.
Геог. – повсеместно.
Морф. – мален. биченосец 5-15мкм, овал. ф., 1 пузеривидное ядро, 3-4 жгут., ундулирую. мем. Тело пронизано опорным стержнем, закан. заострен. шипом на заднем конце тела. Пит. бактер., жид. в-ми. Размнож. продол. дел.
Ди-ка – зарож. ч/з пищу и Н2О, загрязнен. фекалиями.
Влагалищ. тр. (Trichomonas vaginalis): Лок. – мочеполов. пути.
Геог. – повсеместно.
Морф. – > размеры 7-30мкм, форма тела грушевидная, им. 4 жгутика, ундулирующ. мем., опор. стерж., закан. шипом.
Ди-ка – восполит. проц. в пол. путях. Зарож. пол. путем. или использ.чего-то общего.
Тип Простейшие (Protozoa). Класс Жгутиковые (Flagellata) Трипаносома Trypanosoma brucei gambiense – возб. африк. сон. болез.
Локализация – в теле чел., обит. в плазме кр., лимфе, лимф. узлах, спинномозг. жид., тк. спин. и голов. мозга.
Географ. – экватор-ные районы Запад. Аф.
Морф. – размер=13-39мкм. Тело изогнутое, сплющ. в одной плоскости, сужен. на обеих fin, 1 жгут. Пит. осмотич. Разм. беспол. пут. (продольное дел.).
Жизненный цикл – возбудитель развив. со сменой хоз. 1 часть ж.ц. прох. в пищеварит. канале мухи цеце (в желудке). 2 – чел. и нек. млекопит. Чел.– основной резервуар возбудителя. Пол. цикл развития – 20 дней.
Диагностика – мышеч. слабость, истощение, умственная дипрессия, сонливость. Длится 7-10 лет, при отсут. леч.fin смертью. Исследуют кр., пунктаты лимф. узлов, спиномозг. жид.
Профилактика – лек.преп.; уничтож. переносчиков – кустар. вблизи жилищ и по берегам водоемов – обрабатыв. инсектицидами или вырубают.
Trypanosoma brucei rhodesiense – основ. рез. – дикие живот.(антилопы), переносч. – др. вид мухи цеце. Болезнь–3-7мес.Fin смертью.
Trypanosome cruzi – болезнь Чагаса. Броненосцы, оппосумы, муравьеды, перен. – триатомовые клопы. Fin смертью.
Тип Простейшие (Protozoa). Класс Жгутиковые (Flagellata) Лямблия Lamblia intestinalis– open Лямблем в 1859. получ. в искусствен. ср. в 1960 Карапетян.
Лок. – в тонких кишках (12-перст.).
Геог. – повсеместно.
Морф. – размеры 10-18мкм, тело груш., разделен. продольно на прав. и лев. половины. Все органоиды и ядра парные. М/д яд. леж. 2 опорные нити. Посреди тела парабазальные ядра полулун. ф., на вентрал. стороне – присасывательный диск (присас. к слизист. оболоч. хоз.), им.4 пары жгут. Пит. осмотич. Способны к → цист, кот. с фекал. вынос. наружу и рассеив. во внеш. ср.
Ди-ка – зараж. при заглатыв. цист, попав. в овощи, фрукты… Восполит. проц. в ор. у детей. Диагноз при изуч. фикалий, 12-перст. киш-ки.
Тип Простейшие (Protozoa). Класс Жгутиковые (Flagellata) Лейшмании – трансмиссивные заболев. с природ. очагов. Open рус. вр. Боровским в 1898. В 1903-1904 анг.вр. Лейшманом и Донованом. Подраздел. на дерматотропные (в коже), висцератропные (во внут. ор.)
Д. – Leishmania tropica minor et major et maxicana…
Лок-ция – в кл. кожи.
Геогр. – кожный в Евр., Азии, Америки, имеющ. субтропич. климат. Major встреч. в Закавказье, р-ны Туркмении.
Морф. – 2-4мкм, иногда до 8мкм. Внутрикл. параз. 2 стадии: безжгутик.(округл., овал.) в орг. чел. и жгутик. ф.(удлинен.тело., в орг. насек.-переносч. - москиты). Minor – чел., Major – гразуны (песчанки, суслики, хомяки...).
Диаг-ка – округ., долго не зажив. изъявления на open уч. кожи. Берут отдел. из язвы и приготов. мазки, кот. микроскопируют.
Проф-ка – прививки, пров. борьба с моск-ми и грызунами.
В. – L.donovani, L.infantum.
Локк-ция – попад. в кл. кожи→ в кл.внут.ор.
Геог. – в Индии, стр. Средиземноморья, Сред. Азия, Аф., Юж. Амер.
Морф. – переносчики – москиты.
Ди-ка – болеют дети до 12 лет: непериодич. ↑ t0, ↑ селезенки и печени, ↓ содерж. эритроцитов в кр. Делают пунцию грудины, лимф. узлов.
Проф. – защ. от укусов, борьба с моск., грыз.
Тип Простейшие (Protozoa). Класс Споровики (Sporozoa) Токсоплазма Toxoplasma gondii: Лок. – кл. голов. моз., печени, селезенки, лимфат. узлов, мышц и др. ор. чел. и всех видов домаш. живот. и многих видов птиц.
Геог. – повсеместно.
Морф. – токсоплазмы, лок-ные внутри кл. хоз., наз. эндозоидами. Он им. форму полумесяца, размер=4-7 х 2-4 мкм. Один конец у него заострен, др. – закруглен. В центре нах. ядро. Разм. бесполое путем продольного дел. и эндогонии (внут. почкование). Скопление токсоплазмы под клеточ. мем. наз. псевдоцистой. Дом.кошка: в эпителии тонкой кишки из одних эндозоидов → макрогаметоциты, а затем макрогаметы, а из др. – микрогам-циты, а затем микрогаметы. После копуляции возник. зигота, покрыв. плот. оболоч. – форма наз. ооциста, она выдел с испражнениями кошки.
Ди-ка – чел. зараж. при пробывании сырого мяс. фарша или употреб. мяса. Паразиты, попавшие в пищеварит. канал, внед. в стенки тонких кишок, затем лимфой занос. в лимф. узлы, где размнож. и по кровенос. сос. попад. в ор. локализации. У взрослых – редко ведет к острому заболев.с повыш. t0, сыпью, ↑ лимф. узлов.
Пр-ка – чел. как и др. промежут. хоз., источ. заражения быть не может. Огранич. контакта с кош., соблюд. правил лич. гигиены, неупотреб. не достаточно термич. обработ. мяса.
Тип Простейшие (Protozoa). Класс Инфузории (Infusoria) Инфузории – на> сложно устроенные простейшие. Органойды их дв-ия – реснички, они значительно короче жгутиков. У каж.им.2 ядра - > (макронуклеус), < (микронуклеус). Они обит. морских и пресноводных вод, нек. живут во влаж. почве и песке. Ряд видов – паразиты живот. и чел.
Паразитическая инф. Balantidium coli: Лок. – в толстых кишках.
Геог. – повсем., но в стр. с жар. клим.
Морф. – размер=30-200 х 20-70мкм. Форма тела овальная. Им.2 пульсирующ. вакуоли. Им.микронуклеус и макронуклеус (боб-ную форму). Разм. происх. попереч. дел.
Ди-ка – зараж. цистами ч/з загряз. Н2О, пищу, руки. цисты могут разнос. мухами. источник распростран. – свиньи, в кишках кот. он может паразитировать. У чел.вызыв.кровоточ.язвы и кровавый понос. Микроскопич. исследов. фекалий, в кот. обнаруж. слизь, кровь, гной и m паразита.
(73) Тип Простейшие (Protozoa). Класс Споровики (Sporozoa) Малярийный плазмодий – 4 вида: Plasmodium vivax – возб. 3-хдневной малярии, P.malariae – возб. 4-хднев. мал., P.falciparum – воз. тропич. мал., P.ovale – воз. мал. типа 3-хдневной. Эти виды отлич. морф. и биолог. особен., сроками развития в орг. чел.и х-ром вызыв. заболев.
Жиз. цикл – P.vivax, P.ovale, P.malariae: выход спорозоитов из протока слюн. железы и внедрение их в кл. печени (тканевая часть цикла развития); шизогония в кл. печени; шизогония в эритроцитах; гаметогония; жен.гам.; образ. микрогам.; оплодотвор.; зигота; оокинета; ооциста; разрыв зрелой ооцисты и выход спорозоитов; сп-ты в слюн. жел.; поздние тканевые стадии.
Комары рода Anopheles (малярийный), промежут. хоз. – чел.
Ди-ка – периодич.наступ.изнурит.приступов. они сопровожд. ознобом и ↑ t0 до 400. Плазмодии разруш. > число эритроцитов. Кр. рекомен. брать во t приступа либо сразу после него.
Пр-ка – предохран. от укусов комаров (спать под пологами, сетками, защит. средства). 1) выявление и излечение всех больных малярией (ликвидация источ. инвазии). 2) уничтож.комаров (ликвидация пер-ков).
(74) Тип плоские черви (Plathelminthes). Класс сосальщики (Trematodes). Печеночный сосальщик (Fasciola hepatica)
Возбудитель фасциолеза.
Л: Желчные протоки печени, желчный пузырь, поджелудочная железа.
М: марита=3-5см, матка позади брюш. прис.→ яичник, по бокам тела – желточники, средняя часть – семенники.
Яйца желтовато-корич., овал., на одном из полюсов – крышечка.
Ж: fin – тровояд.млек. (адолескарий)
I – малый прудовик (мирацидий)
Яйцо (вода)→ мирацидий (тело мол.)→ спороциста (печень мол.)→ редии→ церкарий (креп.на раст.)→ адолескарий (печень хоз.)
Д: яйца в фекалиях, исключение печени из рациона.
Кошачий (сибирский) сосальщик (Opisthorchis felineus) – описторхоз.
Л: печень, желчный пузырь, поджелудочная железа
М: чепвь бледно-желтого цв., длина=4-13мм. Сред.часть тела – развеет.матка→ округлый яичник. Задняя часть – 2розетковидных семенника.
Яйца – желтоватые, овал., на перед.конце им.крышечку.
Ж: fin – чел., плотояд.млек. (метацеркарий)
I – мол. (яйцо)
II – рыба (церкарий)
Яйцо (вода)→ мирицидий (печень)→ спороциста→ редии→ церкарий (мыш.рыбы)→ метацеркарий (желч.пузырь, печень чел.)
Д: яйца в фек., дуоденальный сок.
Ланцетовидный сосальщик (Dicrocoleum lanceatum) – дикроцелиоз.
Л: печень
М: длина=10мм, кишки им. 2 неразветвл. ствола и слепо закан.в зад. конце. 2 семенника расп. позади брюш. прис. яичник позади семенников, парных желточников (по бокам тела), семяприемник, развеет. матка, заним. зад. часть тела.
Яйца – желтоватые до темно-корич., овал., на одной из сторон им.мален.крашечку.
Ж: fin – травояд.млек. (метациркарий)
I – наземные мол. (яйцо)
II – муравьи (церкарий)
яйцо→ мирацидий (пищев.канал мол.)→ спороциста I п.(печень)→ спороциста II п. (печень)→ церкарий (легкое мол.)→ метацеркарий
Д: исследование фекалий
Легочный сосальщик (Paragonimus ringeri) – парагонимоз
Л: легкие
М: форма тела – яйцевид., покрыта шипиками, длина=7,5-16мм
Яйца – золотисто-корич., овл.
Ж: fin – чел., плотояд.живот., свиньи (метацеркарий)
I – мол. (мирацидий)
II – раки, крабы (церкарий)
яйцо→ мирацидий→ спороциста→ редии→ церкарии→ метацеркарий
Д: яйца в фек.
Кровяные сосальщики, или шистосомы,— возбудители шмстосомозов.
Локализация. Все шистосомы живут в просветах кровеносных сосудов, как правило, в венах.
Географическое распространение. Шистосомы встречаются в ряде стран (см. ниже) с тропическим и субтропическим климатом.
Морфофизиологические особенности. В отличие от других видов, кровяные сосальщики раздельнополы. Молодые особи живут раздельно, но по достижении половой зрелости (примерно в возрасте 6 мес.) соединяются попарно. У самца тело шире и короче (10— 15 мм), чем у самки (до 20 мм). На брюшной стороне самиа находится желобок, в котором лежит самка.
Жизненный цикл. Для некоторых видов шистосом окончательным хозяином является только человек, для других — наряду с человеком различные млекопитающие. Промежуточные хозяева — несколько видов пресноводных моллюсков. Из яйца, попавшего в воду, выходит мирацидий, который является инвазионной стадией для моллюсков. В теле моллюсков у шистосом последовательно развиваются два поколения спороцист, после чего образуются церкарии, являющиеся инвазионной стадией для окончательного хозяина.
Церкарии выходят из промежуточного хозяина, плавают в воде и активно вбуравливаются в тело человека обычно при купании, работе в воде и на рисовых полях, при питье воды из рек и оросительных систем и т. д. Одежда не препятствует проникновению цер-кариев в организм окончательного хозяина.
Проникшие в организм окончательного хозяина церкарии по лимфатическим и кровеносным сосудам попадают в правый желудочек сердца, затем б легкие и далее половозрелые формы мигрируют в вены брыжейки, стенок кишок, мочеполовой системы.
Известны три вида кровяных трема-тол, паразитирующих у человека. Они отличаются рядом биологических особенностей, локализацией в теле хозяина и географическим распространением. Шистосомозы — природно-очаговые заболевания.
Schistosoma haematobium — возбудитель уро-генитального шистосомоза (или биль-гарциоза), паразит крупных вен брюшной полости и органов мочеполовой системы. Это заболевание распространено в Египте, Южной Африке, Австралии, Иране и других странах. Обызве-ствленные яйца этой шистосомы обнаружены в египетских мумиях, что говорит о значительной древности этого паразитоза человека. Окончательными хозяевами являются человек и обезьяны. Яйца паразита обладают шипом, с помощью которого разрушают стенку кровеносных сосудов; затем.они попадают в мочеточник или мочевой пузырь и с мочой выводятся во внешнюю среду. Дальнейшее развитие и пути заражения изложены выше. Диагноз ставится при нахождении яиц паразита при микроскопическом исследовании мочи.
В биологии урогенитальной шистосомы проявляется тонкая адаптация к поддержанию существования вида, выражающаяся в том, что яйца паразита попадают в мочу только в жаркое время суток, когда вероятность попадания их в воду больше, что и необходимо для их дальнейшего развития. Это следует учитывать и при диагностике: в утренней моче больного яйца шистосомы не обнаруживаются.
Schistosoma mansoni — возбудитель кишечного шистосомоза (или бильгарциоза) — паразитирует в венах брыжейки и кишок. Распространен в Африке, Индонезии, Южной Америке. Яйца попадают в кишки хозяина и с фекалиями выводятся во внешнюю среду. Лабораторная диагностика основана на обнаружении яиц в фекалиях.
Schistisima japonicum — возбудитель японского шистомоза. Как и предыдущая шистосома, паразитирует в кровеносных сосудах кишок. Распространена в Южной Японии, Южном Китае, на Филиппинах. Окончательными хозяевами наряду с человеком могут быть дикие и домашние млекопитающие. Заболевание протекает тяжело и часто заканчивается смертью. В целях лабораторной диагностики исследуют фекалии.
Профилактика. Методы личной профилактики сводятся к тому, чтобы не купаться и не иметь контакта с водой в тех водоемах, где могут быть церка-рии различных шистосом. Общественная профилактика состоит в предохранении водоемов от загрязнения человеческими выделениями.
(75) Тип плоские черви (Plathelminthes). Класс Ленточные черви (Cestoidea). Цепень вооруж. (свин.) (Taenia solium) – тениоз
Л: ленточная – тонкие кишки
финны – мыш.
М: 2-3м, муж.пол.ап.=неск.сотен Семен., извилистый семяизверг.канал.
Ж: fin – чел. (финна=цистерк)
I – свинья (яйца)
яйцо→ онкосфера→ цистицерк (мыш.свиньи)→ финна
Д: зрелые проглотиды в фек.
Цепень невооруж. (бычий) (Taeniarhynchus sagitatus) – тениаринхоз
Л: ленточ. – кишки чел.
М: длина=4-7м, на сколексе 4 присоски, крючьев нет. В яичнике 2 дольки.
Ж: fin – чел. (финны)
I – круп.рог.скот (яйца)
яйцо→ онкосфера→ цистицерк (мым.)→фин
Д: проклотиды в фек., яйца с соскоба с периональных складок
Цепень карликовый (Hymenolepis nana) – гименолепидоз.
Л: тонкие кишки чел.
М: длина=1-5см, на сколексе 4 присоски и хоботок с венчиком из крючьев.
Ж: fin, I – чел.
яйцо→ онкосфера (ворсинки кишок)→ цистицеркоид
Д: яйца в фек.
Лентец широкий (Diphyllobotrium latum) – дифиллоботриоз
Л: тонкие кишки
М: длина=7-10м, сколекс лишен присосок, 2 ботрии, желточники в боковых частях. Матка в форме петель (розетка)
Яйца – желтовато-корич., овал., на 1 из полюсов видна крышечка.
Ж: fin – чел. (плероцеркоид)
I – циклоп (корацидий)
II – рыба (процеркоид) – мыш.
яйцо→ корацидий→ онкосфера→ процеркоид→ плероцеркоид
Эхинококк (Echinococcus granulosus) – эхинококкоз
Л: личинки – печень, легкие, гол.моз., труб.кости.
М: длина=2-6мм, сост.из 3-4 членников. Последний – зрелый, предпослед. – гермафродитный.. на сколексе 4 присоски и хоботок с 2 венчиками.
Ж: fin – собака, волк, шака (финны)
I – чел., круп.и мелк.рог.скот (яйца)
яйцо→ онкосфера (кровен.сосуды)→ финны
Д: иммунологическая р-ия, рентген.исслед.
Альвеококк (Alveococcus multilocularis) – многокамерный эхинококкоз.
Л: личинки – печень, гол.моз., труб.кости, легкие
М: отлич. кол-ом крючьев, шаровид.ф.матки
Ж: fin – лисицы, собаки, кошки
I – мышевидные грызуны
Д: иммунодиагностика.
(76) Тип Плоские черви (Plathelmintes). Плоских червей известно около 7300 видов. Они встречаются в морских и пресных водах, почве; многие перешли к паразитическому образу жизни.
Для животных, относящихся к типу плоских червей, характерны: 1) трех-слойность, т. е. развитие экто-, энто-и мезодермы у эмбрионов; 2) наличие кожно-мускульного мешка (так как покровы тела срастаются с мышцами); 3) отсутствие полости тела (пространство между органами заполнено паренхимой); 4) билатеральная симметрия; 5) форма тела сплюснутая в спин-но-брюшном (дорсо-вентральном) направлении; 6) наличие развитых систем органов: мышечной, пищеварительной, выделительной, нервной и половой.
Из этого типа рассмотрим два класса: сосальщиков (Trematodes) и ленточных (Cestoidea), включающих в себя паразитов, имеющих медицинское и ветеринарное значение.
Класс Сосальщики (Tremathodes). Известно около 3 тыс. видов сосальщиков. Все сосальщики — паразитические организмы. По своему строению они сходны с ресничными червями (плана-риями), а отличия их в ословном связаны с паразитическим образом жизни. Для сосальщиков характерны сложные жизненные циклы. Половозрелая гер-мафродитная стадия сосальщиков носит название мариты. Тело мариты сплющено в виде листочка. Рот расположен на брюшной стороне переднего конца тела и вооружен мощней мускулистой присоской. Кроме этой присоски существует еще одна на брюшной стороне, служащая для прикрепления к органам хозяина.
Покровы тела и аппарат движения. Стенку тела составляет кожно-мускуль-ный мешок, состоящий из тегумента (наружного покрова), сросшегося с лежащими под ним мышцами. Тегумент образован из слоя клеток, слившихся между собой, так что образовалась общая масса протоплазмы (синцитий). Наружная часть тегумента состоит из безъядерной цитоплазмы, содержащей большое число митохондрий; глубокая внутренняя часть тегумента содержит ядра. Под тегументом находится ба-зальная мембрана, за которой расположены гладкая мускулатура, состоящая из кольцевых, продольных и диагональных мышечных волокон.
Пищеварительная система. Ротовое отверстие ведет в мускулистую глотку, представляющую собой мощный сосущий аппарат. За глоткой следует пищевод и обычно разветвленные, слепо заканчивающиеся кишки.
Нервная система расположена в виде окологлоточного нервного кольца и отходящих от него трех пар нервных стволов, из которых лучше развиты боковые. Нервные стволы связаны между собой перемычками. Благодаря этому нервная система напоминает решетку.
Выделительная система. Представлена мощно развитыми ветвящимися протонефридиями. Протонефридии начинаются в глубине паренхимы клетками звездчатой формы, получившими название конечных или терминальных. Эти клетки многочисленны, разбросаны в паренхиме всего тела.
В терминальных клетках имеются канальцы с пучком ресничек, колеблющихся подобно пламени свечи. Отсюда название их — мерцательное, или ресничное, пламя. Терминальные клетки впадают в канальцы, стенки которых состоят уже из многих клеток. Они открываются в боковые канальцы, обладающие большим просветом, и, наконец, сообщаются со внешней средой выделительными порами. Терминальные клетки вбирают из паренхимы тканевую жидкость, содержащую конечные продукты диссимиляции. Мерцательное пламя содействует продвижению ее по каналам к выделительным порам и удалению из организма.
Половая система. Почти все сосальщики — гермафродиты. Мужская половая система состоит из пары семенников, двух семяпроводов, сливающихся в семяизвергательный канал, и копулятивного органа (цирруса). Женская- половая система устроена сложно. Яичник, желточники, семяприемник открываются в оотип, где совершается оплодотворение и окончательное формирование оплодотворенных яиц. Из желточников поступает питательный .материал для яиц. Сюда же попадают выделения специальных желез — телец Мелиса. Из оотипа яйца перемещаются в матку и выводятся наружу через половое отверстие. У некоторых сосальщиков оплодотворение происходит в семяприемнике. Осеменение обычно бывает перекрестным. Реже наблюдается самоосеменение.
Для сосальщиков характерны специализация и упрощение в строении некоторых органов, обусловленное паразитическим образом жизни. Специализация проявляется в наличии присосок, шипов, крючьев и других образований на поверхности тела, в мощном развитии половых органов, прохождении сложных жизненных циклов и в интенсивном размножении на различных стадиях жизненного цикла. Морфологическая дегенерация (упрощение организации) выражается в отсутствии органов чувств у половозрелых форм, являющихся эндопаразитами.
Сложные жизненные циклы сосальщиков связаны с прохождением ряда стадий развития. На этих стадиях осуществляется половое размножение как с оплодотворением, так и без него, т. е. партеногенетически, что обеспечивает огромное число потомков, необходимое для поддержания существования вида. Сосальщики произошли, по-видимому, от ресничных червей, перешедших к паразитическому образу жизни. У человека и домашних животных паразитирует несколько видов сосальщиков. Заболевания, вызванные ими, носят общее название трематодозов.
Класс Ленточные черви (Cestoidea). Известно около 1800 видов ленточных червей. Все они — облигатные эндопаразиты, в половозрелой стадии паразитирующие в кишках. Их тело сплющено в дорсовентральном направлении, имеет форму ленты. На переднем конце находится головка — сколгкс, далее — шейка и затем стробила, состоящая из члеников — проглоттид.
Сколекс может быть более или менее округлым либо уплощенным. Он снабжен приспособлениями для прикрепления к стенке кишки — присосками, присасывательными щелями и крючьями. Наличие тех или иных органов прикрепления и их число характеризуют различные виды цестод. Новые проглоттиды отпочковываются от шейки, в силу чего образовавшиеся ранее членики отодвигаются назад. Таким образом, чем дальше от шейки, тем старше членики.
Покровы тела. Снаружи тело червя покрыто кожно-мускульным мешком. Поверхностный слой его — тегумент — морфологически сходен с таковым сосальщиков, а функционально аналогичен слизистой оболочке кишок позвоночных. В нем обнаружен ряд пищеварительных ферментов. Кроме того, тегумент цестод выделяет антипротеоли-тический фермент, предохраняющий паразита от переваривания в кишках хозяина. Под тегументом залегают слои мышц: наружный (кольцевой), внутренний (продольный) и диагональный.
Пищеварительная система отсутствует. Цестоды живут в кишках хозяина, где окружены жидким питательным материалом, который они всасывают осмотически всей поверхностью тела. Кроме того, клетки тегумента выделяют пищеварительные ферменты, что способствует перевариванию и усвоению окружающей пищи. В связи с обитанием ленточных червей в бескислородной среде биоэнергетические процессы протекают по типу брожения.
Выделительная система представлена протонефридиями. Главные стволы прогонефридиев расположены по боковым сторонам тела.
Нервная система состоит из переднего нервного узла (ганглия), расположенного в сколексе, и двух главных боковых стволов, тянущихся вдоль всего тела. Органы чувств, кроме органов осязания, отсутствуют.
Половая система в проглоттидах, ближайших к шейке, еще отсутствует, но по мере роста члеников начинает развиваться. Вначале появляются мужские, а затем женские органы. Герма-фродитные проглоттиды в средней части стробилы достигают половой зрелости. В них находятся яичник, желточ-ник, влагалище, оотип и обычно недоразвитая матка, а также семенники, протоки которых сливаются в семяиз-вергательный канал. Конец этого канала представляет собой копулятив- ный орган — циррус.
У многих видов цестод матка не имеет наружного отверстия. В таких случаях она сильно развивается, а к этому времени другие части полового аппарата заканчивают свою функцию и подвергаются обратному развитию. Их место занимают разветвления матки. Строение матки у цестод различных видов весьма характерно и является систематическим признаком, используемым также при диагностике заболеваний. У некоторых цестод имеется выводное отверстие матки и через него яйца с онко-сферами выводятся наружу.
Осеменение перекрестное, но иногда наблюдается слияние половых клеток, образующихся в одном и том же члени- ке или разных члениках одного и того же червя.
Развитие. Первые стадии развития оплодотворенного яйца, вплоть до образования зародыша, протекают в матке. Здесь внутри оболочки яйца развивается шестикрючный зародыш — онкосфера.
Для дальнейшего развития онкосфера должна попасть в промежуточного хозяина, в органах которого она развивается в личинку — финну. Строение финн различно и характерно для каждого вида цестод. Различают: 1) цистицерк, имеющий форму пузыря, заполненного жидкостью, внутрь которого ввернута головка с присосками. Головка может выворачиваться наружу; 2) ценур — пузырь с несколькими ввернутыми головками; 3) цистицер-коид, у которого спереди имеется вздутая часть с ввернутой головкой, а на заднем конце находится хвостовид-ный придаток; 4) эхинококк — большой материнский пузырь с дочерними и внучатыми пузырями внутри. В последних развиваются сколексы. Полость пузыря заполнена жидкостью, содержащей продукты жизнедеятельности паразита; 5) плероцеркоид, имеющий червеобразную форму. На переднем конце его тела находятся две присасывательные бороздки.
Развитие личинок во взрослую половозрелую форму происходит в кишках окончательного хозяина, где головка под влиянием пищеварительных соков выворачивается и прикрепляется к стенке кишки, а пузырь распадается. От шейки начинается развитие проглоттид. Окончательные, хозяева обычно заражаются, поедая зараженных промежуточных хозяев. Теми и другими в большинстве случаев являются позвоночные.
Ленточные черви произошли, по-видимому, от ресничных (турбеллярий). Отсутствие кишок сближает их с бескишечными турбелляриями. Паразитический образ жизни позволил сохранить эту примитивную черту, но'наря-ду с этим обусловил появление специализированных признаков (органы фиксации, сильное развитие половой системы, расчленение тела на проглоттиды). Существует и другая точка зрения на филогению ленточных: что они произошли от одной из групп трематод (моногенетических сосальщиков).
(77) Тип круглые черви (Nemathelmintes). Класс собственно круглые черви (Nematoda)
Аскарида человеческая (Ascaris lumbricoides) – аскаридоз
Л: тонкие кишки
М: ♀=40см, ♂=15-25см. у самца конец закручен на брюшную сторону.
Яйца – окруж. толстой бугристой об-кой, овал.
яйцо→ личинка (прободает стенку кишки, кровенос.сос., печень, правое предсердие и желудочек, легкие, лег.альвеолы, бронхи, трахея)
Д: яйца в фек., исслед.макроты, иммунологич.методы.
Власоглав (хлостовик) (Trichocephalus trichiurus) – трихоцефалез.
Л: слепая кишка, верхние отделы толстой кишки.
М: длина=3-5см, зад.конец самца спир. закручен ЯЙЦА – бочоночки
Д: яйца в фек.
Острица (Enterobius vermicularis) – энтеробиоз.
Л: нижний отдел тонких кишок
М: червь белого цв., длина=10мм, 2-5мм. Зад.конец у самца спирально закручен.
Яйца – безцв., несимметричны, уплощены с 1 стороны, пит.содержимым кишок.
Д: нах.выпол.остриц, яйца соскоба с периональных складок.
Кривоголовка (анкилостома) (Ancylostoma duodenale) – анкилостомоз
Л: 12-пер.
М: червь красноватого цв., длина=10-18мм, 8-10мм. На головном конце распол. рот. капсула с 4 зубцами.
Яйца – овал., с притуплен. полюсами
Д: анализ фек.
Угрица кишечная (Strongyloides stercoralis) – стронгимоидоз
Л: тонкие кишки
М: длина=2-3мм, 0,7мм, у самца зад.конец тела заострен и загнут на брюшную сторону.
Д: личинки еще в свежих фек.
Ришта (Dracunculus medinensis) – дракункулез
Л: подкожная клетчатка, коло суставов преимущ.НК.
Географ: Ирак, Индия, тропическая Африка и ряд других стран.
М: Нитевидная самка достигает в длину от 30 до 150 см при толщине 1—1,7 мм.Длина самца 12—29 мм, толщина—0,4 мм.
Жизненный цикл связан со сменой хозяев. Окончательный хозяин — человек, иногда собака, промежуточный — циклоп.
Находясь в подкожной клетчатке окончательного хозяина, ришта образует шнуровидный валик, на конце которого формируется пузырь, заполненный некротическими массами. После прорыва пузыря обнаруживается передний конец паразита. Самка ришты живородящая. При обмывании язвы водой она отрождает множество личинок, выбрасываемых струей.
Дальнейшее развитие личинок происходит в том случае, если они попадают в водоем и проглатываются циклопом. В теле циклопа осуществляется дальнейшее развитие и образуются личинки — микрофилярии. При питье сырой нефильтрованной воды окончательный хозяин (человек, собака) может проглотить циклопа, пораженного мик-рофилярией. В желудке окончательного хозяина циклоп переваривается, а микрофилярии ришты прободают стенку кишки и затем проникают в подкожную клетчатку, где достигают половой зрелости примерно через год.
Д: Дракункулез проявляется в виде зуда и затвердения в местах локализации паразита. При локализации возле суставов больной лишается возможности ходить. Язвы болезненны; кроме того, они могут сопровождаться вторичной инфекцией. В поздней фазе заболевания до появления язв диагноз может быть поставлен при наличии хорошо заметных извитых валиков под кожей в местах локализации паразита.
П: В существующих зарубежных очагах дракункулеза не следует пить некипяченную или нефильтрованную воду. Общественная профилактика заключается в охране мест водоснабжения (хаузы), запрещении купания в них, коммунальном благоустройстве населенных мест (водопровод).
Ф и л я р и и (круглые черви семейства Filariidae) — возбудители филя-риозов. Они имеют удлиненное нитевидное тело, утончающееся к концам. Размеры очень мелкие. Биогельминты. Развитие происходит со сменой хозяев. Человек — окончательный хозяин. Заражение филяриатозами происходит трансмиссивным путем. Взрослые фи-лярии паразитируют в различных органах; самки живородящи. Личинки (микрофилярии) циркулируют в крови и активность их подчинена суточному ритму. У видов, распространяемых комарами, микрофилярии в периферических кровеносных сосудах обычно появляются ночью, а распространяемых слепнями — днем, т. е. тогда, когда активны насекомые-переносчики. В теле промежуточного хозяина личинки развиваются в мышцах и жировом теле, дважды линяют и, достигнув инвазионной зрелости, проникают в колющий ротовой аппарат насекомого. При насасывании крови человека они активно внедряются в его кожу и проникают в кровеносное русло и лимфатическую систему.
Wuchereria bancrofti — возбудитель вухерериоза. Размеры самки около 80—100мм, самца около 40 мм. Единственный окончательный хозяин — человек, промежуточный — комары родов Anopheles, Сulex, Аedes и др. Взрослые филярии в теле человека живут до 20 лет, локализуются в лимфатических сосудах и узлах. Обычно самцы и самки переплетаются между собой, образуя клубок. Самки рождают микрофилярии, которые мигрируют из лимфатической системы в кровеносную. Продолжительность их жизни около 70 дней. Если они при сосании крови человека попадут к промежуточному хозяину — комару, то здесь в зависимости от температурных условий, цикл развития длится от 8 до 35 дней.
Вухерериоз широко распространен в тропических странах Азии, Африки, Америки, отмечен в Австралии.
Начальная стадия заболевания проявляется в лихорадке, сыпи на коже, отеках отдельных органов. Через 2— 7 лет появляются расширения вен и лимфатических сосудов, наконец, наступает элефантиаз (слоновость) — сильное деформирующее и обезображивающее увеличение различных частей тела, чаще всего ног, половых органов, у женщин — грудей.
Brugia malayi — возбудитель бругиоза. Размеры самки около 55 мм, самца — около 22 мм. Самки живородящие. Окончательный хозяин для некоторых штаммов — человек, для других еще и некоторые животные: дикие и домашние кошки, собаки, обезьяны. Промежуточные хозяева — комары Аnopheles, Аёdes и др. Жизненный цикл паразита и вызываемое заболевание сходно с вухерериозом. Распространен в ряде стран Азии.
Loa loa — возбудитель лоаоза. Размеры самки около 50 мм,самца — около 30 мм. Окончательный хозяин — человек, но, возможно, могут быть и некоторые обезьяны. Промежуточный хозяин — слепни рода Спгузорз. В слепнях микрофилярии достигают инвазионной зрелости через 7—10 дней. Распространен лоаоз в зоне влажных тропических лесов Западной и Центральной Африки.
Болезнь проявляется в аллергической реакции (лихорадка, зуд кожи), через 1—3 года появляется «опухоль», подкожная и внутриглазная миграция взрослых гельминтов, чему сопутствуют кожный зуд, отек век и конъюнктивы, сильные боли в глазу; проникновение паразитов в уретру вызывает сильные боли.
Оnchocerca volvulus — возбудитель онхоцеркоза. Размеры самки около 33—34 мм, самца — от 19 до 42 мм. Окончательный хозяин — только человек, промежуточные хозяева — мошки рода 51ти1шт. В теле про_межу-точного хозяина личинки паразита достигают инвазионной зрелости в течение 6—7 дней. Продолжительность жизни взрослых гельминтов в теле человека до 20 лет, отдельных генераций личинок (микрофилярии) 1—3 года. Онхоцеркоз широко распространен в странах Африки, очаги его имеются и в тропической зоне Америки.
Патогенное значение имеют как взрослые паразиты, так и микрофилярии. Онхоцеркоз проявляется в виде подкожных поражений, связанных с реактивным разрастанием соединительной ткани вокруг погибших и живых гельминтов. Но наиболее характерная черта заболевания — поражение глаз, нередко приводящее к потере зрения. Предполагается, что в Африке онхоцер-козом болеют не менее 20 млн. человек, из которых около 1—2 % ослепли.
Профилактика филяриатозов — выявление и лечение больных, борьба с комарами, слепнями, мошками, выявление мест их выплода и ликвидация их.
Нематоды животных, личинки которых способны мигрировать в теле человека и вызывать заболевания. Личинки некоторых круглых червей, паразитов плотоядных и крупного рогатого скота, которые в организме облигатных хозяев проделывают миграцию, способны совершать миграцию и в организме человека аналогично человеческой аскариде, но у несвойственных им хозяев они не способны пройти полный цикл развития. Такие личинки могут инкапсулироваться в различных органах. Клинический синдром этого явления получил название 1arva migrans. Различают кожную и висцеральную формы указанного синдрома.
Основные проявления: аллергическая реакция (крапивница, отек легкого), увеличение печени, иногда явления, сходные с воспалением мозговых оболочек. Тяжелые формы висцеральной формы могут заканчиваться смертью. Заражение происходит в результате употребления в пищу овощей из огородов, загрязненных фекалиями животных, и несоблюдения правил личной гигиены, часто при близком контакте с зараженными кошками и собаками.
Профилактика общественная: охрана огородов от загрязнения испражнениями животных, обследование и лечение кошек и собак от гельминтов. Кроме того, необходимо соблюдать правила личной гигиены.
Трихинелла (Trichinella spiralis) – трихинеллез
Л: личинки – попереч.-полос.мускул.
Половозрелые – тонкие кишки
М: длина=2,6-3,6мм, 1,4-1,6мм.
Живородящие.
Д: клинические симптомы (оттек век, лица; лихорадка, мыш.боли, исследов. икронож. мышц
(78) Тип круглые черви (Nemathelmintes). Для живот. относ. к типу круг. чер., х-ны: 1) трухслойность, т.е.развитие экто-, энто-, мезодермы у эмбрионов.
2) наличие первичной полости тела и кожно-мускул. мешка.
3) билатер. симметрия.
4) вытянутое несегментир. тело, им.в попереч. сечении > или < округлую форму. 5) наличие систем ор. – мыш., пищеварит., нерв. и половой.
6) раздельнополость.
7) появление третьего, заднего отдела пищев. сист. с заднепроходным отверстием.
Класс Собственно круглые черви (Nematoda)
Покровы тела и ап. дв-ния: кожно-муск. мешок образован кутикулой, гиподермой, мускулатурой. По данным Богоявленского, у чел. аскариды – кутикула состоит из 10 слоев. Она выпол. ф-ии наруж. ск. и защиты от механ. и хим. фак. залег. под ней гиподерма сост. из сплош. массы протоплазмы: клетки с ред. яд. и вакуол., границ м/д ними нет. Гиподерма прониз. многочислен. фибриллами. В гиподерме активно протек. обмен. проц. и происх. интенсив. биосонтез. Она же явл. барьером, задержив. вред. д/гельминта в-ва.
Под гиподермой располож. мускул., она сост. из отдел. кл., сгруппирован. в 4 тяжа продольных мыш., отделен. др.от др. валиками гиподермы – спинным, брюшным и 2-мя боковыми.
Внутри кож.-муск. мешка им. заполнен. жид. первич. полость тела, или псевдоцель. Морфологич. особен. эт. пол. сост. в том, что она не выстл. мезодерм. эпит. В ней располаг. внут. ор. Кроме того, в пол. под > Р нах. жид., что созд. опору д/соматич. муск. По некот. данным, полость заполн. прозрач. кл. В состав ор. вх. не> число кл.
Пищеварительная сист.: нач. рот. отвер., распол. на перед.fin тела. Рот окруж.3-мя «губами». Сист. пред. собой прямую трубку, кот. дел. на 3 отдела – перед., сред., зад. Перед. и зад. отделы эктодерм. происх., средний – энтодерм. Заканч. кишка анальным отверстием, расположен. на зад. конце тела с брюш. стор. У нек. видов заднепроход. отвер. отсут.
Кровен. и дых. сист.: отсут. Дых. осущ. ч/з покровы.
Выделит. сист.: представ. 1-2 одноклеточ. кож. жел. От жел., отходят выросты в виде 2-х боковых каналов, леж. в боковых валиках гиподермы. Сзади каналы оканчив. слепо, а в перед. части соед. в 1 непарный канал, ореn наружу порой позади «губ». Ф-ей выдел.облад. и особые фагоцитарные кл., располож. по ходу выдел. каналов. В кл. накап. нераствор. продукты диссимил., а также инородные тела, попад.в полость тела.
Нерв.сист.: сост. из окологлоточного кольца, от кот. отход. нерв. стволы – спин., брюш., 2 боковых. Стволы соед. др. с др. комиссурами. Ор. чувств развиты слабо. Они представ. ор. осязания и ор. хим. чувства – бугорками, расположен. преимущ. вокруг рта, а у самцов и осязательными бугорками на зад. конце тела.
Половая сист.: трубч. строения. У самки – парные, у самца – непарные. Муж. пол. ап. сост. из семенника. За ним след. семяпровод, переход. в семяизверг. канал, открывающ. в зад. кишку. Жен. пол. ап. нач. прав. и лев. яичниками, далее идут правый и левый яйцеводы в виде трубок > диамиетра, прав. и лев. матки, им.на> диам. Обе матки соед. в общее влагалище, открыв. наружу на брюш. стор. Размн. только половое.
(80) Тип Членистоногие (Arthropoda).
1) 3-хслойность, т.е.развитие 3 зарод.листков у эмбриона.
2) билатеральная симметрия.
3) гетерономная членистость тела, выраж.в том, что сегменты тела им.разное строение и выполн.различ.ф-ии.
4) слияние сегментов в отделы тела.
5) появл.членистых конеч., представляющ.собой многоколенчатый рычаг.
6) обособление мыш.и появл.исчерчен.муск.
7) наруж.хитинизирован.ск., защищ.от внеш.вред.воздействий и предназнач.д/прикреп.мыш.
8) полость тела – миксоцель, образующ.во t эмбрион.развит.в результ.слияния первич.и вторич.полости тела.
9) наличие сист.ор.: пищев., дых., выделит., кровен., нерв., эндокринной, половой.
Впервые в проц. эв. у членистоногих появл. конеч. Их строение (двувестный тип) и расположение (у низших – посегментное) док-ют их связь с пароподиями кольчецов. Конеч. сост. из члеников и соедин. с телом подвижно, что обеспеч. возможность слож. дв-ий. Ф-ии конеч. многообраз. – они служ. не только ор. передвиж. в различ. ср., но и ор. чувств, рот. ап., ор. защиты и нападения.
Пищ.сист.: сост.из 3 отделов: перед., сред., зад., закан. заднепроход. отверст. Сред. отд. снабжен пищеварит. жел.
Ор.дых.: зависит от усл. обит.: у водных форм – жабры, способ.использ.О2, р-ный в Н2О; у наземных – легкие и трахеи, приспособ. к использ.О2 возд.
Ор.выдел.: у нек. классов представлены измен. метонефридиями.
Кров.сист.: сердце, располож. на спин. стор. тела. КС не замкнутая.
Нерв.сист.: сост.из надглоточ. ганглия, окологлоточ. комиссур, брюш. нерв. цепочки. Но слияние нерв. узлов, особен. в голов. отделе.
Подтип жабернодышащие (Branchiata)
Класс ракообразные (Crustacea)
Низшие раки обит. в толще Н2О и вх. в состав планктона. Они им. важ. знач. в б/с, явл. существенной состав. частью пищевого рациона мн.рыб и китообраз. Циклопы и диаптомусы – промеж. хоз. лентеца широкого и ришты.
Высшие раки – обит. морс. и пресс. вод. Явл. промеж. хоз. д/легочного сосал. Использ. в пищу.
Подтип хелицеровые (Chelicerata)
Класс паукообразные (Arachnida)
Покровы тела и ап.дв-ния: Тело раздел. на головогрудь и брюшко. Степень расчлен. неодинак. Им. 6 пар конеч.: 2 пары (хелицеры, педипальпы) состав. рот. ап., остальные 4 пары – ходильные конеч.
Пищ.сист.: полужид. пища. Глотка выпол. ф-ию сосательного ап.
Дых.сист.: листовид. легкие, трахеи. Все они ореn наружу особыми отверстиями – стигмами. на бок. частях члеников. В лег. мешках располож. многочислен. листовид. складки, в кот. им. кровен. капиляры. Легкие гомологичны жабрам ракообр. Трахеи предст. собой сист. развет. трубочек, кот. подходят непосредственно ко всем ор., где соверш. тканевой газообмен.
Выделит.сист.: у многих → мальпигиевые сосуды, сост.из 1 или неск. пар выростов киш. трубки (на границе сред. и зад. кишок), располож. в пол. тела. Из них прод. жизнедеят. поступ. в зад. отдел кишок.
Кровен.сист.: на> слож. пост. у скорпион. и пауков, ор. дых. кот. явл.л егкие. > проста у кот. ор. дых. служат трахеи.
Нерв.сист.: х-ся С составляющ. ее частей. У нек. форм брюш. нерв. цепочка слив. в 1 головогрудный ганглий.
Подтип трахейнодышащие (Tracheata)
Класс насекомые (Insecta)
Покровы тела и мыш.сист.: им. хитизиров. покров, под кот. залег. однослойный гиподерм. эпителий. Кожа богата жел.: пахучими, восковыми, линочными. Мышцы исчерчен. (попер.-пол.).
Пищ.сист.: нач. ртом, кот. ведет в рот. полость. Сюда open протоки слюн. жел. перед. отдел киш-ка им расширение – зоб. Переварив. и всасыв. пищи соверш. в сред. киш., кот. перех. в зад., открыв. наружу анальным отверстием.
Ор.дых.: трахеи, т.е. сист. ветвящ. трубок, кот. распредел. возд. по телу, достигая всех ор.
Ор.выдел.: мальпигиевые сос., впад. в кишки на границе сред. и зад. Просвет их заполнен зернами мочевой к-ты.
Ор.кров.: сердце и аорта располож. на спин. стороне. В связи с тем, что им. разветв. сеть трахей, кров. сист. развита слабо и лишина ф-ей переносчика О2. Жид., циркул. по по кров. сист., наз. гемолимфой. В ней нах. белые кровеные тельца.
Нерв.сист.: в брюш. нерв. цепочке сильно выраж. тенденция к С ганглиев в гол. отделе, а у нек. насек. С распростран. и на груд. отдел, в кот. все ганглии сливаются в единую массу.
Ор.чувств: глаза взрослых – фасеточные, но могут быть и прост. Им. ор. р/в, вкуса, обоняния, слуха.
Сист.воспроизведения: все насек. раздельнополые. Развитие происх. с метаморфозом. При полном метаморф. насек. прох. стадии яйца, личинки, куколки и взрослой формы. При неполном метамор. выпад. стадия куколки.
Иксодовые клещи (Ixodidae)
Насосавшись кр. самки достиг. 10мм и >. У самца на спине нах. щиток, зокрыв. всю дорсал. поверх. У самок, нимф и личинок щиток заним. только перед. часть тела, на остальной поверх. хитин тонкий, легко растяжимый. Рот. ап. расп. терминально на верхнем конце тела. Он сост. из массивного основания педипальп, на кот. по бок. распол. 4-хчленист. пальпы и посередине хоботок. Его ниж. часть состав. гипостом – вырост основания. Зад. стор. гипостома снабжена острыми зубцами, направлен. назад. сверху к гипостому прилежат футляры, в кот. лежат 2-хчленистые хелицеры. Концевой членик хелиц. несет круп., острые зубцы и подвижно соединен с предыдущим.
Яйца отклад. в почву. В проц.развития → личинка, 1 поколение нимф и имагинальная форма. Смена стадий прох. после кровососания. Личинки пит. на мелк. позвоноч., взрослые формы – на круп. живот. Напившись кр. самки отклад. яйца и погибают.
Таежный клещ (Ixodes persulcatus)
Переносчик и природ. резервуар вирус. весенне-лет. энцефалита. Окраска корич. 3-ххоз. Личинка корм. на грызунах, ежах, пт., уходит в почву и там линяет. Нимфы на бурундуках, белках, зайцах. Взрос. – круп. рог. скот, лоси, олени. Самки способны к трансовариальной передаче возбудителя.
Иксодовые клещи явл. не только переносчиками, но и эктопаразитами. Поражая кож. покровы, он вводит в рану слюну, в результате чего развивается воспалит. проц.
Аргазовые клещи (Argasidae)
Цвет серый. Не им. щитков. боковые края в сред. части почти параллельны др.др. Рот. ап. расп. вентрально и не виден со спинной стороны. Продолж. жизни – 25лет. Самки отклад. яйца неск. раз в теч. жизни. Обит. в естествен. или искусствен. убежищах. Длит. голодание до 10лет.
Поселковый клещ (Ornithodorus papillipes)
Переносчик и резервуар возврат. клещ. тифа. обит.в жилищах чел. Они напад. ночью. Способны к длит.голод. до 10лет, сохран. способность к передаче заболев. Явл. эктопаразитами. Самки способны к трансовариальной передаче возбудителя.
Чесоточный клещ (Sarcoptes scabiei)
Тело широховатое, возб. забол. чесотки. на поверх. тела мн. корот. шипиков и длин. щетинок. Ноги укорочены. 2 пары ног расп. по бокам рот. ап., 2 отнесены к зад. концу тела. Глаз нет. Дых. происх. ч/з поверх. тела. продолжит. жизни 4-5 недель. Цикл развития вкл. личинку, нимфу, имаго.
Отряд вши (Anoplura)
Головная вошь (Pediculus humanus capitis)
Лок. на волос. части головы. 2-3 мм. Тело сплющ. в дорсально-вентральном направ. Голова маленькая, хор. отграничена от груди. На гол. им.2 усика, 2 прост.глаз, колюще-сос. рот. ап. груд. Сегменты слиты, грудь несет 3 пары ног. Брюшко сост. из 10 члеников. У самцов в конце брюшка виден копулятивный ап. На бок. сторонах груд. и брюш. сегмен. расп. стигмы. Развитие с неполным метаморф. Слюна ввод. ранку, выз. огрубл. кожи, пигментацию.
Платяная вошь (Pediculus humanus humanus)
Живет на нательном белье и одежде, при сосании кр. перех. на тело. 4,7мм. Менее глубокие вырезки по краю брюшка и менее выраженная пигмент. боковых частей сегментов брюшка. Яйца отклад. на волосках одежды. Переносчик сыпного тифа, возвратного тифа. При сосании кр. больного чел. Возбудители попад. в кишечник вши. Зараж. происх. при втирании фекалий в ранку.
Лобковая вошь (Phthirus pubis)
Лок.в областе лобка, ресниц, бровей. 1-1,5мм. Тело укороч., широкое, суженое кзади. Граница м/д грудью и брюшком не выражена.
Отряд блохи (Aphpaniptera)
Крысиная блоха (Xenopsylla cheopis) – возб.чумы активно разм.в желудке блохи, образуя пробку «чумной блок».
Отряд двукрылые (Diptera)
Комнатная муха (Musca domestica)
Темного цв., голова полушаровидная, по бокам несет крупные фасеточные глаза, спереди – рот. ап. На лапках им. коготки и клейкие лопасты. Рот. ап. – лиж.-сос. Ниж. губа превращ. в хоботок, на конце кот. им.2 сосат. дольки, м/д ними распол. рот. отверст. Верх. челюсти и первая пара ниж. чел. атрофированы. Верх. губа и язык распол. на перед. стенке хоботка. Слюна содер. фер., р-ющ. тв. в-ва. Яйца отклад. в гниющ. в-ва раст. или живот. происх. Одна кладка содерж.100-150тыс. Из яйца вых. членистая червеобраз. личинка белого цв. без ног и обособленной головы. Лич. пит. жид. пищей. Куколка неподвижна, снаружи покрыта толстой кутикулой корич. цв.
Переносчик кишеч. инфек. – холеры, дизентерии; дифтерии, туберкулеза, яйца гельминтов и цисты простейших.
Домовая муха (Muscina stabulans)
Тело окраш. в бурый цв., ноги и щупики желт. цв. Пит.фек., пищ. чел.
БОРЬБА С МУХАМИ: провед. санитар. мероприятий. Недопустимо загряз. фек. чел. почвы. Использ. инсектициды.
Москиты (Phlebotomus)
Окраска корич.-сер., светло-желт. Голова не>, им.корот.колющ.-сос.ап., усики, фасеточные глаза.
МЕРЫ БОРЬБЫ: обработка жилых помещений инсектицидами, в рирод. усл. уничтож. грызунов в норах.
Скачано с www.znanio.ru
Материалы на данной страницы взяты из открытых источников либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.