Дисперсия случайной величины и ее свойства. Среднее квадратическое отклонение случайной величины. Примеры.
Оценка 4.7
Раздаточные материалы
docx
математика
Взрослым
20.02.2018
Дискретной называют случайную величину, значения которой изменяются не плавно, а скачками, т.е. могут принимать только некоторые заранее определённые значения. Например, денежный выигрыш в какой-нибудь лотерее, или количество очков при бросании игральной кости, или число появления события при нескольких испытаниях. Число возможных значений дискретной случайной величины может быть конечным или бесконечным (счётным множеством) Для сравнения - непрерывная случайная величина может принимать любые значения из некоторого числового промежутка: например, температура воздуха в определённый день, вес ребёнка в каком-либо возрасте, и т.д.
Дисперсия случайной величины и ее свойства.docx
Дисперсия случайной величины и ее свойства. Среднее
квадратическое отклонение случайной величины.
Примеры.
1. Дискретная случайная величина, закон и функция
распределения
Дискретной называют случайную величину, значения которой изменяются не
плавно, а скачками, т.е. могут принимать только некоторые заранее
определённые значения. Например, денежный выигрыш в какойнибудь лотерее,
или количество очков при бросании игральной кости, или число появления
события при нескольких испытаниях. Число возможных значений дискретной
случайной величины может быть конечным или бесконечным (счётным
множеством) Для сравнения непрерывная случайная величина может
принимать любые значения из некоторого числового промежутка: например,
температура воздуха в определённый день, вес ребёнка в какомлибо возрасте, и
т.д.
Закон распределения дискретной случайной величины представляет собой
перечень всех её возможных значений и соответствующих вероятностей. Сумма
всех вероятностей pΣ i = 1. Закон распределения также может быть задан
аналитически (формулой) и графически (многоугольником распределения,
соединяющим точки (xi; pi)
Функция распределения случайной величины это вероятность того, что
случайная величина (назовём её ) примет значение меньшее, чем конкретное
числовое значение x: F(X) = P( < X). Для дискретной случайной величины
функция распределения вычисляется для каждого значения как сумма
вероятностей, соответствующих всем предшествующим значениям случайной
величины. Ниже будет приведён пример, разъясняющий смысл сказанного.
ξ
ξ
2. Числовые характеристики дискретных случайных величин
Математическое ожидание дискретной случайной величины есть сумма
произведений всех её возможных значений на их вероятности: M(X) = x1p1 + x2p2 +
... + xnpn
Свойства математического ожидания. 1) Математическое ожидание
постоянной величины равно самой величине: М(С) = С 2) Постоянный множитель
можно выносить за знак математического ожидания: М(СХ) = С∙М(Х) 3)
Математическое ожидание суммы случайных величин равно сумме
математических ожиданий слагаемых: М(Х1 + Х2 + …+ Хn) = М(Х1) + М(Х2) + ... +
М(Хn) 4) Математическое ожидание произведения взаимно независимых
случайных величин равно произведению математических ожиданий
сомножителей: М(Х1 ∙ Х2 ∙ ... ∙ Хn) = М(Х1) ∙ М(Х2) ∙ ... ∙ М(Хn) Дисперсия дискретной случайной величины есть математическое ожидание
квадрата отклонения случайной величины от её математического ожидания: D(X)
= (x1 M(X))2p1 + (x2 M(X))2p2 + ... + (xn M(X))2pn = x2
npn [M(X)]2
1p1 + x2
2p2 + ... + x2
Свойства дисперсии. 1) Дисперсия постоянной величины равна нулю: D(С) = 0
2) Постоянный множитель можно выносить за знак дисперсии, предварительно
возведя его в квадрат: D(СХ) = С2∙ D(Х) 3) Дисперсия суммы (разности)
независимых случайных величин равна сумме дисперсий слагаемых: D(Х1 ± Х2 ± ...
± Хn) = D(Х1) + D(Х2) + ... + D(Хn)
Среднее квадратическое отклонение дискретной случайной величины, оно же
стандартное отклонение или среднее квадратичное отклонение есть корень
квадратный из дисперсии: (X) = √D(X)
σ
Мода дискретной случайной величины Mo(X) это значение случайной величины,
имеющее наибольшую вероятность. На многоугольнике распределения мода это
абсцисса самой высокой точки. Бывает, что распределение имеет не одну моду.
Коэффициент вариации случайной величины это относительная мера
вариации. V(X) = | (X)/M(X)| ∙ 100%
σ
Асимметрия (коэффициент асимметрии) случайной величины (и дискретной, и
непрерывной) As(X) величина, характеризующая степень асимметрии
распределения относительно математического ожидания. Коэффициент
асимметрии дискретной случайной величины вычисляется по формуле: As(X) =
[(x1M(X))3p1 + (x2M(X))3p2 + ... + (xnM(X))3pn]/σ3 Если коэффициент асимметрии
отрицателен, то либо большая часть значений случайной величины, либо мода
находятся левее математического ожидания, и наоборот, если As(X)>0, то
правее.
Эксцесс (коэффициент эксцесса) случайной величины (и дискретной, и
непрерывной) Ex(X) величина, характеризующая степень островершинности или
плосковершинности распределения, т.е. степень так называемого «выпада».
Коэффициент эксцесса дискретной случайной величины вычисляется по
формуле: Ex(X) = [(x1M(X))4p1 + (x2M(X))4p2 + ... + (xnM(X))4pn]/σ4 3
Пример
Найти дисперсию и среднее квадратичное отклонение дискретной
случайной величины X, заданной законом распределения:
X
P
4
0.2
5
0.3
10
0.5
Решение.
Дисперсия случайной величины X
D(X) = M(X2)-M2(X).
Найдем математическое ожидание:
М(Х)=4*0,2+5*0,3+10*0,5=0,8+1,5+5,0=7,3. Запишем закон распределения дискретной случайной величины X2:
X
P
16
0.2
25
0.3
100
0.5
М(Х2)=16*0,2+25*0,3 +100*0,5=3,2+7,5+50,0=60,7
D(X) = M(X2)-M2(X)=60,7-(7,3)2 =7,41
Дисперсия случайной величины и ее свойства. Среднее квадратическое отклонение случайной величины. Примеры.
Дисперсия случайной величины и ее свойства. Среднее квадратическое отклонение случайной величины. Примеры.
Дисперсия случайной величины и ее свойства. Среднее квадратическое отклонение случайной величины. Примеры.
Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.