Характеристика жидкого состояния вещества.
Поверхностный слой жидкости. Энергия поверхностного слоя.
Жидкость — это агрегатное состояние вещества, промежуточное между газообразным и твердым.
Вещество в жидком состоянии сохраняет свой объем, но принимает форму сосуда, в котором оно находится Сохранение объема у жидкости доказывает, что между ее молекулами действуют силы притяжения.
Если вокруг молекулы жидкости описать сферу молекулярного действия, то внутри этой сферы окажутся центры многих других молекул, которые будут взаимодействовать с нашей молекулой. Эти силы взаимодействия удерживают молекулу жидкости около ее временного положения равновесия примерно в течение 10-12-10-10 с, после чего она перескакивает в новое временное положение равновесия приблизительно на расстояние своего диаметра. Молекулы жидкости между перескоками совершают колебательное движение около временного положения равновесия.
Время между двумя перескоками молекулы из одного положения в другое называется временем оседлой жизни.
Это время зависит от вида жидкости и от температуры. При нагревании жидкости среднее время оседлой жизни молекул уменьшается.
Итак, в небольшом объеме жидкости наблюдается упорядоченное расположение ее молекул, а в большом объеме оно оказывается хаотическим. В этом смысле говорят, что в жидкости существует ближний порядок в расположении молекул и отсутствует дальний порядок. Такое строение жидкости называют квазикристаллическим (кристаллоподобным).
СВОЙСТВА ЖИДКОСТИ
1.Если время действия силы на жидкость мало, то жидкость проявляет упругие свойства. Например, при резком ударе палкой о поверхность воды палка может вылететь из руки или сломаться; камень можно бросить так, что он при ударе о поверхность воды отскакивает от нее, и лишь совершив несколько скачков, тонет в воде.
2. Если же время воздействия на жидкость велико, то вместо упругости проявляется текучесть жидкости. Например, рука легко проникает внутрь воды.
3. При кратковременном действии силы на струю жидкости последняя обнаруживает хрупкость. Прочность жидкости на разрыв хотя и меньше, чем у твердых веществ, но мало уступает им по величине. Для воды она составляет 2,5-107 Н/м2.
4.Сжимаемость жидкости тоже очень мала, хотя она и больше, чем у этих же веществ в твердом состоянии. Например, при увеличении давления на 1 атм объем воды уменьшается на 50 миллионных долей.
Разрывы внутри жидкости, в которой нет посторонних веществ, например воздуха, могут получаться только при интенсивном воздействии на жидкость, например при вращении гребных винтов в воде, при распространении в жидкости ультразвуковых волн. Такого рода пустоты внутри жидкости долго существовать не могут и резко захлопываются, т. е. исчезают. Это явление называют кавитацией (от греческого «кавитас» – полость). Оно служит причиной быстрого износа гребных винтов.
Поверхностный слой жидкости. Энергия поверхностного слоя
Если молекула находится вблизи поверхности, то действие на нее других молекул уже не уравновешивается и приводит к появлению равнодействующей силы, направленной внутрь жидкости. Для увеличения свободной поверхности жидкости часть молекул должна перейти из объема в поверхностный слой, а для этого необходимо совершить некоторую работу. Поэтому существование поверхности жидкости связано с дополнительной энергией.
Поверхностная энергия – это избыток потенциальной энергии молекул в поверхностном слое по сравнению с энергией молекул в объеме вдали от границы.
Сила поверхностного натяжения – это сила, которая действует вдоль поверхности жидкости, перпендикулярно линии (реальной или мысленной), ограничивающей эту поверхность. В существовании силы поверхностного натяжения можно убедиться с помощью следующих простых опытов.
Наиболее наглядны опыты с использованием мыльной пленки. Положим петлю из нитки на мыльную пленку, полученную при обмакивании проволочного каркаса в мыльном растворе. Пока мыльная пленка внутри петли цела, петля сохраняет любую приданную ей форму (рис. а). Если же пленку внутри петли проткнуть, то нить принимает форму окружности (рис. б). Такая форма обеспечивает минимальную площадь оставшейся на каркасе пленки и тем самым минимальное значение ее поверхностной энергии.
Благодаря поверхностному натяжению жидкость в отсутствие внешних сил принимает форму шара, т. е. имеет минимальную при данном объеме поверхность и соответственно минимальную поверхностную энергию. Так бывает в невесомости, например в кабине космического корабля, где невозможно налить воду в стакан, и при свободном падении дождевых капель.
Количественно поверхностное натяжение s характеризуется отношением модуля F силы поверхностного натяжения, действующей на границу поверхностного слоя, к длине границы l, или, что то же самое, отношением поверхностной энергии Uпов к площади S поверхности:
В случае плоской поверхности жидкости сила поверхностного натяжения не зависит от того, насколько поверхность «растянута».
Строго говоря, само понятие «растяжение» для такой поверхности лишено смысла: чтобы увеличивать площадь поверхности, вытягивая в поверхностный слой из объема все новые и новые молекулы, необходимо, в отличие от случая растягивания резиновой пленки, прикладывать постоянную силу, так как поверхностный слой, увеличиваясь по площади, не меняет своих свойств.
Именно это свойство сил поверхностного натяжения приводит к эквивалентности двух определений величины s в последней формуле.
В самом деле, работа, совершаемая при перемещении ограничивающей мыльную пленку перемычки длиной l на расстояние х равна
, где
– увеличение площади поверхности одной стороны пленки (учтем, что у пленки две стороны). Эта работа равна приращению поверхностной энергии пленки
© ООО «Знанио»
С вами с 2009 года.