Линии магнитного поля прямолинейного провода с током являются концентрическими окружностями. Центры этих окружностей лежат на проводе, а их плоскости перпендикулярны проводу (рис. 1).
Рис. 1. Поле прямого провода с током
Для определения направления линий магнитного поля прямого тока существуют два альтернативных правила.
Правило часовой стрелки . Линии поля идут против часовой стрелки, если смотреть так, чтобы ток тёк на нас.
Правило винта (или правило буравчика, или правило штопора — это уж кому что ближе ;-)). Линии поля идут туда, куда надо вращать винт (с обычной правой резьбой), чтобы он двигался по резьбе в направлении тока.
Пользуйтесь тем правилом, которое вам больше по душе. Лучше привыкнуть к правилу часовой стрелки — вы сами впоследствии убедитесь, что оно более универсально и им проще пользоваться (а потом с благодарностью вспомните его на первом курсе, когда будете изучать аналитическую геометрию).
На рис. 1 появилось и кое-что новое: это вектор , который
называется индукцией магнитного поля, или магнитной
индукцией. Вектор магнитной индукции является аналогом вектора
напряжённости электрического поля: он служит силовой характеристикой магнитного
поля, определяя силу, с которой магнитное поле действует на движущиеся заряды.
О силах в магнитном поле мы поговорим позже, а пока отметим
лишь, что величина и направление магнитного поля определяется вектором
магнитной индукции . В каждой точке пространства вектор
направлен туда
же,куда и северный конец стрелки компаса, помещённой в данную точку, а именно
по касательной к линии поля в направлении этой линии. Измеряется магнитная
индукция в теслах (Тл).
Как и в
случае электрического поля, для индукции магнитного поля справедлив принцип
суперпозиции. Он заключается в том, что индукции магнитных
полей , создаваемых в данной точке
различными токами, складываются векторно и дают результирующий вектор магнитной
индукции:
.
Рассмотрим
круговой виток, по которому циркулирует постоянный ток . Источник, создающий ток, мы
на рисунке не показываем.
Картина линий поля нашего витка будет иметь приблизительно следующий вид (рис. 2).
Рис. 2. Поле витка с током
Нам будет важно уметь определять, в какое полупространство (относительно плоскости витка) направлено магнитное поле. Снова имеем два альтернативных правила.
Правило часовой стрелки. Линии поля идут туда, глядя откуда ток кажется циркулирующим против часовой стрелки.
Правило винта. Линии поля идут туда, куда будет перемещаться винт (с обычной правой резьбой), если вращать его в направлении тока.
Как видите, ток и поле меняются ролями — по сравнению с формулировками этих правил для случая прямого тока.
Катушка получится, если плотно, виток к витку, намотать провод в достаточно длинную спираль (рис. 3 - изображение с сайта en.wikipedia.org). В катушке может быть несколько десятков, сотен или даже тысяч витков. Катушка называется ещё соленоидом.
Рис. 3. Катушка (соленоид)
Магнитное поле одного витка, как мы знаем, выглядит не очень-то просто. Поля? отдельных витков катушки накладываются друг на друга, и, казалось бы, в результате должна получиться совсем уж запутанная картина. Однако это не так: поле длинной катушки имеет неожиданно простую структуру (рис. 4).
Рис. 4. поле катушки с током
На этом рисунке ток в катушке идёт против часовой стрелки, если смотреть слева (так будет, если на рис. 3 правый конец катушки подключить к «плюсу» источника тока, а левый конец — к «минусу»). Мы видим, что магнитное поле катушки обладает двумя характерными свойствами.
1. Внутри катушки вдали от её краёв магнитное поле является однородным : в каждой точке вектор магнитной индукции одинаков по величине и направлению. Линии поля — параллельные прямые; они искривляются лишь вблизи краёв катушки, когда выходят наружу.
2. Вне катушки поле близко к нулю. Чем больше витков в катушке — тем слабее поле снаружи неё.
Заметим, что бесконечно длинная катушка вообще не выпускает поле наружу: вне катушки магнитное поле отсутствует. Внутри такой катушки поле всюду является однородным.
Ничего не напоминает? Катушка является «магнитным» аналогом конденсатора. Вы же помните, что конденсатор создаёт внутри себя однородное электрическое поле, линии которого искривляются лишь вблизи краёв пластин, а вне конденсатора поле близко к нулю; конденсатор с бесконечными обкладками вообще не выпускает поле наружу, а всюду внутри него поле однородно.
А теперь — главное наблюдение. Сопоставьте, пожалуйста, картину линий магнитного поля вне катушки (рис. 4) с линиями поля магнита на рис. 1. Одно и то же, не правда ли? И вот мы подходим к вопросу, который, вероятно, у вас уже давно возник: если магнитное поле порождается токами и действует на токи, то какова причина возникновения магнитного поля вблизи постоянного магнита? Ведь этот магнит вроде бы не является проводником с током!
Материалы на данной страницы взяты из открытых источников либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.