Исследовательская работа на тему: Простые и сложные проценты
Оценка 4.6

Исследовательская работа на тему: Простые и сложные проценты

Оценка 4.6
Исследовательские работы +1
docx
математика
16.05.2023
Исследовательская работа на тему: Простые и сложные проценты
Исследовательская работа посвященная теме "Простые и сложные проценты" в школьном курсе математики
Исследовательская работа на тему_ _Простые и сложные проценты_.docx

 

Муниципальное автономное общеобразовательное учреждение «Средняя школа № 3» городского округа город Урюпинск Волгоградской области

 

Исследовательская работа

 

Простые и сложные проценты

 

        

                           Выполнил: учитель физики

Губаревич Сергей Александрович

МАОУ «СШ № 3» городского

округа город Урюпинск

 Волгоградской области

 

 

 

Урюпинск 2022

Введение

Актуальность. В школе на уроках математики мы познакомились с процентами. Про­центы – это одно из математических понятий, которые часто используется в повседневной жизни. Мне стало интересно, когда человечество впервые узнало про проценты, как они их использовались при решении практических задач. Также меня заинтересовал вопрос, часто ли мы встре­чаемся с процентами в бытовой жизни. Исходя из выше изложенного, я определил для работы сле­дующие цели и задачи.

Проблема исследования состоит в нахождении применения процента в повседневной жизни.

Объект исследования: процент как универсальная единица сравнения различных дан­ных и величин.

Предмет исследования - задачи практического содержания.

Цель исследования: Выяснить, почему и где проценты применяются в жизни.

Гипотеза:

Если имеются данные с разными параметрами, то удобнее сравнить с помощью про­центов.

Исходя из цели и гипотезы, были поставлены следующие задачи исследования.

Задачи:

          1.Изучить историю происхождения процента.

          2.Рассмотреть способы решения задач на проценты.

          3.Исследовать возможности применения «процента».

          4.Научиться решать задачи на проценты, входящие в контрольно-измерительные материалы ОГЭ по математике.

Методы исследований:

Изучение, сбор, анализ, обобщение экспериментального и теоретического материала, проведение социального опроса.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Основная часть

2.1. Как возникли проценты

Сотую долю числа называют процентом числа и обозначают знаком «%».

Это понятие появилось в математике в ходе развития торговли, когда за взятые в долг деньги заимодавец получал с должника какую-либо сумму сверх долга. Обычно эта сумма выражалась в сотых долях. Несколько позже у неё появилось название - проценты.

Слово "процент" произошло от двух латинских слов: "про" - "на" и "центум" - "сто", то есть в буквальном переводе на русский язык процент означает "на сто".

 

Знак % закрепился для обозначения процентов в XVII веке. Вероятно, он произошел от сокращения латинского слова "сепит" в "с/о". При скорописи "с1о" стало выглядеть как "о/о", а затем - "%". Отсюда путем дальнейшего упрощения в скорописи буквы I в наклонную черту произошел современный символ для обозначения процентов.

1% = 0,01

Так же были известны проценты и в Индии. Индийские математики вычислили проценты, применяя так называемое тройное правило. Например, при расчете 5% от 830 записывали: 1% составляет 830/100, 5% составляют (830 – 5)/100= 41,5

Они производили и более сложные вычисления.

В Древнем Риме были широко распространены денежные расчеты с процентами. Рим­ский сенат установил максимально доступный процент, взимавшийся с должника.

В Европе в середине XVII века расширилась торговля и, следовательно, особое внимание об­ращалось на умение вычислять проценты. Тогда приходилось рассчитывать не только процен­ты, но и проценты с процентов (сложные проценты). Часто конторы и предприятия для облег­чения расчетов разрабатывали особые таблицы вычисления процентов. Эти таблицы держались в тайне, составляли коммерческий секрет фирмы.

 

 

2.2. Как решаются задачи на проценты?

 Как найти 1% от числа?Раз 1% это одна сотая часть, надо число разделить на 100. Деление на 100 можно заменить умножением на 0,01. Поэтому, чтобы найти 1% от данного числа, нужно умножить его на 0,01. А если нужно найти 5% от числа, то умножаем данное число на 0,05 и т.д.Пример. Найти: 25% от 120.Решение:

  1. 25% = 0,25;
  2. 120 . 0,25 = 30.

Ответ: 30.

Правило 1. Чтобы найти данное число процентов от числа, нужно проценты записать десятичной дробью, а затем число умножить на эту десятичную дробь.

Пример. Токарь вытачивал за час 40 деталей. Применив резец из более прочной стали, он стал вытачивать на 10 деталей в час больше. На сколько процентов повысилась производительность труда токаря?

Решение:

Чтобы решить эту задачу, надо узнать, сколько, процентов составляют 10 деталей от 40. Для этого найдем сначала, какую часть составляет число 10 от числа 40. Мы знаем, что нужно разделить 10 на 40. Получится 0,25. А теперь запишем в процентах – 25%.

Ответ: производительность труда токаря повысилась на 25%.

Правило 2. Чтобы найти, сколько процентов одно число составляет от другого, нужно разделить первое число на второе и полученную дробь записать в виде процентов.

Пример. При плановом задании 60 автомобилей в день завод выпустил 66 автомобилей. На сколько процентов завод выполнил план?

Решение:

66 : 60 = 1,1 - такую часть составляют изготовленные автомобили от количества автомобилей по плану. Запишем в процентах =110%.

Ответ: 110%.

Пример. Бронза является сплавом олова и меди. Сколько процентов сплава составляет медь в куске бронзы, состоящем из 6 кг олова и 34 кг меди?

Решение:

  1. 6+ 34 =40 (кг) – масса всего сплава.
  2. 34 : 40 = 0,85 = 85 (%) – сплава составляет медь.

Ответ: 85%.

Пример. Слонёнок за весну похудел на 20%, потом поправился за лето на 30%, за осень опять похудел на 20% и за зиму прибавил в весе на 10%. Остался ли за этот год его вес прежним? Если изменился, то на сколько процентов и в какую сторону?

Решение:

  1. 100 – 20 = 80 (%) – после весны.
  2. 80 + 80 • 0,3 = 104 (%) – после лета.
  3. 104 – 104 • 0,2 = 83,2 (%) – после осени.
  4. 83,2 + 83,2 • 0,1 = 91,52 (%) – после зимы.

Ответ: похудел на 8,48%.

Пример. Оставили на хранение 20 кг крыжовника, ягоды которого содержат 99% воды. Содержание воды в ягодах уменьшилось до 98%. Сколько крыжовника получится в результате?

Решение:

  1. 100 – 99 = 1 (%) = 0,01 – доля сухого вещества в крыжовнике сначала.
  2. 20 • 0,01 = 0,2 (кг) – сухого вещества.
  3. 100 – 98 = 2 (%) = 0,02 – доля сухого вещества в крыжовнике после хранения.
  4. 0,2 : 0,02 = 10 (кг) – стало крыжовника.

Ответ: 10 кг.

Пример. Что произойдет с ценой товара, если сначала ее повысить на 25%, а потом понизить на 25%?

Решение:

Пусть цена товара х руб., тогда после повышения товар стоит 125% прежней цены, т.е. 1,25х, а после понижения на 25% , его стоимость составляет 75% или 0, 75 от повышенной цены, т.е.

0,75 •1,25х= 0,9375х,

тогда цена товара понизилась на 6, 25 %, т.к.

х - 0,9375х = 0,0625х;
0,0625 • 100% = 6,25%

Ответ: первоначальная цена товара снизилась на 6,25%.

Правило 3. Чтобы найти процентное отношение двух чисел А и В, надо отношение этих чисел умножить на 100%, то есть вычислить (А : В) • 100%.

Пример. Найти число, если 15% его равны 30.

Решение:

  1. 15% = 0,15;
  2. 30 : 0,15 = 200.

Или

х - данное число;
0,15 • х = 300;
х = 200.

Ответ: 200.

Пример. Из хлопка-сырца получается 24% волокна. Сколько надо взять хлопка-сырца, чтобы получить 480кг волокна?

Решение:

Запишем 24% десятичной дробью 0,24 и получим задачу о нахождении числа по известной ему части (дроби).
480 : 0,24= 2000 кг = 2 т

Ответ: 2 т.

Пример. Сколько кг белых грибов надо собрать для получения 1 кг сушеных, если при обработке свежих грибов остается 50% их массы, а при сушке остается 10% массы обработанных грибов?

Решение:

1 кг сушеных грибов – это 10% или 0, 01 часть обработанных, т.е.
1 кг : 0,1=10 кг обработанных грибов, что составляет 50% или 0,5 собранных грибов, т.е.
10 кг : 0,05=20 кг.

Ответ: 20 кг.

Пример. Свежие грибы содержали по массе 90% воды, а сухие 12%. Сколько получится сухих грибов из 22 кг свежих?

Решение:

  1. 22 • 0,1 = 2,2 (кг) - грибов по массе в свежих грибах; (0,1 это 10% сухого вещества);
  2. 2,2 : 0,88 = 2,5 (кг) - сухих грибов, получаемых из свежих (количество сухого вещества не изменилось, но изменилось его процентное содержание в грибах и теперь 2,2 кг это 88% или 0,88 сухих грибов).

Ответ: 2,5 кг.

Правило 4. Чтобы найти число по данным его процентам, надо выразить проценты в виде дроби, а затем значение процентов разделить на эту дробь.

В задачах на банковские расчёты обычно встречаются простые и сложные проценты. В чём же состоит разница простого и сложного процентного роста? При простом росте процент каждый раз исчисляется, исходя из начального значения, а при сложном росте он исчисляется из предыдущего значения. При простом росте 100% – начальная сумма, а при сложном 100% каждый раз новые и равны предыдущему значению.

Пример. Банк платит доход в размере 4% в месяц от величины вклада. На счет положили 300 тысяч рублей, доход начисляют каждый месяц. Вычислите величину вклада через 3 месяца.

Решение:

  1. 100 + 4 = 104 (%) = 1,04 – доля увеличения вклада по сравнению с предыдущим месяцем.
  2. 300 • 1,04 = 312 (тыс. р) – величина вклада через 1 месяц.
  3. 312 • 1,04 = 324,48 (тыс. р) – величина вклада через 2 месяца.
  4. 324,48 • 1,04 = 337,4592 (тыс. р) = 337 459,2 (р)-величина вклада через 3 месяца.

Или можно пункты 2-4 заменить одним, повторив с детьми понятие степени: 300•1,043 =337,4592(тыс. р) = 337 459,2 (р) – величина вклада через 3 месяца.

Ответ: 337 459,2 рубля

Пример. Вася прочитал в газете, что за последние 3 месяца цены на продукты питания росли в среднем на 10% за каждый месяц. На сколько процентов выросли цены за 3 месяца?

Пример. Деньги, вложенные в акции известной фирмы, приносят ежегодно 20% дохода. Через сколько лет вложенная сумма удвоится?

 

2.3. Социологический опрос

Я   провел  анкетирование обучающихся 8 «А» и 8 «Б»  классов  с целью выяснить, что они знают о процентах. Было опрошено 37 человек.

Вопросы анкеты:

1)Знаете ли вы что такое проценты?                                                            

 2)Можно ли жить без процентов?                                                          

3)Применяете ли вы проценты в своей жизни?

4)Где и как часто вы сталкиваетесь с процентами в жизни?

Итоги анкетирования:

1)       Все ученики знают, что такое проценты.

2)       25% учеников ответило,  что могут жить без процентов.

      75% учеников ответило , нельзя жить без процентов.

3)       20% обучающихся не применяют проценты в своей жизни
80% обучающихся  применяют проценты в своей жизни

4)       Ответ на четвертый вопрос представлен в виде диаграммы:

 

 

По итогам анкетирования  можно сделать вывод, что обучающиеся  знают, что такое процент и осознают важность процентов в повседневной жизни.

При работе над проектом я взял интервью  у представителей  различных профессий. Всем опрошенным я задавал  всего два вопроса:

1.      Применяете ли вы проценты в вашей  профессии?

2.      Приведите пример  задачи на проценты, наиболее часто встречающейся  в вашей профессии.

На первый вопрос все опрошенные ответили, что им часто приходится находить проценты.

Примеры задач на проценты:

1)      Губаревич С.А., учитель физики МАОУ«СШ №3» привел такую задачу:

Из 50 обучающихся 8-х классов за первую четверть 2021 -2022 г. на 4 и 5 закончили 35 обучающихся . Найти качество знаний по школе в процентах. (70%)

2)      Киреева В.С. учитель истории и обществознания:

 Из 25 обучающихся за контрольную работу 16 человек  получили «4» и «5». Какой процент обучающихся получили «4» и «5»?

3)      Блошкина И.В., педагог-психолог

На вопрос «Вы курите?» 13 человек из  опрошенных дали положительный ответ, 37 -отрицательный. В процентном отношении это выглядит так:

Да       3%

Нет     97%

4)      Работник магазина : Шишкова Т.Ю.

 Клиент совершил покупку на сумму 3000 рублей, при этом у него была скидка 25%. Сколько рублей заплатил покупатель при условии, что он использовал скидку?

5)      Бухгалтер:Иванова Екатерина Валерьевна

Подоходный налог установлен в размере 13%. До вычета подоходного налога 1% заработной платы отчисляется в пенсионный фонд. Работнику начислено 11900 рублей. Какова сумма  вычетов?

6)      Работник торговли: Манушкин Д.А.

Виноград стоит 120 руб. Какова стоимость винограда после уценки на 5% ?

7)       Медицинская сестра школы: Антипова Г.В.

В школе  640 обучающихся, отсутствуют -52 человека. По болезни 46 человек. Каков процент заболевших детей?

 

Вывод: Умение решать задачи на проценты необходимо людям любой профессии.

2.4. Где ещё в жизни применяются проценты?

Очень часто можно прочитать или услышать, например, что

 в выборах приняли участие 57% избирателей,

рейтинг победителя хит-парада равен 65%,

молоко содержит 1,5% жира,

материал содержит 100% хлопка .

доля сырьевых доходов в бюджете РФ 40%

Акция: предновогодняя  распродажа – скидки до 50%

Сплав содержит 40% никеля

Влажность 73%

Всхожесть семян 97%

 

Как видим, проценты широко применяются в повседневной жизни. Это связано с тем, что   процент является универсальной единицей сравнения различных величин. Следовательно, каждый человек должен хорошо уметь решать задачи на проценты.

2.5.Задачи на проценты в КИМах на ОГЭ.

В следующем учебном году мне предстоит сдавать ОГЭ по математике за курс основной школы. В  измерительных материалах   много задач на проценты. Я просмотрел много сборников для подготовки к ОГЭ, выбрал  наиболее интересные и сложные  для меня и научился их решать.

Пример. (Вариант 1 № 16. ОГЭ-2022. Математика. Тип. тест. задания_ред. Ященко_2022 -240с)

Спортивный магазин проводит акцию. Любой джемпер стоит 400 рублей. При покупке двух джемперов – скидка на второй джемпер 75%. Сколько рублей придется заплатить за покупку двух джемперов в период акции?

Решение:

Согласно условию задачи получается, что первый джемпер покупается за 100 % его исходной стоимости, а второй за 100 – 75 = 25 (%), т.е. всего покупатель должен заплатить 100 + 25 = 125 (%) от исходной стоимости. Далее можно рассмотреть решение тремя способами.

1 способ.

400 рублей принимаем за 100 %. Тогда в 1% содержится 400 : 100 = 4 (руб.), а в 125 %
4 • 125 = 500 (руб.)

2 способ.

Процент от числа находится умножением числа на дробь, соответствующую проценту или умножением числа на данный процент и делением на 100.
400 • 1,25 = 500 или 400 • 125/100 = 500.

3 способ.

Применение свойства пропорции:
400 руб. – 100 %
х руб. – 125 %, получим х = 125 • 400 / 100 = 500 (руб.)

Ответ: 500 рублей.

Пример. (Вариант 4 № 16. ОГЭ-2021. Математика. Тип. тест. задания_ред. Ященко_2021 -80с)

Средний вес мальчиков того же возраста, что и Гоша, равен 57 кг. Вес Гоши составляет 150 % среднего веса. Сколько килограммов весит Гоша?

Решение:

Аналогично примеру, рассмотренному выше можно составить пропорцию:

57 кг – 100 %
х кг – 150 %, получим х = 57 • 150 / 100 = 85,5 (кг)

Ответ: 85,5 кг.

Пример. (Вариант 7 № 16. ОГЭ-2019. Математика. Тип. тест. задания_ред. Ященко_2019 - 80с)

После уценки телевизора его новая цена составила 0,52 старой. На сколько процентов уменьшилась цена в результате уценки?

Решение:

1 способ.

Найдем сначала долю уменьшения цены. Если исходную цену принять за 1, то 1 – 0,52 = 0,48 составляет доля уменьшения цены. Тогда получаем, 0,48 • 100 % = 48 %. Т.е. на 48 % уменьшилась цена в результате уценки.

2 способ.

Если исходную стоимость принять за А, то после уценки новая цена телевизора будет равняться 0,52А, т.е. она уменьшится на А – 0,52А = 0,48А.

Составим пропорцию:
А – 100%
0,48А – х %, получим х = 0,48А • 100 / А = 48 (%).

Ответ: на 48 % уменьшилась цена в результате уценки.

Пример. (Вариант 9 № 16. ОГЭ-2019. Математика. Тип. тест. задания_ред. Ященко_2019 - 80с)

Товар на распродаже уценили на 15%, при этом он стал стоить 680 рублей. Сколько рублей стоил товар до распродажи?

Решение:

До понижения цены товар стоил 100%. Цена на товар после распродажи уменьшилась на 15%, т.е. стала 100 – 15 = 85 (%), в рублях эта величина равна 680 рублей.

1 способ.

680 : 85 = 8 (руб.) – в 1%
8 • 100 = 800 (руб.) – стоил товар до распродажи.

2 способ.

Это задача на нахождение числа по его проценту, решается делением числа на соответствующий ему процент и путем обращения полученной дроби в проценты, умножением на 100, или действием деления на дробь, полученную при переводе из процентов.
680 : 85 • 100 = 800 (руб.) или 680 : 0,85 = 800 (руб.)

3 способ.

С помощью пропорции:
680 руб. – 85 %
х руб. – 100 %, получим х = 680 • 100 / 85 = 800 (руб.)

Ответ: 800 рублей стоил товар до распродажи.

 

Решение задач на смеси и сплавы, с использованием понятий «процентное содержание», «концентрация», «% -й раствор».

Самые простые задачи этого типа приведены ниже.

Пример. Сколько кг соли в 10 кг соленой воды, если процентное содержание соли 15%.

Решение:

10 • 0,15 = 1,5 (кг) соли.

Ответ: 1,5 кг.

Процентное содержание вещества в растворе (например, 15%), иногда называют %-м раствором (например, 15%-й раствор соли).

Пример. Сплав содержит 10 кг олова и 15 кг цинка. Каково процентное содержание олова и цинка в сплаве?

Решение:

Процентное содержание вещества в сплаве - это часть, которую составляет вес данного вещества от веса всего сплава.

  1. 10 + 15 = 25 (кг) - сплав;
  2. 10 : 25 • 100% = 40% - процентное содержание олова в сплаве;
  3. 15 : 25 • 100% = 60% - процентное содержание цинка в сплаве.

Ответ: 40%, 60%.

В задачах этого типа основным является понятие «концентрация». Что же это такое?

Рассмотрим, например, раствор кислоты в воде.

Пусть в сосуде содержится 10 литров раствора, который состоит из 3 литров кислоты и 7 литров воды. Тогда относительное (по отношению ко всему объему) содержание кислоты в растворе равно. Это число и определяет концентрацию кислоты в растворе. Иногда говорят о процентном содержании кислоты в растворе. В приведенном примере процентное содержание будет таково: . Как видно, переход от концентрации к процентному содержанию и наоборот весьма прост.

Итак, пусть смесь массы М содержит некоторое вещество массой m.

Тогда:

  • концентрацией данного вещества в смеси (сплаве) называется величина ;
  • процентным содержанием данного вещества называется величина с×100%;

Из последней формулы следует, что при известных величинах концентрации вещества и общей массы смеси (сплава) масса данного вещества определяется по формуле m=c×M.

Задачи на смеси (сплавы) можно разделить на два вида:

  1. Задаются, например, две смеси (сплава) с массами m1 и m2 и с концентрациями в них некоторого вещества, равными соответственно с1 и с2. Смеси (сплавы) сливают (сплавляют). Требуется определить массу этого вещества в новой смеси (сплаве) и его новую концентрацию. Ясно, что в новой смеси (сплаве) масса данного вещества равна c1m1+c2m2, а концентрация .
  2. Задается некоторый объем смеси (сплава) и от этого объема начинают отливать (убирать) определенное количество смеси (сплава), а затем доливать (добавлять) такое же или другое количество смеси (сплава) с такой же концентрацией данного вещества или с другой концентрацией. Эта операция проводится несколько раз.

При решении таких задач необходимо установить контроль за количеством данного вещества и его концентрацией при каждом отливе, а также при каждом добавлении смеси. В результате такого контроля получаем разрешающее уравнение. Рассмотрим конкретные задачи.

Если концентрация вещества в соединении по массе составляет P%, то это означает, что масса этого вещества составляет P% от массы всего соединения.

Пример. Концентрация серебра в сплаве 300 г составляет 87%. Это означает, что чистого серебра в сплаве 261 г.

Решение:

300 • 0,87 = 261 (г).

В этом примере концентрация вещества выражена в процентах.

Отношения объема чистого компонента в растворе ко всему объему смеси называется объемной концентрацией этого компонента.

Сумма концентраций всех компонентов, составляющих смесь, равна 1.

Если известно процентное содержание вещества, то его концентрация находится по формуле:
К = P/100%,
где К - концентрация вещества;
P - процентное содержание вещества (в процентах).

Пример. (Вариант 8 № 22. ОГЭ-2021. Математика. Тип. тест. задания_ред. Ященко_2021 - 80с)

Свежие фрукты содержат 75% воды, а высушенные – 25%. Сколько требуется свежих фруктов для приготовления 45 кг высушенных фруктов?

Решение:

Если в свежих фруктах содержится 75% воды, то сухого вещества будет 100 – 75 = 25 (%), а высушенные – 25%, то сухого вещества в них будет 100 – 25 = 75 (%).

При оформлении решения задачи, можно использовать таблицу:

Общая масса, кг   |   Концентрация сухого вещества   |   Масса сухого вещества

Свежие фрукты х 25% = 0,25 0,25 • х

Высушенные фрукты 45 75% = 0,75 0,75 • 45 = 33,75

Т.к. масса сухого вещества для свежих и высушенных фруктов не меняется, то получим уравнение:

0,25 • х = 33,75;
х = 33,75 : 0,25;
х = 135 (кг) – требуется свежих фруктов.

Ответ: 135 кг.

Пример. (Вариант 8 №11. ЕГЭ-2021. Математика. Типов. тест. зад. ред Ященко 2021 -56с)

Смешав 70 % -й и 60 % -й растворы кислоты и добавив 2 кг чистой воды, получили 50 % -й раствор кислоты. Если бы вместо 2 кг воды добавили 2 кг 90 % -го раствора той же кислоты, то получили бы 70 % -й раствор кислоты. Сколько килограммов 70 % -го раствора использовали для получения смеси?

Решение:

Общая масса, кг    |     Концентрация сухого вещества    |     Масса сухого вещества
I х 70% = 0,7 0,7 • х
II у 60% = 0,6 0,6 • у
вода 2 – –
I + II + вода х + у + 2 50 % = 0,5 0,5 • ( х + у + 2 )
III 2 90 % = 0,9 0,9 • 2 = 1,8
I + II + III х + у + 2 70 % = 0,7 0,7 • ( х + у + 2)

Используя последний столбик из таблицы составим 2 уравнения:

0,7 • х + 0,6 • у = 0,5 • ( х + у + 2 ) и 0,7 • х + 0,6 • у + 1,8 = 0,7 • ( х + у + 2).

Объединив их в систему, и решив ее, получим, что х = 3 кг.

Ответ: 3 килограмма 70 % -го раствора использовали для получения смеси.

Пример. (Вариант 2 №11. ЕГЭ-2020. Математика. Типов. тест. зад. ред Ященко 2020 -56с)

Три килограмма черешни стоят столько же, сколько пять килограммов вишни, а три килограмма вишни – столько же, сколько два килограмма клубники. На сколько процентов килограмм клубники дешевле килограмма черешни?

Решение:

Из первого предложения задачи получаем следующие равенства:

3ч = 5в,
3в = 2к.
Из которых можно выразить: ч = 5в/3, к = 3в/2.

Таким образом можно составить пропорцию:
5в/3 – 100%
3в/2 – х %, получим х = (3 • 100 • в •3)/(2 • 5 • в), х = 90% составляет стоимость килограмма клубники от стоимости килограмма черешни.

Значит, на 100 – 90 = 10 (%) – килограмм клубники дешевле килограмма черешни.

Ответ: на 10 процентов килограмм клубники дешевле килограмма черешни.

 Решение задач на «сложные» проценты, с использованием понятия коэффициента увеличения (уменьшения).

Чтобы увеличить положительное число А на р процентов, следует умножить число А на коэффициент увеличения К = (1 + 0,01р).

Чтобы уменьшить положительное число А на р процентов, следует умножить число А на коэффициент уменьшения К = (1 – 0,01р).

Пример. (Вариант 29 № 22. ОГЭ-2020. Математика. Тип. экзаменационные варианты: 36 вариантов/ под ред. Ященко, 2020 - 224с)

Цена товара была дважды снижена на одно и то же число процентов. На сколько процентов снижалась цена товара каждый раз, если его первоначальная стоимость 5000 рублей, а окончательная 4050 рублей?

Решение:

1 способ.

Т.к. цена товара снижалась на одно и то же число %, обозначим число % за х. Пусть в первый и второй раз цена товара была понижена на х %, тогда после первого понижения цена товара стала (100 – х ) %.

Составим пропорцию
5000 руб. – 100%
у руб. – (100 – х)%, получим у = 5000 • (100 – х) / 100 = 50 • (100 – х) рублей – стоимость товара после первого понижения.

Составим новую пропорцию уже по новой цене:
50 • (100 – х) руб. – 100%
z руб. – (100 – х)%, получим z = 50 • (100 – х) (100 – х) / 100 = 0,5 • (100 – х)2 рублей – стоимость товара после второго понижения.

Получим уравнение 0,5 • (100 – х)2 = 4050. Решив его, получим, что х = 10 % .

2 способ.

Т.к. цена товара снижалась на одно и то же число %, обозначим число % за х, х % = 0,01 х.

Используя понятие коэффициента уменьшения, сразу получаем уравнение:
5000 • (1 – 0,01х)2 = 4050.

Решив его, получим, что х = 10 %.

Ответ: на 10 % снижалась цена товара каждый раз.

Пример. (Вариант 30 № 22. ОГЭ-2020. Математика. Тип. экзаменационные варианты: 36 вариантов/ под ред. Ященко, 2020 - 224с)

Цена товара была дважды повышена на одно и то же число процентов. На сколько процентов повышалась цена товара каждый раз, если его первоначальная стоимость 3000 рублей, а окончательная 3630 рублей?

Решение:

Т.к. цена товара повышалась на одно и то же число %, обозначим число % за х, х % = 0,01 х.

Используя понятие коэффициента увеличения, сразу получаем уравнение:
3000 • (1 + 0,01х)2 = 3630.

Решив его, получим, что х = 10 %.

Ответ: на 10 % повышалась цена товара каждый раз.


 

Заключение

В результате проведенной работы были:

1. Изучена история происхождения «процента». А так же что есть простые и сложные проценты. Например задачи, связанные с банковскими расчетами решаются с помощью сложных процен­тов.

2.      Проведен социологический опрос, в результате которого выявлены  сферы применения процентов в жизни.

3.      Рассмотрен  ряд задач из контрольно-измерительных материалов к ОГЭ.

Большое практическое значение имеет умение решать задачи на проценты.  Это напрямую связано с тем,  что проценты широко используется как в реальной жизни, так и в различных областях нау­ки. Без процентов нельзя обойтись ни в финансовом анализе, ни в жизни. Чтобы начислить зарплату работнику нужно знать процент налоговых отчислений; чтобы открыть депозитный счет в банке – надо знать размеры процентных начислений на сумму вклада; чтобы знать приблизительный рост цен в будущем году –надо знать процент инфляции. В торговле понятие процент используется наиболее часто: скидки, наценки, уценки, прибыль, кредит, налог на прибыль и т.д.

 

Выдвинутая гипотеза:

«Если имеются данные с разными параметрами, то их удобнее сравнить с помощью процентов»  подтвердилась в ходе работы над проектом.

 

 

 

 

 

Литература:

1.  Депман И.Я., Виленкин Н.Я. За страницами учебника математики. М., Просвещение

Глейзер Г.И. «История математики в школе»

2.             Энциклопедия по математике.

3.              Лысенко Ф.Ф.,  Кулабухова С.Ю.  Математика. Тематический тренинг. ОГЭ – 2018

4.             Ященкоо О.В. ОГЭ – 2018

5.      Липсиц И.В. Экономика. М. Вика, 1996г.-352с.

6.      Белоусов Р.С. и др. Я познаю мир. Экономика. Энциклопедия. Москва. ООО издательство АСТ, 2001г.-489с.

7.      Дрофеев В.Г., Кузнецова Л.В., Минаева С.С.-Изучение процентов

8.      Петров В.А.-Элементы финансовой экономики на уроках. Математика в школе, 2002 г.


 

Муниципальное автономное общеобразовательное учреждение «Средняя школа № 3» городского округа город

Муниципальное автономное общеобразовательное учреждение «Средняя школа № 3» городского округа город

Введение Актуальность. В школе на уроках математики мы познакомились с процентами

Введение Актуальность. В школе на уроках математики мы познакомились с процентами

Основная часть 2.1. Как возникли проценты

Основная часть 2.1. Как возникли проценты

Пример. Токарь вытачивал за час 40 деталей

Пример. Токарь вытачивал за час 40 деталей

Пример. Оставили на хранение 20 кг крыжовника, ягоды которого содержат 99% воды

Пример. Оставили на хранение 20 кг крыжовника, ягоды которого содержат 99% воды

Решение: Запишем 24% десятичной дробью 0,24 и получим задачу о нахождении числа по известной ему части (дроби)

Решение: Запишем 24% десятичной дробью 0,24 и получим задачу о нахождении числа по известной ему части (дроби)

Или можно пункты 2-4 заменить одним, повторив с детьми понятие степени: 300•1,043 =337,4592(тыс

Или можно пункты 2-4 заменить одним, повторив с детьми понятие степени: 300•1,043 =337,4592(тыс

Примеры задач на проценты: 1)

Примеры задач на проценты: 1)

Как видим, проценты широко применяются в повседневной жизни

Как видим, проценты широко применяются в повседневной жизни

Аналогично примеру, рассмотренному выше можно составить пропорцию: 57 кг – 100 % х кг – 150 %, получим х = 57 • 150 / 100…

Аналогично примеру, рассмотренному выше можно составить пропорцию: 57 кг – 100 % х кг – 150 %, получим х = 57 • 150 / 100…

Это задача на нахождение числа по его проценту, решается делением числа на соответствующий ему процент и путем обращения полученной дроби в проценты, умножением на 100,…

Это задача на нахождение числа по его проценту, решается делением числа на соответствующий ему процент и путем обращения полученной дроби в проценты, умножением на 100,…

Пусть в сосуде содержится 10 литров раствора, который состоит из 3 литров кислоты и 7 литров воды

Пусть в сосуде содержится 10 литров раствора, который состоит из 3 литров кислоты и 7 литров воды

Сумма концентраций всех компонентов, составляющих смесь, равна 1

Сумма концентраций всех компонентов, составляющих смесь, равна 1

I + II + вода х + у + 2 50 % = 0,5 0,5 • ( х + у + 2 )

I + II + вода х + у + 2 50 % = 0,5 0,5 • ( х + у + 2 )

Решение: 1 способ. Т.к. цена товара снижалась на одно и то же число %, обозначим число % за х

Решение: 1 способ. Т.к. цена товара снижалась на одно и то же число %, обозначим число % за х

Заключение В результате проведенной работы были: 1

Заключение В результате проведенной работы были: 1
Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.
16.05.2023