Конспект урока "Площади равновеликих и сложных фигур"
Оценка 4.9

Конспект урока "Площади равновеликих и сложных фигур"

Оценка 4.9
Раздаточные материалы +1
docx
математика
5 кл
05.03.2018
Конспект урока "Площади равновеликих и сложных фигур"
Это урок занимательной и практико-ориентированной математики в 5-ом классе с целью расширения понятия Площадь. В нём найдётся место занимательным задачам древности и сказок, решению проблемных ситуаций. Материал дополнен образцами раздаточного материала для работы с учащимися, а также конспект на память для каждого ученика.
Конспект 5 класс ПЛОЩАДИ ФИГУР.docx
Площади  равновеликих и сложных фигур.          Цели урока: продолжение и совершенствование умений и навыков вычисления  площадей фигур Задачи:                                                                                                                                  а) образовательные : продолжение работы над задачами на нахождение площадей  прямоугольника, квадрата, сложной фигуры.  Ведение понятия «равновеликие  фигуры»; б) развивающие: совершенствование вычислительных и графических навыков;  развитие логического мышления; в) воспитательные: стимулирование творческого воображения и интереса к  математике  Тип урока: комбинированный, практико­ориентированный, развивающий Оборудование: карточки с заданиями для индивидуальной работы и работы в парах,   макет «софического» квадрата 8*8, цветной мел, ножницы, ПК, экран Ход урока I. Оргмомент.   Привествие. Визуальная проверка Д/З (рисунки). Хорошо! Мы сегодня ещё вернёмся к нему. II. Устный счёт.   № 765, стр. 117 («Круглые» произведения, условие на доске) III. Актуализация.   Итак, ребята, на прошлых уроках вы познакомились с понятием  площадь и некоторыми формулами вычисления площадей. Для каких фигур вы  знаете формулы?   (Слайд 1 с фигурами. По мере формулирования формул они для  контроля возникают ). Ну а сегодня нам предстоит научиться находить площади  более сложных фигур и освоить новое понятие, связанное с ними. Начнем со  следующих заданий.   Задание №1.   Вычислите площади фигур (на слайдах 2­4)3 см Какие из фигур имеют равные площади?                                                                                      Равны ли эти фигуры?                                                                                                                     Скажите, а приходилось ли вам уже встречаться с такими случаями, когда фигуры  разные, а их площади равны? Где и когда? Сегодня мы уделим особое внимание таким  фигурам. IV. Изучение нового .  Ребята, запишем определение! (слайд 5) Определение. Фигуры, разные по форме, но имеющие равные площади,  называются равновеликими. Посмотрим на рис.67, стр.110. Найдите среди этих фигур равновеликие. Докажите! Что в них выступает в качестве единицы площади? (клетка) V. Задания на закрепление понятия. 1) Задания на клеточной основе. А теперь выполним задание на карточках    («жираф», «тритон», «козлёнок» и «жук»).  Ребята, а понравились ли вам эти рисунки? А смогли бы вы тоже создать что­либо  подобное? Отлично, значит в качестве домашнего задания я объявляю Творческий  конкурс  «30  клеток»!  Но сначала давайте немного потренируемся в этом деле.  Начнём с 10 клеток. (работа в парах в тетради и на доске на участке с клетками)         2) А теперь познакомимся с другими заданиями, где фигуры «не лежат» в рамках   клеток. Как же вычислить их площадь? (такие задачи включены в  задачи ЕГЭ!). Решить  эти задачи можно, если использовать свойство площади фигуры, состоящей из частей и  сегодняшнее понятие о равновеликих фигурах.  (Решение на доске цветным мелом и в  тетрадях)  VI. Занимательная задача .  Ребята,  вопросами о равновеликих фигурах занимались  ещё в древности:  так, греческие мудрецы оставили нам на размышление очень  интересные задачи, которые как будто нарушают наши представления о площади.  А  ещё в интернете появилась задача, нарушающая наши представления о справедливом дележе шоколадок. Это скорее всего любимая задача известного всем хитреца и  сладкоежки Карлсона. Я, как и другие математики, не согласна с их утверждениями  и принесла эти задачи в класс. Очень надеюсь, что мы сейчас же все вместе   установим истину!   Задача мудреца. Возьмём квадрат со стороной 8 см и разрежем его на  части …  Задача Карлсона Возьмём прямоугольник (шоколадку) … (задачи демонстрируются на доске с помощью магнитов, дающих свободно перемещать  фрагменты фигур) к доске вызываются помощники и класс начинает разбираться в  ситуации. Затем учитель выводит всех на разгадку и кратко знакомит с учением  софистики. Секрет : обман зрения!!!  Эти и другие внешне правдоподобные задачи  являются софизмами.                      Софизм (в переводе с греческого означает ­  уловка, выдумка, головоломка) – это  ложное доказательство,  кажущееся весьма правдоподобным. Надо очень хорошо  знать математику, чтобы научно опровергнуть его, доказать глубоко запрятанную  ложь VII. Минутка занимательной истории (выступление учащегося)  В римской  мифологии есть легенда о Дидоне. Согласно этой легенде, Дидона была дочерью  царя Тира и женой жреца Геракла Акербаса; После того как брат Дидоны  Пигмалион убил ее мужа, позарившись на его богатства, Дидона была вынуждена  бежать.   Захватив с собой часть сокровищ мужа, она в сопровождении  многочисленных спутников отправилась на запад вдоль берегов Средиземного моря.  Ей приглянулось одно место на побережье нынешнего Тунисского залива. Дидона  повела переговоры с берберийским царем Ярбом о продаже земли. По условию она  могла взять столько земли, сколько можно «окружить бычьей шкурой». Сделка  состоялась.  Тогда Дидона разрезала эту шкуру на тонкие ремни, связав их воедино,  и окружила изрядный кусок земли. На этом месте была основана цитадель  Карфагена Бирсу. (По­гречески «бирсу» как раз и означает «шкура».) Так гласит  легенда. Давайте же и мы попробуем решить более сложные проблемы по  вычислению площадей фигур.  Решение задач по вычислению площадей сложной фигуры:  стр.117,  № 769 VIII. IX. Итог урока (рефлексия). Ребята, с каким понятием мы сегодня работали? Интересно ли было работать с ним?  Как настроены, справитесь с домашним  творческим заданием «30 клеток»? Кстати,  лучшие работы будут выставлены  на всеобщее обозрение на «Неделе математики», а все  остальные пойдут в ваши портфолио.   На этом наш урок подошёл к концу. С каким  настроением вы уйдёте  с него?  Всем  спасибо за работу!

Конспект урока "Площади равновеликих и сложных фигур"

Конспект урока "Площади равновеликих и сложных фигур"

Конспект урока "Площади равновеликих и сложных фигур"

Конспект урока "Площади равновеликих и сложных фигур"

Конспект урока "Площади равновеликих и сложных фигур"

Конспект урока "Площади равновеликих и сложных фигур"

Конспект урока "Площади равновеликих и сложных фигур"

Конспект урока "Площади равновеликих и сложных фигур"
Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.
05.03.2018