Контрольные и самостоятельные работы по геометрии в 8 классе
Оценка 4.6

Контрольные и самостоятельные работы по геометрии в 8 классе

Оценка 4.6
Разработки уроков
docx
математика
8 кл
08.06.2019
Контрольные и самостоятельные работы по геометрии в 8 классе
Контрольные и самостоятельные работы подготовлены по темам: параллелограмм и трапеция, прямоугольник, ромб и квадрат, площади многоугольников, признаки подобия треугольников, теорема Пифагора, формула Герона, соотношения между сторонами и углами прямоугольного треугольника, центральные и вписанные углы, касательная к окружности и ее свойства, вписанная и описанная окружности.
геом 8.docx
Самостоятельная работа №1  «Параллелограмм и трапеция» I вариант 1.   Найдите углы параллелограмма, если сумма двух из них равна 2600. 2. В  параллелограмме  острый  угол равен  300,  а высота, опущенная   из   вершины   тупого   угла,   равна   3   см. Найдите   периметр   параллелограмма,   если   большая сторона параллелограмма равна 6 см. II вариант 1. Найдите углы параллелограмма, если разность двух из них равна 400. 2. Найдите периметр параллелограмма, если биссектриса  острого угла делит сторону параллелограмма на  отрезки 4 и 11 м. Самостоятельная работа №2 «Прямоугольник, ромб, квадрат» I вариант 1. Найдите   углы   четырехугольника,   если   они пропорциональны числам 2, 4,6 и 8. 2. Один   из   углов   ромба   равен   1200.   Найдите   меньшую диагональ ромба, если периметр ромба равен 24 см. II вариант 1. Найдите   углы   четырехугольника,   если   они пропорциональны числам 3, 4, 5 и 6. 2. Диагональ   прямоугольника   равна   10   см   и   образует   с большей   стороной   угол   300.   Найдите   угол   между диагоналями, лежащий против меньшей стороны. 1 Самостоятельная работа №3«Площадь многоугольника» I вариант 1. Чему равна площадь трапеции с основаниями 4 см и 8 см и высотой 6 см?  2. Площадь   треугольника   равна   40   см2.   Чему   равна   высота треугольника, проведенная к стороне 10 см? 3. Смежные стороны параллелограмма равны 26 см и 30 см, а   Найдите   площадь его   тупой   угол   равен   1500. параллелограмма. II вариант 1. Чему равна площадь трапеции с основаниями 4 см и 6 см и высотой 10 см? 2. Площадь   треугольника   равна   60   см2.   Чему   равна   высота треугольника, проведенная к стороне 20 см? 3. Смежные стороны параллелограмма равны 24 см и 28 см, а   Найдите   площадь его   тупой   угол   равен   1500. параллелограмма. Самостоятельная работа №4 «Теорема Пифагора» I вариант 1. №65   (а)   сборник.  Основание   равнобедренного треугольника   равно   16   см,   а   высота,   проведенная   к основанию,   равна   6   см.   Найдите   боковую   сторону треугольника. 2. Найдите сторону ромба, если его диагонали равны 18 см и 24 см. II вариант 1. №65   (б)   сборник.  Боковая   сторона   равнобедренного треугольника равна 5 см, а его основание 8 см. Найдите высоту треугольника, опущенную на основание. 2 2. Найдите сторону ромба, если его диагонали равны 12 см и 16 см. Самостоятельная работа №5 «Площадь треугольника» I вариант 1. Найдите   площадь   треугольника,   стороны   которого   равны 13дм, 14дм и 15 дм. 2. Найдите   площадь   треугольника   со   стороной   14   см   и высотой 7 см, опущенной на эту сторону. II вариант 1. Найдите   площадь   треугольника,   стороны   которого   равны 29дм, 25дм и 6 дм.  2. Найдите   площадь   треугольника   со   стороной   13   см   и высотой 8 см, опущенной на эту сторону. Самостоятельная работа №6  «Признаки подобия треугольников» I вариант 1. Какие треугольники называются подобными? 2. Чему   равно   отношение   длин   сторон   подобных треугольников? 3. Треугольники АВС и КРТ равны. Подобны ли они? 4. Сформулируйте первый признак подобия треугольников. II вариант 1. Какие треугольники называются подобными? 2. Чему равно отношение площадей подобных треугольников? 3. Треугольники АВС и КРТ подобны. Равны ли они? 4. Сформулируйте второй признак подобия треугольников. 3 Самостоятельная работа №7  «Признаки подобия треугольников» 1. Подобны ли треугольники АВС и А1В1С1  , если АВ=2 см, I вариант ВС=6 см, АС=7 см, А1В1=10 см, В1С1=30 см, А1С1=35 см? 2. Основания   трапеции   равны   6   см   и   10   см,   а   боковые стороны 4 см и 7 см. На сколько нужно продлить боковые стороны, чтобы они пересеклись? II вариант 1. Подобны ли треугольники АВС и А1В1С1  , если АВ=2 см, ВС=6 см, АС=7 см, А1В1=3 см, В1С1=9 см, А1С1=10 см? 2. Основания   трапеции   равны   7   см   и   12   см,   а   боковые стороны   10   см   и   5   см.   На   сколько   нужно   продлить боковые стороны, чтобы они пересеклись?     «Соотношения между Самостоятельная работа №8   сторонами и углами прямоугольного треугольника» 1. Найдите sin, cos и tg острых углов А и В прямоугольного I вариант треугольника АВС, если АВ=40 см, ВС=9 см.  2. Гипотенуза прямоугольного треугольника равна с, а один из углов  α . Найдите катеты треугольника. II вариант 1. Найдите sin, cos и tg острых углов А и В прямоугольного треугольника АВС, если АВ=1,7 м, ВС=0,8 м.  2. Катет   прямоугольного   треугольника   равен  m,   а . Найдите другой катет и гипотенузу прилежащий угол  α 4 треугольника.  Самостоятельная работа №9       0  , 45   tg    для углов 30  sin  «Значения     0  , 60   0  »     и   ,   cos    I вариант 1. Найдите   углы   равнобедренного   треугольника,   если основание и высота, проведенная к ней, равны 4 и  √2  см соответственно. 2. В прямоугольном треугольнике катет равен 6 см, а угол, прилежащий   к   этому   катету,   равен   300.   Найдите гипотенузу и другой катет треугольника. II вариант 1. Найдите   углы   прямоугольного   треугольника   с гипотенузой 6 см и катетом 3 √3  см. 2. В прямоугольном треугольнике катет равен 5 см, а угол, противолежащий этому катету 600. Найдите гипотенузу и другой катет треугольника. Самостоятельная работа №10      «Центральные и вписанные углы» I вариант 1. Вписанный угол равен 870. Определите дугу, на которую он опирается. 2. Центральный   угол   на   350  больше   вписанного   угла, опирающегося на одну и ту же дугу. Найдите каждый из этих углов. II вариант 1. Вписанный угол равен 480. Определите дугу, на которую он опирается. 5 2. Центральный   угол   на   710  больше   вписанного   угла, опирающегося на одну и ту же дугу. Найдите каждый из этих углов. Самостоятельная работа №11      «Вписанная и описанная окружности» I вариант 1. В   равнобедренном   треугольнике   основание   равно   10   см,   а высота, опущенная к основанию, равна 12 см. Найдите радиус окружности, вписанной в этот треугольник. 2. Найдите радиус окружности, описанной около треугольника со сторонами 10 см, 10 см, 12 см. II вариант 1. В   равнобедренном   треугольнике   боковая   сторона   равна   13 см, а высота, опущенная к основанию, равна 12 см. Найдите радиус окружности, вписанной в этот треугольник. 2. Найдите радиус окружности, описанной около треугольника со сторонами 15 см, 15 см, 24 см. 6 Диагностическая контрольная работа №1 I вариант 1. В равнобедренном треугольнике АВС с основанием АВ уголА   равен   500,   угол   С   равен   800,   СМ   –   медиана треугольника. Найдите углы треугольника АМС. 2. Один   из   внутренних   односторонних   углов   при параллельных   прямых   и   секущей   в   3   раза   больше другого. Найдите эти углы. 3. Углы треугольника пропорциональны числам 2, 3 и 7. Найдите углы этого треугольника. 4. В   равнобедренном   треугольнике   угол   при   основании равен 300, а боковая сторона 16 см. Найдите высоту, проведенную к основанию этого треугольника. II вариант 7 1. В равнобедренном треугольнике АСВ с основанием АВ угол   А   равен   400,   угол   С   равен   1000,   СМ   –   медиана треугольника. Найдите углы треугольника АМС. 2. Один   из   внутренних   односторонних   углов   при параллельных прямых и секущей на 200больше другого. Найдите эти углы. 3. Угол при основании равнобедренного треугольника на 300  меньше   угла   при   вершине.   Найдите   углы   этого треугольника. 4. В   равнобедренном   треугольнике   угол   при   основании равен 300, а боковая сторона 10 см. Найдите высоту, проведенную к основанию этого треугольника. Контрольная работа №2 «Четырехугольники» I вариант 1. Дано:   О   –   точка   пересечения   диагоналей параллелограмма АВСD, АВ=10 см, АС=14 см, BD=12 см. Найдите периметр треугольника СОD. 2. Один из углов ромба равен 640. Найдите углы, которые образует сторона ромба с его диагоналями. 3. На   диагонали   BD   параллелограмма   АВСD   обозначили точки   М   иNтак,   что   угол   ВАМ   равен   углу   DСK. Докажите, что ВМ=DK. II вариант 8 1. Дано:   D   –   точка   пересечения   диагоналей параллелограмма MNKF, MF=12 см, MK=16 см, NF=10 см. Найдите периметр треугольника NDK. 2. Сторона ромба образует с одной из его диагоналей угол 180. Найдите углы ромба. 3.   На диагонали АС параллелограмма ABCD обозначили точки E иF так, что АЕ=CF. Докажите, что ВЕ=DF. Контрольная работа №3 «Площади параллелограмма, треугольника и трапеции» I вариант 1. Боковая сторона равнобедренного треугольники АВС равна 15 см, а основание 24 см. Найдите площадь этого треугольника, если угол при основании равен 300. 2. Смежные стороны параллелограмма равны 52 и 30 см,   Найдите   площадь а   острый   угол   300. параллелограмма. 3. Вычислите   площадь   трапеции   ABCD   с   основаниями AD и BC, если AD=24 см, ВС=16 см, угол А равен 450, а угол D равен 900. 4. Найти   сторону   квадрата,   площадь   которого   равна 9 площади прямоугольника со сторонами 4 см и 9 см. II вариант 1. Найдите площадь ромба, если его диагонали равны 12 см и 16 см. 2. Высота ВК, проведенная к стороне AD параллелограмма ABCD, делит эту сторону на два отрезка 7 см и 15 см. Найдите   площадь   параллелограмма,   если   угол   А   равен 450. 3. Вычислите площадь трапеции ABCD с основаниями АD и ВС, если АD=27 см, ВС=13 см, СD=10 см, а угол D равен 300. 4. Найдите   площадь   прямоугольного   треугольника,   если катет и гипотенуза соответственно равны 6 см и 10 см, а угол, лежащий против катета 6см, равен 600. Контрольная работа №4 «Теорема Пифагора» I вариант 10 1. Найдите   площадь   равнобедренного   треугольника, если его боковая сторона равна 13 см, а основание – 10 см. 2. Две стороны треугольника равны 18 и 24 см, а высота, проведенная к первой из них равна 20 см. Вычислите высоту, проведенную ко второй данной стороне. 3. Найдите стороны прямоугольника, если его диагональ равна 50 см, а стороны относятся как 3:4. II вариант 1. Найдите   площадь   равнобедренного   треугольника, если его основание равно 16 см, а боковая сторона равна 10 см. 2. Две стороны треугольника равны 20 и 22 см, а высота, проведенная ко второй из них, равна 15 см. Вычислите высоту, проведенную к первой из данных сторон. 3. Найдите сторону прямоугольника, если его диагональ равна 26 см, а стороны относятся как 12:5. Контрольная работа №5 «Признаки подобия треугольников» I вариант 11 1. Найдите   отношение   площадей   треугольников   АВС   и KMN, если АВ=8 см, ВС=12 см, АС=16 см, КМ=10 см, МN=15 см, NK=20 см. 2. В треугольника АВС точка М лежит на стороне АВ, а точка N на стороне ВС так, что МN и АС параллельны. Найдите MN, если АС=12 см, ВN=6 см, ВС=9 см. 3. В трапеции  ABCD  с основаниями  AB  и  CD  боковые стороны продолжены до пересечения в точке О, OD=15 см, ОА=9 см, СD=25 см. Найдите АВ. II вариант 1. Найдите отношение площадей треугольников АВС и DEF, если АВ=12 см, ВС=15 см, АС=21 см,  DE=16 см, EF=20 см, DF=28 см. 2. В треугольника АВС точка М лежит на стороне АВ, а   точка   N   на   стороне   ВС   так,   что   МN   и   АС параллельны. Найдите MN, если АС=16 см, ВN=3 см, ВС=8 см. 3. В трапеции ABCD с основаниями AB и CD боковые стороны   продолжены   до   пересечения   в   точке   О, OD=16 см, ОА=12 см, СD=20 см. Найдите АВ. Контрольная работа №6  «Соотношения между сторонами и углами прямоугольного треугольника» I вариант 1. Найдите   неизвестные   стороны   и   углы прямоугольного треугольника, если его катет 9 √3 см, а гипотенуза 18 см. 2. Найти катеты прямоугольного треугольника, если гипотенуза и один из острых углов соответственно 12 равны 8 см и 600. 3. В   равнобедренной   трапеции   меньшее   основание равно 4 см, боковая сторона равна 6 см, а один из углов равен 1200. Найдите площадь трапеции. II вариант 1. Найдите неизвестные стороны и углы  прямоугольного треугольника, если его катеты  равны 10 см и 10 √3  см. 2. Найдите катеты прямоугольного треугольника,  если гипотенуза и один из острых углов  соответственно равны 12 см и 450. 3. В прямоугольной трапеции меньшее основание  равно 3 см, большая боковая сторона равна 4 см, а  один из углов равен 1500. Найдите площадь  трапеции.  Контрольная работа №7  «Окружность» I вариант 1.  Из точки А к окружности радиуса 3 см проведены две касательные   АВ   и   АС.   Найдите   длины   этих касательных, если угол межу ними 900. 2. Найдите   величину   угла   АВС,   вписанного   в окружность, если градусная мера дуги АВ равна 1200, а дуги ВС – 800. 3. Найдите   радиус   описанной   окружности   около равнобедренного   треугольника   с   высотой   4   см   и 13 основанием 6 см. II вариант 1. Из точки А к окружности радиуса 5 см проведены две касательные   АВ   и   АС.   Найдите   длины   этих касательных, если угол межу ними 600. 2. Найдите   величину   угла   АВС,   вписанного   в окружность, если градусная мера дуги АВ равна 1170, а дуги ВС – 1750. 3. Найдите   радиус   описанной   окружности   около равнобедренного   треугольника   с   высотой   4   см   и боковой стороной 5 см. Итоговая контрольная работа №8  I вариант 1. Точки М и Р лежат соответственно на сторонах АВ и ВС треугольника   АВС,   причем   МР   и   АС   параллельны. Найдите длину отрезка МР, если АС=16 см, ВС=8 см, РВ=5 см. 2. Прямая АВ касается окружности с центром в точке О и радиусом,   равным   9   см,   в   точке   В.   Найдите   АВ,   если АО=41 см. 3. В   равнобокой   трапеции   основания   равны   7   и   15   см,   а боковая сторона 5 см. Найдите площадь трапеции. II вариант 1. Точки М и Р лежат соответственно на сторонах АВ и ВС треугольника   АВС,   причем   МР   и   АС   параллельны. Найдите   длину   отрезка   МР,   если   ВР=20   см,   РС=5   см, АС=15 см. 14 2. Прямая АВ касается окружности с центром в точке О и радиусом,  равным   7  см,  в  точке  В.  Найдите  ОА,  если АВ=24 см. 3. В равнобокой трапеции меньшее основание равно 8 см, боковая сторона 5 см, а высота 4 см. Найдите площадь трапеции. 15 16

Контрольные и самостоятельные работы по геометрии в 8 классе

Контрольные и самостоятельные работы по геометрии в 8 классе

Контрольные и самостоятельные работы по геометрии в 8 классе

Контрольные и самостоятельные работы по геометрии в 8 классе

Контрольные и самостоятельные работы по геометрии в 8 классе

Контрольные и самостоятельные работы по геометрии в 8 классе

Контрольные и самостоятельные работы по геометрии в 8 классе

Контрольные и самостоятельные работы по геометрии в 8 классе

Контрольные и самостоятельные работы по геометрии в 8 классе

Контрольные и самостоятельные работы по геометрии в 8 классе

Контрольные и самостоятельные работы по геометрии в 8 классе

Контрольные и самостоятельные работы по геометрии в 8 классе

Контрольные и самостоятельные работы по геометрии в 8 классе

Контрольные и самостоятельные работы по геометрии в 8 классе

Контрольные и самостоятельные работы по геометрии в 8 классе

Контрольные и самостоятельные работы по геометрии в 8 классе

Контрольные и самостоятельные работы по геометрии в 8 классе

Контрольные и самостоятельные работы по геометрии в 8 классе

Контрольные и самостоятельные работы по геометрии в 8 классе

Контрольные и самостоятельные работы по геометрии в 8 классе

Контрольные и самостоятельные работы по геометрии в 8 классе

Контрольные и самостоятельные работы по геометрии в 8 классе

Контрольные и самостоятельные работы по геометрии в 8 классе

Контрольные и самостоятельные работы по геометрии в 8 классе

Контрольные и самостоятельные работы по геометрии в 8 классе

Контрольные и самостоятельные работы по геометрии в 8 классе

Контрольные и самостоятельные работы по геометрии в 8 классе

Контрольные и самостоятельные работы по геометрии в 8 классе

Контрольные и самостоятельные работы по геометрии в 8 классе

Контрольные и самостоятельные работы по геометрии в 8 классе

Контрольные и самостоятельные работы по геометрии в 8 классе

Контрольные и самостоятельные работы по геометрии в 8 классе
Скачать файл