К/Р по геометрии 8 класс
КОНТРОЛЬНАЯ РАБОТА № 1
Вариант I
1. Диагонали прямоугольника АВСD пересекаются в точке О. Найдите угол между диагоналями, если АВО = 30°.
2. В параллелограмме KМNP проведена биссектриса угла МKР, которая пересекает сторону MN в точке Е.
а) Докажите, что треугольник KМЕ равнобедренный.
б) Найдите сторону KР, если МЕ = 10 см, а периметр параллелограмма равен 52 см.
Вариант II
1. Диагонали ромба KМNP пересекаются в точке О. Найдите углы треугольника KОМ, если угол МNP равен 80°.
2. На стороне ВС параллелограмма АВСD взята точка М так, что АВ = ВМ.
а) Докажите, что АМ – биссектриса угла ВАD.
б) Найдите периметр параллелограмма, если СD = 8 см, СМ = 4 см.
КОНТРОЛЬНАЯ РАБОТА № 2
Вариант I
1. Смежные стороны параллелограмма равны 32 см и 26 см, а один из его углов равен 150°. Найдите площадь параллелограмма.
2. Площадь прямоугольной трапеции равна 120 см2, а ее высота равна
8 см. Найдите все стороны трапеции, если одно из оснований больше другого на 6 см.
3. На стороне АС данного треугольника АВС постройте точку D так, чтобы площадь треугольника АВD составила одну треть площади треугольника АВС.
Вариант II
1. Одна из диагоналей параллелограмма является его высотой и равна 9 см. Найдите стороны этого параллелограмма, если его площадь равна 108 см2.
2. Найдите площадь трапеции АВСD с основаниями АD и ВС, если АВ = 12 см, ВС = 14 см, АD = 30 см, В = 150°.
3. На продолжении стороны KN данного треугольника KМN постройте точку Р так, чтобы площадь треугольника NMP была в два раза меньше площади треугольника KМN.
КОНТРОЛЬНАЯ РАБОТА № 3
Вариант I
1. На рисунке 1 АВ || СD. а) Докажите, что АО : ОС = ВО : ОD. б) Найдите АВ, если ОD = 15 см, ОВ = 9 см, СD = 25 см.
2. Найдите отношение площадей треугольников АВС и KMN, если АВ = 8 см, ВС = 12 см, АС = 16 см, KM = 10 cм, MN = 15 см, NK = 20 см.
Вариант II
1. На рисунке 2 MN || АС. а) Докажите, что АВ · BN = CВ · BM. б) Найдите MN, если AM = 6 см, ВM = 8 см, АС = 21 см.
2. Даны стороны треугольников PQR и АВС: PQ = 16 см, QR = 20 см, PR = 28 см и АВ = 12 cм, ВС = 15 см, АС = 21 см. Найдите отношение площадей этих треугольников.
Контрольная работа № 4
Вариант I
1. В прямоугольном треугольнике АВС А = 90°, АВ = 20 см; высота АD = 12 см. Найдите АС и cos C.
2. Диагональ ВD параллелограмма
АВСD перпендикулярна к стороне АD. Найдите площадь
параллелограмма АВСD, если АВ = 12 см,
А
= 41°.
Вариант II
1. Высота ВD прямоугольного треугольника АВС равна 24 см и отсекает от гипотенузы АС отрезок DС, равный 18 см. Найдите АВ и соs A.
2. Диагональ АС прямоугольника АВСD равна 3 см и составляет со стороной АD угол 37°. Найдите площадь прямоугольника АВСD.
КОНТРОЛЬНАЯ РАБОТА № 5
Вариант I
1. Через точку А окружности проведены диаметр АС и две хорды АВ и АD, равные радиусу этой окружности. Найдите углы четырехугольника АВСD и градусные меры дуг АВ, ВС, СD, АD.
2. Основание равнобедренного треугольника равно 18 см, а боковая сторона равна 15 см. Найдите радиусы вписанной в треугольник и описанной около треугольника окружностей.
Вариант II
1. Отрезок ВD – диаметр окружности с центром О. Хорда АС делит пополам радиус ОВ и перпендикулярна к нему. Найдите углы четырехугольника АВСD и градусные меры дуг АВ, ВС, СD, АD.
2. Высота, проведенная к основанию равнобедренного треугольника, равна 9 см, а само основание равно 24 см. Найдите радиусы вписанной в треугольник и описанной около треугольника окружностей.
© ООО «Знанио»
С вами с 2009 года.