Предмет: алгебра
Класс: 7
Тема урока: "Возведение в степень произведения и степени"
Тип урока: Урок «открытия» новых знаний, рефлексии
Оборудование: доска; экран, проектор, задания для выполнения на уроке.
Планируемые предметные результаты:
Обучающийся научится:
- находить значения буквенных выражений при возведении в степень произведения и степени; применять алгоритм выполнения этих действий;
обучающийся получит возможность:
- научиться решать комбинированные задачи с использованием более чем 3 алгоритмов ,приводить для иллюстрации изученных положений самостоятельно подобранные примеры;
- научиться использовать приёмы упрощения алгебраические выражений с одночленами; способам определения корректности ( некорректности) заданий ;создавать алгоритмы деятельности; приёмам рационального выполнения заданий, приемам решения задач повышенного уровня;
- научиться применять полученные знания в новой ситуации; решать занимательные задачи и задачи из смежных предметов.
метапредметные:
1) умение самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
2) умение осуществлять контроль по результату и по способу действия на уровне произвольного внимания и вносить необходимые коррективы;
3) умение адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;
личностные:
у учащихся будут сформированы:
- ответственное отношение к учению, готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию
- коммуникативная компетентность в общении и сотрудничестве со сверстниками в образовательной деятельности;
4) умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры.
ХОД УРОКА
I. Организационный этап.
Дидактическая задача этапа: подготовить учащихся к работе на уроке.
Для этого с ребятами выполняется упражнение “Думающий колпак”. Упражнение заключается в массаже ушей сверху - вниз по краю от 3 до 5 раз. При выполнении этого упражнения дотрагиваются до акупунктурных точек, которые стимулируют восприятие и понимание на слух. Упражнение способствует:
повышению внимания;
улучшению слуха и речи;
активизации памяти.
II. Этап подготовки учащихся к активному и сознательному усвоению нового материала.
Дидактическая задача этого этапа: организовать и направить к цели познавательную деятельность учащихся.
Учитель предлагает посмотреть на доску,
на которой записана тема урока и, исходя из темы урока, просит учеников
сказать, чем они будут заниматься на уроке.
Учитель с учениками чётко определяет цели урока, чему они должны научиться в
ходе урока, какими знаниями, умениями и навыками овладеть.
Учитель делает краткую запись на доске. Также учитель с ребятами выясняет,
какими же надо быть во время урока. Это ведёт к самоорганизации учащихся.
На доске дан квадрат (квадраты с незаполненными клетками были заготовлены на
отдельном листе для каждого учащегося).
|
4 |
8 |
16 |
|
32 |
64 |
128 |
|
256 |
512 |
1024 |
Классу предложено установить закономерность его составления, запомнить числа и записать их в свой квадрат. Квадрат на доске в это время закрывался.
Аналогичная работа была выполнена со вторым квадратом:
|
4 |
16 |
128 |
|
8 |
64 |
512 |
|
32 |
256 |
1024 |
Это упражнение было дано на развитие внимания, на тренировку зрительной и смысловой памяти, на поиск закономерностей. Отработка этих же умений продолжается при устном решении примеров (см. далее).
III. Этап усвоения новых знаний.
Дидактические задачи этапа:
дать учащимся конкретные представления об изучаемых фактах;
добиваться от учащихся восприятия, осознания, первичного обобщения, систематизации новых знаний;
усвоение учащимися способов, путей, средств, которые привели к данному обобщению на основе приобретаемых знаний, вырабатывать соответствующие умения и навыки.
Устная работа:
1) 23 . 53 =
2) 103 =
3) 122 =
4) 32 . 42 =
5) 53 . 73/353 =
6) (2a)3 =
7) (bx)5 =
8) (ab)n =
Конструкция примеров и их последовательность позволили классу сделать обобщение. В результате появилась следующая запись:
(ab)n = anbn
Заготовленный лист с этим свойством учитель закрепляет на доску к ранее изученным.
Это равенство доказали устно с подробной записью доказательства на доске:
Для любых a и b и
произвольного натурального n
(ab)n = anbn
Доказательство:
(ab)n = abab…ab по определению степени n
раз
abab…ab = (aa ... a)(bb ... b) по
свойствам умножения n раз n раз
(ab)n = anbn
Ребята пытаются самостоятельно сформулировать правило возведения в степень произведения. Они приходят к выводу, что необходимо выполнить два шага:
1. каждый множитель возводить в эту степень;
2. результаты перемножить.
Учитель записывает выводы учащихся
в виде алгоритма на доске и подчёркивает глаголы. Глагол обозначает действие,
которое необходимо выполнить. Ребята выясняют, можно ли поменять местами
порядок выполнения действий.
Далее идёт работа с учебником. Ребята сравнивают формулировку, которая
получилась у них с той, которая находится в учебнике на странице 86.
Такой подход даёт хороший результат быстрого заучивания формулировок свойств
степени.
Последним был предложен следующий пример:
(abcd)4 =…
Ребята быстро дали решение:
(abcd)4 = a4b4c4d4
Перед классом была поставлена проблема, обнаружить ошибку. Ребята выяснили, что доказали формулу лишь для двух множителей, а здесь их четыре. Возник вопрос о возможности доказательства этой формулы для k множителей. Один из учащихся, используя доказательство для двух множителей, оформил на доске, а остальные учащиеся в тетради, доказательство для k множителей. Учитель сообщает учащимся, что они прошли путь поиска формулировки правила и доказательства свойства возведения в степень произведения. Он заключается в следующем:
встреча с задачей, для решения которой потребовалось оперировать со степенями;
высказывание гипотезы, то есть предположения о свойствах степеней;
проверка гипотезы для различных частных случаев;
обоснование гипотезы для общего случая;
оформление результатов;
Решение упражнения №438 по вариантам самостоятельно:
I вариант – 1-ая строчка,
II вариант – 2-ая строчка.
Во время решения ребята, которые
затруднялись в выполнении задания, могли обратиться за помощью к учителю в
индивидуальном порядке.
Далее ребята поменялись тетрадями и осуществили взаимопроверку, сверив ответы
соседа с ответами на доске.
Было дано время на исправление ошибок, если они встретились.
Устная работа:
(a5)3
= a5a5a5 =…
(y2)5 =
(am)7 =
(am)n =
В результате появляется запись:
Для любого числа a и произвольных натуральных чисел m и n
(am)n = amn
Заготовленный лист с этим свойством учитель закрепляет на доску к ранее изученным.
Аналогичная работа выполняется при доказательстве этого равенства и формулировке правила возведения степени в степень. Учитель под диктовку учащихся записывает алгоритм:
1. основание оставляют тем же;
2. показатели перемножают.
Учитель спрашивает учащихся наизусть формулировку изученных свойств.
Решение упражнений:
№457 (устно)
№455 по вариантам с самопроверкой.
IV. Этап проверки понимания учащимися нового материала.
Дидактическая задача этапа: установить усвоили или нет учащиеся свойства степени с натуральным показателем, знание соответствующих равенств, выражающих то или иное свойство.
1) Учитель показывает заготовленный лист с тем или иным свойством степени, то есть
aman
= am+n
am/an = am-n
(ab)n = anbn
(am)n = amn
и просит учащихся назвать соответствующее свойство и сформулировать правило.
Далее листы с формулами учитель убирает с доски.
2) Для каждого учащегося заготовлен лист с заданиями:
1. Подчеркните выражение, которое не входит ни в одну из частей равенств, выражающих свойства степени с натуральным показателем.
am+n, (am)n, am/n, am-n, anbn
2. Подчеркните два существенных элемента степени: квадрат, показатель, решение, основание, переменная.
3. Допишите равенства и подберите общее для них название:
aman = …
… = anbn
(am)n = …
… = am-n
Осуществляется взаимопроверка при совместном обсуждении правильного выполнения работы. В результате выявляются ошибки и устраняются пробелы в понимании учащимися свойств степени.
V. Этап закрепления нового материала.
Дидактическая задача этапа: закрепить у учащихся те знания и умения, которые необходимы для самостоятельной работы по новому материалу.
Работа в парах, возможна консультация у учителя.
Задание записано на доске, напротив каждого примера прикреплён листок. Необходимо найти те примеры, в которых допущена ошибка
1. (ab)3 = a3b3
2. (-2bc)2 = -4b2с
3. (2 . 5)4 = 10000
4. (-33)2 = 36
5. (-32)3 = 36
6. (с4)2с3 = с9
7. (((-a)3)2)4 = a24
8. ((2a)3b7)2 = 26a6b14
Ошибка допущена в примерах 2, 5, 6. Напротив этих примеров были чистые листы, а на других с обратной стороны были записаны буквы у, х, c, e, п, из которых необходимо было сложить слово. Ребята справились с заданием, и у них получилось слово “успех”. Учитель спросил, когда же ребят ждёт успех в изучении алгебры. Ребята высказали своё мнение.
VI. Этап информации учащихся о домашнем задании. Инструктаж по его выполнению.
Дидактическая задача этапа: сообщить учащимся о домашнем задании, разъяснить методику его выполнения.
Теория стр. 86, №439, №456.
VII. Итог урока.
Материалы на данной страницы взяты из открытых источников либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.