Методическая разработка по теме: "Предел функции"
Оценка 5

Методическая разработка по теме: "Предел функции"

Оценка 5
doc
математика
13.10.2020
Методическая разработка по теме: "Предел функции"
предел функции.doc

Урок по теме "Предел функции"

Цели урока:

  • Образовательные:
    • ввести понятие предела числа, предела функции;
    • дать понятия о видах неопределенности;
    • научиться вычислять пределы функции;
    • систематизировать полученные знания, активизировать самоконтроль, взаимоконтроль.
  • Развивающие:
    • уметь применять полученные знания для вычисления пределов.
    • развивать  математическое мышление.
  • Воспитательная: воспитать интерес к математике и к дисциплинам умственного труда.

 

Формы работы учащихся:  фронтальная, индивидуальная

Необходимое оборудование:  интерактивная доска, мультимедиа проектор, карточки с устными и подготовительными упражнениями.

План урока

1. Организационный момент (3 мин.)
2. Ознакомление с теорией предела функции. Подготовительные упражнения. (12 мин.)
3. Вычисление пределов функции (10 мин.)
4. Самостоятельные упражнения (15 мин.)
5. Подведение итогов урока (2 мин.)
6. Домашнее задание (3 мин.)

ХОД УРОКА

1. Организационный момент

Приветствие учителя, отметить отсутствующих, проверить подготовку к уроку. Сообщить тему и цель урока. В дальнейшем все задания выводятся на интерактивную доску.

2. Ознакомление с теорией предела функции. Подготовительные упражнения.

Предел функции (предельное значение функции) в заданной точке, предельной для области определения функции, — такая величина, к которой стремится рассматриваемая функция при стремлении её аргумента к данной точке.
Записывается предел следующим образом http://xn--i1abbnckbmcl9fb.xn--p1ai/%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8/643738/img1.gif .

Вычислим предел: http://xn--i1abbnckbmcl9fb.xn--p1ai/%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8/643738/img2.gif
Подставляем вместо х – 3.http://xn--i1abbnckbmcl9fb.xn--p1ai/%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8/643738/img3.gif
Заметим, что предел числа равен самому числу.

Примеры: вычислите пределы http://xn--i1abbnckbmcl9fb.xn--p1ai/%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8/643738/img4.gif

Если в некоторой точке области определения функции существует предел и этот предел равен значению функции в данной точке, то функция называется непрерывной (в данной точке).

http://xn--i1abbnckbmcl9fb.xn--p1ai/%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8/643738/img5.gif

Вычислим значение функции в точке x0 = 3 и значение его предела в этой точке.

http://xn--i1abbnckbmcl9fb.xn--p1ai/%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8/643738/img6.gif

Значение предела и значение функции в этой точке совпадает, следовательно, функция непрерывна в точке x0 = 3.

Но при вычислении пределов зачастую появляются выражения, значение которых не определено. Такие выражения называют неопределённостями.

http://xn--i1abbnckbmcl9fb.xn--p1ai/%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8/643738/img7.gif

Основные виды неопределенностей:  http://xn--i1abbnckbmcl9fb.xn--p1ai/%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8/643738/img8.gif

Раскрытие неопределенностей

Для раскрытия неопределенностей используют следующее:

  • упрощают выражение функции: раскладывают на множители, преобразовывают функцию с помощью формул сокращенного умножения, тригонометрических формул, домножают на сопряженное, что позволяет в дальнейшем сократить и т.д., и т.п.;
  • если предел при раскрытии неопределенностей существует, то говорят, что функция сходится к указанному значению, если такого предела не существует, то говорят, что функция расходится.

Пример: вычислим предел.http://xn--i1abbnckbmcl9fb.xn--p1ai/%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8/643738/img9.gif
Разложим числитель на множители http://xn--i1abbnckbmcl9fb.xn--p1ai/%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8/643738/img10.gif

http://xn--i1abbnckbmcl9fb.xn--p1ai/%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8/643738/img12.gif

3. Вычисление пределов функции

 Пример 1. Вычислите предел функции: http://xn--i1abbnckbmcl9fb.xn--p1ai/%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8/643738/img13.gif

При прямой подстановке, получается неопределенность:

http://xn--i1abbnckbmcl9fb.xn--p1ai/%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8/643738/img14.gif

Разложим на множители числитель и знаменатель и вычислим предел.

http://xn--i1abbnckbmcl9fb.xn--p1ai/%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8/643738/img15.gif

Пример 2. Вычислите предел функции: http://xn--i1abbnckbmcl9fb.xn--p1ai/%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8/643738/img16.gif

При прямой подстановке, получается неопределенность.

http://xn--i1abbnckbmcl9fb.xn--p1ai/%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8/643738/img17.gif

Помножим и числитель,  и знаменатель на http://xn--i1abbnckbmcl9fb.xn--p1ai/%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8/643738/img18.gif.

http://xn--i1abbnckbmcl9fb.xn--p1ai/%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8/643738/img19.gif

Учтем, что если число разделить на бесконечно большое число получится ноль. То есть предел http://xn--i1abbnckbmcl9fb.xn--p1ai/%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8/643738/img20.gifАналогично http://xn--i1abbnckbmcl9fb.xn--p1ai/%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8/643738/img21.gif http://xn--i1abbnckbmcl9fb.xn--p1ai/%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8/643738/img22.gif

Пример 3. Вычислите предел функции: http://xn--i1abbnckbmcl9fb.xn--p1ai/%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8/643738/img23.gif

При прямой подстановке, получается неопределенность.

http://xn--i1abbnckbmcl9fb.xn--p1ai/%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8/643738/img24.gif

Помножим и числитель,  и знаменатель на http://xn--i1abbnckbmcl9fb.xn--p1ai/%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8/643738/img18.gif.

http://xn--i1abbnckbmcl9fb.xn--p1ai/%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8/643738/img25.gif

Мы учли, что http://xn--i1abbnckbmcl9fb.xn--p1ai/%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8/643738/img26.gif

4. Самостоятельные упражнения

Вычислите пределы:

http://xn--i1abbnckbmcl9fb.xn--p1ai/%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8/643738/img27.gif

5. Подведение итогов урока

Данный урок первый  по теме: «Предел функции». На уроке рассмотрены способы нахождения пределов. Разобрано что такое неопределенность, как раскрывать неопределенности. Надо заметить, что есть пределы, для которых невозможно найти числовое значение.

6. Домашнее задание

Домашнее задание раздается на карточках каждому ученику.

http://xn--i1abbnckbmcl9fb.xn--p1ai/%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8/643738/img28.gif

 


Скачано с www.znanio.ru

Урок по теме "Предел функции"

Урок по теме "Предел функции"

Если в некоторой точке области определения функции существует предел и этот предел равен значению функции в данной точке, то функция называется непрерывной (в данной точке)

Если в некоторой точке области определения функции существует предел и этот предел равен значению функции в данной точке, то функция называется непрерывной (в данной точке)

Разложим на множители числитель и знаменатель и вычислим предел

Разложим на множители числитель и знаменатель и вычислим предел

Подведение итогов урока Данный урок первый по теме: «Предел функции»

Подведение итогов урока Данный урок первый по теме: «Предел функции»
Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.
13.10.2020