Методическая разработка
Оценка 4.9

Методическая разработка

Оценка 4.9
Разработки уроков
docx
математика
8 кл
29.01.2017
Методическая разработка
план урока алгебры в 8 классе по теме "Решение задач с помощью квадратных уравнений" Тип урока: усвоение новых знаний. Форма урока: традиционная с использованием мультимедийных технологий. Оборудование: сигнальные карточки, индивидуальные карточки, компьютер с проектором, учебник. План урока: 1)Организационный этап. 2) Актуализация знаний. 3) Физминутка. 4) Историческая справка. 5) Усвоение новых знаний и способов действий. 6) Первичная проверка понимания. 7) Закрепление знаний – самостоятельная работа. 8) Подведение итогов урока. 9) Информация о домашнем задании, инструктаж по его выполнению.урок-путешествие на планету задач
план урока 8 кл. Решение задач с пом. кв.ур..docx
Лифанова Ирина Яковлевна, учитель математики МБОУ СОШ с.Бояровка Каа­Хемского района Республики Тыва первая квалификационная категория Тема урока: «Решение задач с помощью квадратных уравнений» Цели урока:  1) формировать умение составлять квадратное уравнение по условию задачи   и   решать   его;   научиться   выделять   этапы   решения   задач алгебраическим методом. 2) развитие вычислительных навыков и интереса к предмету. 3) воспитание ответственного отношения к своему здоровью.  Тип урока: усвоение новых знаний. Форма урока: традиционная с использованием мультимедийных технологий. Оборудование: сигнальные карточки, индивидуальные карточки, компьютер с проектором, учебник. План урока:  1)Организационный этап. 2) Актуализация знаний. 3) Физминутка. 4) Историческая справка. 5) Усвоение новых знаний и способов действий. 6) Первичная проверка понимания. 7) Закрепление знаний – самостоятельная работа. 8) Подведение итогов урока.  9) Информация о домашнем задании, инструктаж по его выполнению. Эпиграф: «Если я узнаю, что знаю мало,  то я добьюсь того, чтобы  знать больше». I. II. Ход урока. Организационный момент. Сообщение темы и цели урока. Актуализация знаний. SOS, SOS, SOS…. Планета * * * * *          Кто­то подает сигнал бедствия. Сигнал идет с какой­то планеты. Давайте узнаем, с какой планеты идет сигнал, в этом нам поможет первое задание. 2∙7 ;б¿ 7+√121 −6−√64 2∙3 ;в¿ 9−√36 2∙(−1) ;г¿32−4∙2∙5 1) Вычислите:  а)                           д¿√52−4∙2∙(−3) . На доске вразброс развешаны звездочки с одной стороны, которых ответ,  к примеру, а на другой буква из названия планеты « задач».     Решив примеры, узнаем название планеты.  Планета Задач.    Чтобы долететь до этой планеты надо решить еще ряд задач: 2) Решите неполное квадратное уравнение:   а ¿х¿2+3х=0;          б ¿х¿2−9=0 ;  в¿ 1 3   х2=0 . 3) Назовите значение коэффициентов квадратного уравнения: а ¿5х¿2−2х−3=0; б ¿4+х¿2−5х=0; в) 13х – 11 – 2х2 = 0;          г)  √3х2−(√3–2)х−2=0. 4) Допишите формулу: (а + в)2 =                  ;                   (а – в )2 =  5) Сформулируйте теорему Пифагора и запишите формулу на доске.               III. Физминутка. Вам   предлагается   проверить   правильность   ответа   решенного задания, если задание решено, верно, то делаете хлопок руками, если ответ неправильный, то топаете ногами. И так,       √49  =  ∓7 ;   √196  = 16;     (4 + а)2 = 16 +8а + а2;  ­ 152 = 225 (5 – в)(а + 6) = 5а + 30 ­ ав;      172 = 289;    D = в2   ­ 4ас;         х = b∓√D 2a .              Перед выходом из корабля надо не только размять уставшие мышцы,  но  и познакомиться  с  историей планеты Задач. IV. Историческая справка. Квадратные уравнения в древности. Задачи на составление  квадратных уравнений. Задачи   на   составление   квадратных   уравнений   встречаются   уже   в древнеегипетских   математических   папирусах.   Вот,   например:   «Найти стороны поля, имеющего форму прямоугольника, если его площадь 12, а 3/4 12 3 4 длины равно ширине».           х2 =   = 16,       х =  √16  = 4 Задача, приводящая к квадратному,  Древний Египет.   Запись собственно решения в папирусе лаконична: по сути, говорится лишь, что необходимо разделить 12 на 3/4.  Уравнения, в которых присутствуют и вторая, и первая степени, впервые появляются   в   Древнем   Вавилоне.   При   этом   отрицательные   решения   не рассматривались.   Условие   и   решение   излагались   словами.   Например,   в условии   одной   из   задач   говорится:   «Я   вычел   из   площади   сторону   моего квадрата и получил 870» (это в современных обозначениях; в оригинале здесь стоит число в шестидесятеричной системе 

Методическая разработка

Методическая разработка

Методическая разработка

Методическая разработка

Методическая разработка

Методическая разработка

Методическая разработка

Методическая разработка

Методическая разработка

Методическая разработка
Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.
29.01.2017