Методика изучения геометрических величин в курсе геометрии средней школы
Оценка 4.8

Методика изучения геометрических величин в курсе геометрии средней школы

Оценка 4.8
Научные работы
docx
математика
7 кл—9 кл
22.07.2019
Методика изучения геометрических величин в курсе геометрии средней школы
На современном этапе развития общеобразовательной школы главные её задачи состоят в том, чтобы дать учащимся глубокие знания основных наук, совершенствовать их диалектико-материалистическое мировоззрение, развивать творческие способности и трудовые навыки, прививать желание и умение самостоятельно приобретать и углублять свои знания. Решение этих задач требует всемерной активности их учебной деятельности, осмысленного изучения материала. Представления учащихся о взаимосвязи математики и окружающего мира достигается сочетанием теоретического и современных прикладных аспектов школьного курса математики. Этому способствует и тот факт, что в программе и учебных пособиях отражены внутрипредметные и межпредметные связи . На уроках математики, как правило, готовится весь аппарат, необходимый для изучения смежных предметов на достаточно высоком уровне. Большой интерес представляют те понятия, которые находят применение в нескольких школьных предметах. Одним из таких понятий является понятие величины. Величина — одно из основных математических понятий. Изучение в курсе математики средней школы величин и их измерений имеет большое значение в плане развития школьников. Это обусловлено тем, что через понятие величины описываются реальные свойства предметов и явлений, происходит познание окружающей действительности; знакомство с зависимостями между величинами помогает создать у детей целостные представления об окружающем мире; изучение процесса измерения величин способствует приобретению практических умений и навыков необходимых человеку в его повседневной деятельности. Объект исследования: процесс изучения геометрических величин в курсе геометрии средней школы. Предмет исследования: методика изучения геометрических величин в курсе геометрии средней школы. Цель курсовой работы заключается в описании методики изучения геометрических величин в курсе геометрии средней школы. Задачи: Рассмотреть историю развития геометрических величин. Охарактеризовать понятие геометрической величины. Установить роль и место величин, их измерений в процессе обучения. Описать методику изучения геометрических величин в курсе геометрии средней школы. Данная курсовая работа состоит из введения, двух глав, заключения, списка используемой литературы и трех приложений. В первой главе рассматриваются теоретические основы изучения геометрических величин в курсе геометрии средней школы, а именно, история возникновения и развития геометрических величин, роль и место величин, их измерений в процессе изучения. Во второй главе описывается методика изучения геометрических величин в курсе геометрии средней школы. 1 Теоретические основы изучения геометрических величин в средней школе 1.1 История возникновения и развития геометрических величин Величина — одно из основных математических понятий, смысл которого с развитием математики подвергался ряду обобщений. Задатки геометрических знаний, связанных с измерением площадей, теряются в глубине тысячелетий. Еще 4—5 тыс. лет назад вавилоняне умели определять площадь прямоугольника и трапеции в квадратных единицах. Квадрат издавна служил эталоном при измерении площадей благодаря многим своим замечательным свойствам: равные стороны, равные и прямые углы, симметричность и общее совершенство формы. Квадраты легко строить, ими можно заполнить плоскость без пробелов (в Древнем Китае мерой площади был прямоугольник). Древние египтяне 4000 лет назад пользовались почти теми же приемами, что и мы, для измерения площади прямоугольника, треугольника и трапеции: основание треугольника делилось пополам и умножалось на высоту; для трапеции же сумма параллельных сторон делилась пополам и умножалась на высоту. Для вычисления площади S четырехугольника со сторонами а, b, с, d (рис. 1) применялась формула т. е. умножались полусуммы противоположных сторон. Эта формула верна только для прямоугольника. С ее помощью можно вычислить приближенно площадь таких четырехугольников, у которых углы близки к прямым. Для определения площади S равнобедренного тpeyгольника АВС, в котором |АВ| = |АС| , египтяне пользовались приближенной формулой: Совершаемая при этом ошибка тем меньше, чем меньше разность между стороной и высотой треугольника, иными словами, чем ближе вершина В (и С) к основанию D высоты из А. Вот почему приближенная формула применима лишь для треугольников с сравнительно малым углом при вершине. Понятие угла на протяжении веков не оставалось без изменений, оно обобщалось и расширялось под влиянием запросов практики и науки. Градусная система измерения углов, в которой за единицу принят угол, равный части угла, соответствующего полному обороту одной стороны угла около его вершины, восходит к III - II тысячелетиям до н. э., к периоду возникновения шестидесятеричной системы счисления в вавилонской математике. Шестидесятеричное градусное измерение, как и шестидесятеричные дроби, проникло далеко за пределы ассиро-вавилонского царства и получило широкое распространение в странах Азии, Северной Африки и Западной Европы. Они применялись, в частности, в астрономии и связанной с ней тригонометрии. Гиппарх, Птолемей и другие древнегреческие астрономы употребляли таблицы, в которых давались величины хорд, соответствующих данным дугам. Хорды (как и дуги) измерялись градусами, минутами и секундами, при этом один градус составлял обычно шестидесятую часть радиуса. Индийцы заимствовали через греков вавилонское градусное измерение дуг, но вместо хорд они измеряли линии синусов и косинусов. Градусным измерением пользовались и ученые стран Ближнего и Среднего Востока, внесшие большой вклад в развитие тригонометрии. Выдающийся немецкий математик и астроном XV в. Региомонтан отступил от шестидесятеричного деления радиуса и за единицу измерения линии синуса принял одну десятимиллионную часть радиуса, что позволило выражать синусы целыми числами, а не шестидесятеричными дробями. Аналогично поступали и многие последовавшие за ним европейские математики. Во время буржуазной революции конца XVIII в. во Франции была введена наряду с метрической системой мер и центезимальная (сотенная) система измерения углов, в которой прямой угол делился на 100 градусов, градус- на 100 минут, минута - на 100 секунд. Эта система применяется и поныне в некоторых геодезических измерения, но всеобщего употребления пока не получила. В связи с возникновением и развитием теории пределов и математического анализа с целью придать многим формулам возможно более простой вид в тригонометрии ввели радианное измерение дуг и углов. Термин «радиан» происходит от латинского radius — радиус. Объемы зерновых амбаров и других сооружений в виде кубов, призм и цилиндров египтяне и вавилоняне, китайцы и индийцы вычисляли путем умножения площади основания на высоту. Однако древнему Востоку были известны в основном только отдельные правила, найденные опытным путем, которыми пользовались для нахождения объемов и площадей фигур. В более позднее время, когда геометрия сформировалась как наука, был найден общий подход к вычислению объемов многогранников. Среди замечательных греческих ученых V—IV вв. до н. э., которые разрабатывали теорию объемов, были Демокрит из Абдеры и Евдокс Книдский. Евклид не применяет термина «объем». Для него термин «куб», например, означает и объем куба. В XI книге «Начал» изложены среди других и теоремы, следующего содержания. Параллелепипеды с одинаковыми высотами и равновеликими основаниями равновелики. Отношение объемов двух параллелепипедов с равными высотами равно отношению площадей их оснований. В равновеликих параллелепипедах площади оснований обратно пропорциональны высотам. Теоремы Евклида относятся только к сравнению объемов, так как непосредственное вычисление объемов тел Евклид, вероятно, считал делом практических руководств по геометрии. В произведениях прикладного характера Герона Александрийского имеются правила для вычислений объема куба, призмы, параллелепипеда и других пространственных фигур.
МЕТОДИКА.docx
На современном этапе развития общеобразовательной школы главные её задачи состоят в том, чтобы дать учащимся глубокие знания основных наук, совершенствовать их диалектико-материалистическое мировоззрение, развивать творческие способности и трудовые навыки, прививать желание и умение самостоятельно приобретать и углублять свои знания. Решение этих задач требует всемерной активности их учебной деятельности, осмысленного изучения материала. Представления учащихся о взаимосвязи математики и окружающего мира достигается сочетанием теоретического и современных прикладных аспектов школьного курса математики. Этому способствует и тот факт, что в программе и учебных пособиях отражены внутрипредметные и межпредметные связи . На уроках математики, как правило, готовится весь аппарат, необходимый для изучения смежных предметов на достаточно высоком уровне. Большой интерес представляют те понятия, которые находят применение в нескольких школьных предметах. Одним из таких понятий является понятие величины. Величина — одно из основных математических понятий. Изучение в курсе математики средней школы величин и их измерений имеет большое значение в плане развития школьников. Это обусловлено тем, что через понятие величины описываются реальные свойства предметов и явлений, происходит познание окружающей действительности; знакомство с зависимостями между величинами помогает создать у детей целостные представления об окружающем мире; изучение процесса измерения величин способствует приобретению практических умений и навыков необходимых человеку в его повседневной деятельности. Объект исследования: процесс изучения геометрических величин в курсе геометрии средней школы. Предмет исследования: методика изучения геометрических величин в курсе геометрии средней школы. Цель курсовой работы заключается в описании методики изучения геометрических величин в курсе геометрии средней школы. Задачи: 1. Рассмотреть историю развития геометрических величин. 2. Охарактеризовать понятие геометрической величины. 3. Установить роль и место величин, их измерений в процессе обучения. 4. Описать методику изучения геометрических величин в курсе геометрии средней школы. Данная курсовая работа состоит из введения, двух глав, заключения, списка используемой литературы и трех приложений. В первой главе рассматриваются теоретические основы изучения геометрических величин в курсе геометрии средней школы, а именно, история возникновения и развития геометрических величин, роль и место величин, их измерений в процессе изучения. Во второй главе описывается методика изучения геометрических величин в курсе геометрии средней школы. 1 Теоретические основы изучения геометрических величин в средней школе 1.1 История возникновения и развития геометрических величин Величина — одно из основных математических понятий, смысл которого с развитием математики подвергался ряду обобщений. Задатки геометрических знаний, связанных с измерением площадей, теряются в глубине тысячелетий. Еще 4—5 тыс. лет назад вавилоняне умели определять площадь прямоугольника и трапеции в квадратных единицах. Квадрат издавна служил эталоном при измерении площадей благодаря многим своим замечательным свойствам: равные стороны, равные и прямые углы, симметричность и общее совершенство формы. Квадраты легко строить, ими можно заполнить плоскость без пробелов (в Древнем Китае мерой площади был прямоугольник). Древние египтяне 4000 лет назад пользовались почти теми же приемами, что и мы, для измерения площади прямоугольника, треугольника и трапеции: основание треугольника делилось пополам и умножалось на высоту; для трапеции же сумма параллельных сторон делилась пополам и умножалась на высоту. Для вычисления площади S четырехугольника со сторонами а, b, с, d (рис. 1) применялась формула т. е. умножались полусуммы противоположных сторон. Эта формула верна только для прямоугольника. С ее помощью можно вычислить приближенно площадь таких четырехугольников, у которых углы близки к прямым. Для определения площади S равнобедренного тpeyгольника АВС, в котором |АВ| = |АС| , египтяне пользовались приближенной формулой: Совершаемая при этом ошибка тем меньше, чем меньше разность треугольника, иными словами, чем между стороной ближе вершина В (и С) к основанию D высоты из А. Вот почему приближенная формула применима лишь для треугольников с сравнительно малым углом при вершине. и высотой Понятие угла на протяжении веков не оставалось без изменений, оно обобщалось и расширялось под влиянием запросов практики и науки. Градусная система измерения углов, в которой за единицу части угла, соответствующего полному обороту принят угол, равный одной стороны угла около его вершины, восходит к III - II тысячелетиям до н. э., к периоду возникновения шестидесятеричной системы счисления в вавилонской математике. Шестидесятеричное градусное измерение, как и шестидесятеричные дроби, проникло далеко за пределы ассиро- вавилонского царства и получило широкое распространение в странах Азии, Северной Африки и Западной Европы. Они применялись, в частности, в астрономии и связанной с ней тригонометрии. Гиппарх, Птолемей и другие древнегреческие астрономы употребляли таблицы, в которых давались величины хорд, соответствующих данным дугам. Хорды (как и дуги) измерялись градусами, минутами и секундами, при этом один градус составлял обычно шестидесятую часть радиуса. Индийцы заимствовали через греков вавилонское градусное измерение дуг, но вместо хорд они измеряли линии синусов и косинусов. Градусным измерением пользовались и ученые стран Ближнего и Среднего Востока, внесшие большой вклад в развитие тригонометрии. Выдающийся немецкий математик и астроном XV в. Региомонтан отступил от шестидесятеричного деления радиуса и за единицу измерения линии синуса принял одну десятимиллионную часть радиуса, что позволило выражать синусы целыми числами, а не шестидесятеричными дробями. Аналогично поступали и многие последовавшие за ним европейские математики. Во время буржуазной революции конца XVIII в. во Франции была введена наряду с метрической системой мер и центезимальная (сотенная) система измерения углов, в которой прямой угол делился на 100 градусов, градус- на 100 минут, минута - на 100 секунд. Эта система применяется и поныне в некоторых геодезических измерения, но всеобщего употребления пока не получила. В связи с возникновением и развитием теории пределов и математического анализа с целью придать многим формулам возможно более простой вид в тригонометрии ввели радианное измерение дуг и углов. Термин «радиан» происходит от латинского radius — радиус. Объемы зерновых амбаров и других сооружений в виде кубов, призм и цилиндров египтяне и вавилоняне, китайцы и индийцы вычисляли путем умножения площади основания на высоту. Однако древнему Востоку были известны в основном только отдельные правила, найденные опытным путем, которыми пользовались для нахождения объемов и площадей фигур. В более позднее время, когда геометрия сформировалась как наука, был найден общий подход к вычислению объемов многогранников. Среди замечательных греческих ученых V—IV вв. до н. э., которые разрабатывали теорию объемов, были Демокрит из Абдеры и Евдокс Книдский. Евклид не применяет термина «объем». Для него термин «куб», например, означает и объем куба. В XI книге «Начал» изложены среди других и теоремы, следующего содержания. 1. Параллелепипеды с одинаковыми высотами и равновеликими основаниями равновелики. 2. Отношение объемов двух параллелепипедов с равными высотами равно отношению площадей их оснований. 3. В равновеликих параллелепипедах площади оснований обратно пропорциональны высотам. Теоремы Евклида относятся только к сравнению объемов, так как непосредственное вычисление объемов тел Евклид, вероятно, считал делом практических руководств по геометрии. В произведениях прикладного характера Герона Александрийского имеются правила для вычислений объема куба, призмы, параллелепипеда и других пространственных фигур.

Методика изучения геометрических величин в курсе геометрии средней школы

Методика изучения геометрических величин в курсе геометрии средней школы

Методика изучения геометрических величин в курсе геометрии средней школы

Методика изучения геометрических величин в курсе геометрии средней школы

Методика изучения геометрических величин в курсе геометрии средней школы

Методика изучения геометрических величин в курсе геометрии средней школы

Методика изучения геометрических величин в курсе геометрии средней школы

Методика изучения геометрических величин в курсе геометрии средней школы

Методика изучения геометрических величин в курсе геометрии средней школы

Методика изучения геометрических величин в курсе геометрии средней школы
Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.
22.07.2019