Обучение учащихся начальных классов приёмам решения творческих задач
На сегодняшний день для нас представляет профессиональный интерес изучение особенностей развития интеллектуальных способностей младших школьников. Наше общество находится в постоянном развитии, следовательно, через систему образования выдвигает и реализует всё новые требования к человеку, обладающему обучаемостью, то есть способностью к постоянному самообразованию; интеллектуально и физически развитому, что может обеспечить доступ к технологиям только интеллектуально развитым личностям и креативностью или способностью мыслить и действовать творчески.
Развитие интеллектуальных способностей – важнейшая задача начального образования, ведь этот процесс пронизывает все этапы развития личности ребёнка, пробуждает инициативу и самостоятельность принимаемых решений, привычку к свободному самовыражению, уверенность в себе.
Развивая интеллектуальные способности у младших школьников, вырабатываем у них навыки и умения с интересом, продуктивно трудиться, способность к творчеству. Творчество – не всплеск эмоций, оно неотделимо от знаний, умений. Эмоции сопровождают творчество, увлекают ребёнка, придают ему силы.
Интеллектуальное развитие происходит не само по себе, а в результате многостороннего взаимодействия ребёнка с другими людьми: в общении, в деятельности и, в частности, в учебной деятельности. Пассивное восприятие и усвоение нового не могут быть опорой прочных знаний. Поэтому наша задача – развитие интеллектуальных способностей учащихся, вовлечение их в активную деятельность. Для этого очень важно создать в начальной школе условия для полноценного развития детей, сформировать у них устойчивые познавательные процессы, развивать умения и навыки мыслительной деятельности, самостоятельность в поисках способов решения задач.
В качестве критериев интеллектуального, умственного развития выступают:
самостоятельность мышления, быстрота и прочность усвоения учебного материала, быстрота ориентировки при решении нестандартных задач, умение отличить существенное от несущественного, различный уровень аналитико-синтетической деятельности, критичность ума.
Никто не будет спорить с тем, что каждый учитель должен развивать логическое мышление учащихся. Об этом говорится в методической литературе, в объяснительных записках к учебным программам. Однако, как это делать, учитель не всегда знает. Нередко это приводит к тому, что интеллектуальное развитие в значительной мере идет стихийно, поэтому большинство учащихся, даже старшеклассников, не овладевает начальными приемами логического мышления (анализ, сравнение, синтез, абстрагирование и др.) Роль математики в развитии логического мышления исключительно велика. Причина столь исключительной роли математики в том, что это самая теоретическая наука из всех изучаемых в школе. В ней высокий уровень абстракции и в ней наиболее естественным способом изложения знаний является способ восхождения от абстрактного к конкретному. Как показывает опыт, в младшем школьном возрасте одним из эффективных способов интеллектуального развития является решение нестандартных задач.
«Нестандартные задачи – это такие, для которых в курсе математики не имеется общих правил и положений, определяющих точную программу их решения», – считает Л. М. Фридман.
Нестандартная задача (задание) – это учебная задача, содержание которой не укладывается в общепринятые типы и варианты расчётных и экспериментальных задач, имеющая необычную формулировку, с зашифрованным в тексте вопросом, и обеспечивающая адаптацию учащихся в окружающем мире.
Анализ литературы и собственный педагогический опыт позволил выделить следующие критерии принадлежности задач к группе нестандартных:
· неуточненная формулировка условия задачи, при решении которой учащимся необходимо увидеть главное, что невозможно без творческого подхода;
· кажущаяся противоречивость условия, связанная с поверхностным восприятием и существующими у учащихся стереотипами, преодоление которых развивает логическое мышление и придаёт решению нестандартный характер;
· многоплановость условия, допускающая присутствие в задаче сложных взаимосвязей между отдельными компонентами, глубина понимания, сущности которых во многом определяет уровень предположений учащихся;
· многовариантность решения;
· многоуровневость решения, выдаваемая различным уровнем сложности. Первый уровень решения исключает глубокое осмысление условия. Следующие уровни требуют от учащегося большего интеллектуального потенциала и предполагают решение, основанное на подробном теоретическом обосновании;
· интегрированность содержания, когда обсуждаемая в задачах тематика относится к области литературы, искусства, техники, экологии, быта и других разделов материальной культуры и требует для решения теоретических знаний ряда смежных дисциплин;
· познавательность. Текст задачи содержит интересную информацию;
· отсутствие алгоритма решения.
Нестандартные задачи в курсе математики не имеют общих правил. Процесс решения нестандартных задач состоит в последовательном применении двух основных операций:
· сведения путём преобразования или переформулировки нестандартной задачи к стандартной;
· разбиение нестандартных задач на несколько стандартных подзадач.
Трудность таких задач обусловлена тем, что они требуют проведения дополнительных исследований и рассмотрения различных вариантов. Здесь не нужны знания теории, выходящие за рамки программы, нужны умения думать, мыслить, догадываться, соображать.
Анализ методической и специальной литературы показал, что до настоящего времени не существует определенной классификации нестандартных задач. И это не случайно, так как практически невозможно определить единый признак – основание для классификации таких задач.
Нестандартные задания по математике, используемые в начальной школе, условно можно разделить на следующие классы: задачи на установление взаимно-однозначного соответствия; задачи о лжецах; задачи, решаемые с помощью логических выводов; задачи о переправах; задачи о переливаниях; задачи о взвешиваниях.
Наблюдения показывают, что даже при решении несложных нестандартных задач, учащиеся много времени тратят на рассуждения о том, за что взяться, с чего начать. Чтобы помочь учащимся найти путь к решению задачи, мы должны поставить себя на место решающего, попытаться увидеть и понять источник его возможных затруднений. Наша помощь, оставляющая различную долю самостоятельной работы, позволит ученикам развивать творческие способности, накопить опыт, который в дальнейшем поможет находить путь решения новых задач.
Вот несколько методов решения: алгебраический; арифметический; графический; практический; метод предположения; метод перебора.
Они могут применяться при решении нестандартных задач.
Опыт показывает, что для развития интеллектуальных способностей необходимо включать в процесс обучения разнообразные виды нестандартных задач (не ограничиваться материалами, предложенными в учебнике).
В процессе обучения действует принцип минимакса. Принцип минимакса заключается в следующем: школа должна предложить ученику содержание образования по максимальному уровню, а ученик обязан усвоить это содержание по минимальному уровню. Слабый ученик ограничится минимумом, а сильный – возьмет все и пойдет дальше. Все остальные разместятся в промежутке между этими двумя уровнями в соответствии со своими способностями и возможностями – они сами выберут свой уровень по своему возможному максимуму. Обучение осуществляется деятельностным методом, когда дети не получают знания в готовом виде, а «открывают» их в процессе самостоятельной исследовательской деятельности. Учитель предлагает учащимся систему вопросов и заданий, подводящих их к самостоятельному «открытию» нового свойства или отношения.
Известно несколько различных способов решения логических задач. Давайте назовем их так: способ рассуждений; способ таблиц; способ графов; способ бильярда; способ кругов Эйлера.
Охарактеризуем кратко эти способы.
Способ рассуждений – самый примитивный способ. Этим способом решаются самые простые логические задачи. Его идея состоит в том, что мы проводим рассуждения, используя последовательно все условия задачи, и приходим к выводу, который и будет являться ответом задачи.
Основной прием, который используется при решении текстовых логических задач, заключается в построении таблиц. Таблицы не только позволяют наглядно представить условие задачи или ее ответ, но в значительной степени помогают делать правильные логические выводы в ходе решения задачи.
Метод блок – схем.
В этом разделе рассматривается еще один тип логических задач. Это задачи, в которых с помощью сосудов известных емкостей требуется отмерить некоторое количество жидкости, а также задачи, связанные с операцией взвешивания на чашечных весах. Простейший прием решения задач этого класса состоит в переборе возможных вариантов. Понятно, что такой метод решения не совсем удачный, в нем трудно выделить какой-либо общий подход к решению других подобных задач.
Эффективность обучения младших школьников решению нестандартных задач зависит от нескольких условий:
· Задачи следует вводить в процесс обучения в определенной системе с постепенным нарастанием сложности, так как непосильная задача мало повлияет на развитие учащихся.
· Необходимо предоставлять ученикам максимальную самостоятельность в поиске решения задач, давать возможность пройти до конца по неверному пути, убедиться в ошибке, вернуться к началу и искать другой, верный путь решения.
· Нужно помочь учащимся осознать некоторые способы, приемы, общие подходы к решению нестандартных арифметических задач.
На первом этапе учащиеся должны:
· усвоить процесс решения любой задачи (читаю задачу, выделяю, что известно и что надо узнать);
· познакомиться с приемами работы над задачей (виды наглядной интерпретации, поиска решения, проверки решения задачи и др.)
На втором этапе учащиеся применяют ранее сформулированные общие приемы в ходе самостоятельного поиска конкретных задач.
Вывод: при поиске решения незнакомой задачи полезно сделать чертеж (рисунок), т.к. он может быть способом решения задачи.
Для успешного обучения учащихся решению нестандартных задач должны быть сформированы три составляющих мышления:
· высокий уровень элементарных мыслительных операций: анализа, синтеза, сравнения, обобщения, классификации и др.;
· высокий уровень активности, раскованности мышления;
· высокий уровень организованности и целенаправленности.
Если работу по формированию у детей логических умений и навыков, необходимых в любой интеллектуальной деятельности, проводить систематически не только на уроках, но и во внеурочной работе, то можно наблюдать повышение интеллектуально-творческий потенциал учащихся, мотивации к обучению, создание ситуации успеха.
Систематическое выполнение целенаправленно подобранных нестандартных задач влияет на развитие мыслительных процессов младших школьников и ведёт к повышению качества знаний. Работа по развитию творческих способностей оказывает положительное влияние на качество знаний учащихся по математике: повышается уровень математического образования младших школьников, развивается интерес к предмету, познавательная активность в обучении.
Нестандартные задачи – важная составляющая задачного подхода.
Используемые в обучении школьников нестандартные задачи классифицируются для каждого предмета естественнонаучного цикла.
Рассмотрим использование нестандартных способов решения, которые подразумевают новый, необычный подход в обучении на различных предметах, в том числе, на уроках русского языка и литературного чтения.
На уроке литературного чтения в 1 классе в учебнике «Букварь»дети встречаются с множеством непонятных слов, требующих пояснения: чабан, кортик, рапира, пирога, фрегат, флагшток, вестовые, клокотал, Осака, Курск, Канары, Ниагара, Миссисипи, калмыки, мордва, коми, шест, шесток, шествовать… Среди этого многообразия слов географические названия, названия народностей, населяющих просторы России, словарные слова. Проблема непонимания смысла слов привела к поиску новых приёмов. Одним из наиболее действенных приёмов критического мышления является работа со словарной картой, удовлетворяющей всем требованиям эффективного обучения.
Работа со словарной картой способствует пополнению словарного запаса и должна стать неотъемлемой частью нашей повседневной работы на каждом уроке и дома. Важно культивировать этот интерес, объяснить детям и их родителям, как работать со словарными картами. В ходе домашнего и самостоятельного чтения дети находят незнакомые для себя слова, вспоминают, что знают об этом слове и расширяют эти знания, используя контекст, словари, подбирая антоним, выводят собственное (то есть осознанное и усвоенное) значение слова. Тщательная работа над каждым новым словом должна вестись постоянно, непрерывно расширяться и носить самостоятельный характер.
© ООО «Знанио»
С вами с 2009 года.