Показательная функция на множестве рациональных чисел и её свойства
Определение: Показательная функция на множестве рациональных чисел: Функция вида аX, а>0, а≠1 xÎQ.
Свойства: для mÎZ nÎN
1) (аM)1/N = (а1/N)M
(аM)1/N=(((а1/N)N)M)1/N = ((а1/N)N*M)1/N = (((а1/N)M)N)1/N = (а1/N)M
2) (аM)1/N=b <=> аM=bN
3) (аM*K)1/N*K=(аM)1/N
(аM*K)1/N*K=b <=> аM*K=bN*K <=> аM=bN <=> (аM)1/N=b
Из свойств для целого показателя вытекают св-ва для рационального если обозначить: aM/N=(аM)1/N=(а1/N)M,a-M/N=1/aM/N, а0=1
Св-ва: x,yÎQ
1) aX * aY = aX+Y
aX * aY =b; x=m/n, y=-k/n => aM/N * 1/aK/N = b => aM/N = b * aK/N => aM = bN * aK => aM-K = bN => a(M-K)/N = b => aX+Y = b
2) aX/aY = aX-Y
3) (aX)Y=aX*Y
(aX)Y=b; x=m/n, y=k/s => (aM/N)K/S=b => (aM/N)K=bS => (a1/N)M*K=bS => (aM*K)1/N=bS => aM*K=bS*N => a(M*K)/(S*N)=b => aX*Y=b
4) x<y => aX<aY (a>1) - монотонность
z=y-x>0; aY=aZ+X => aY-aX=aZ+X-aX=aX*aZ-aX=aX*(aZ-1) => если aZ>1 при z>0, то aX<aY.
z=m/n => aZ=(a1/N)M => a1/N>1 => (a1/N)M>1 => aX*(aZ-1)>1, (a>1 n>0)
5) при x®0 aX®1 (xÎR)
Т.к. Lim a1/N=1 (n®¥), очевидно, что и Lim a-1/N=Lim1/a1/N=1 (n®¥). Поэтому "Е>0 $n0: "n>n0 1-E<a-1/N<a1/N<1+E, а>1. Если теперь |x|<1/n0, то
a-1/N<aX<a1/N => 1-E<aX<1+E. => Lim aX=1 (при x®0)
© ООО «Знанио»
С вами с 2009 года.