Практическая работа специальности 09.02.01.

  • docx
  • 27.11.2022
Публикация на сайте для учителей

Публикация педагогических разработок

Бесплатное участие. Свидетельство автора сразу.
Мгновенные 10 документов в портфолио.

Иконка файла материала ПЗ67_Принцип действия полевого транзистора. ВАХ полевого транзистора с указанием.docx

Практическое занятие № 67

Тема: «Принцип действия полевого транзистора. ВАХ полевого транзистора с указанием.»

 

Цель: изучение принципа действия полевого транзистора, снятие и анализ его вольт - амперных характеристик, определение параметров, проектирование схем.

 

Теория

В последние годы в радиолюбительской практике широкое распространение получили полевые транзисторы (ПТ). В них, в отличие от биполярных транзисторов, управление выходным током осуществляется не входным током, а электрическим полем, создаваемым входным напряжением.

Устройство одного из типов полевого транзистора показано на Рисунок 1. Его основу составляет полупроводник n-типа, с противоположной стороны которого методом диффузии образована область р-типа. На границе р - и n - областей образуется р-n переход, обладающий большим сопротивлением.

https://pandia.ru/text/78/244/images/image001_58.gif

Слой полупроводника n-типа, лежащий справа от р-n-перехода, называется каналом. Если между р - и n - областями включить источник напряжения так, как показано на Рисунок 1 а, то р-n – переход скажется включенным в обратном направлении и его толщина увеличится, что приведет к уменьшению толщины канала. Но чем тоньше канал, тем меньше его поперечное сечение и тем больше сопротивление. Значит, изменяя обратное напряжение между р - и n - областями, можно управлять сопротивлением канала. Поэтому р-область называют управляющим электродом или затвором полевого транзистора.

Если к каналу подключить второй источник питания Uси (рис1, б), то через канал потечет ток, созданный движением электронов от нижней к верхней части n-области. Участок n-области, от которого начинают движение основные носители заряда, называют истоком, а участок этой области, к которому они движутся – стоком.

Ток, протекающий через канал полевого транзистора, зависит от его сопротивления, которое, в свою очередь, определяется толщиной канала. Следовательно, при изменении напряжения затвора изменяется и ток, протекающий через канал.

Транзистор, структура которого представлена на Рисунок1 называется полевым транзистором с управляющим р-n - переходом и каналом n-типа. Если в качестве исходного материала взять полупроводник р-типа, получим полевой транзистор в управляющим р-n-переходом и каналом р-типа. У такого транзистора затвор будет образован n-областью, а полярности источников питания Uзи и Uси должны быть противоположны тем, которые показаны на рис 1.

При некотором напряжении затвора канал полностью перекрывается, и ток, протекающий через него, становится близким к нулю. Это напряжение затвора называют напряжением отсечки Uзи. отс..

Условное графическое обозначение

Рисунок 3 - Условное графическое обозначение

а – полевой транзистор n-типа, б – полевой транзистор p-типа

 

Чтобы легче было запомнить, вспомните обозначение диода, где стрелка указывает от p-области в n-область. Здесь также.

Разновидности полевых транзисторов

Различают шесть различных типов полевых транзисторов. Их условные обозначения в электрических схемах представлены на Рисунок 4.

Разновидности полевых транзисторов

Рисунок 4 - Разновидности полевых транзисторов

 

Управляющим электродом полевого транзистора является затвор З. Он позволяет управлять величиной сопротивления между стоком С и истоком И (область полупроводника между С и И называют каналом). Управляющим напряжением является напряжение UЗИ. Большинство ПТ являются симметричными, т.е. их свойства почти не изменяются, если их электроды С и И поменять местами. В транзисторах с управляющим переходом затвор отделен от канала СИ p-n переходом. При правильной полярности напряжения UЗИ p-n переход запирается, и изолирует затвор от канала; при противоположной полярности он открывается. Для полевых транзисторов с управляющим переходом такой режим является запрещенным.

У ПТ с изолированным затвором, или МОП транзисторов (МОП – металл-оксид-полупроводник) затвор отделен от канала СИ тонким слоем диэлектрика. При таком исполнении транзистора ток через затвор не будет протекать при любой полярности напряжения на затворе. Входные сопротивления полевых транзисторов с управляющим переходом составляют от 1010 до 1013 Ом, а для МОП транзисторов – от 1013 до 1015 Ом. В МОП транзисторах присутствует четвертый вывод от так называемой подложки. Этот электрод, как и затвор, может выполнять управляющие функции, но он отделен от канала только p-n переходом. Управляющие свойства подложки обычно не используются, а ее вывод соединяют с выводом истока.

Режимы работы полевых транзисторов

Аналогично делению биполярных транзисторов на p-n-p и n-p-n-транзисторы, полевые транзисторы делятся на p-канальные и n-канальные. У n-канальных полевых транзисторов ток канала становится тем меньше, чем меньше потенциал затвора. У p-канальных полевых транзисторов наблюдается обратное явление.

Типовые передаточные характеристики полевых транзисторов приведены на Рисунок 5. Пользуясь этими характеристиками, можно установить полярность управляющего напряжения, направление тока в канале и диапазон управляющего напряжения.

Рассмотрим некоторые особенности этих характеристик. Все характеристики полевых транзисторов с каналом n-типа расположены в верхней половине графика и, следовательно, имеют положительный ток, что соответствует положительному напряжению на стоке. Наоборот, все характеристики приборов с каналом p-типа расположены в нижней половине графика и, следовательно, имеют отрицательное значение тока и отрицательное напряжение на стоке. Характеристики полевых транзисторов с управляющим переходом при нулевом напряжении на затворе имеют максимальное значение тока, которое называется IС НАЧ. При увеличении запирающего напряжения ток стока уменьшается и при напряжении отсечки UОТС становится близким к нулю.

 

Типовые передаточные характеристики полевых транзисторов

Рисунок 5 - Типовые передаточные характеристики полевых транзисторов

 

Характеристики МОП транзисторов с индуцированным каналом при нулевом напряжении на затворе имеют нулевой ток. Появление тока стока в таких транзисторах происходит при напряжении на затворе больше порогового значения UПОР. Увеличение напряжения на затворе приводит к увеличению тока стока.

Характеристики МОП транзистора со встроенным каналом при нулевом напряжении на затворе имеют начальное значение тока IС НАЧ. Такие транзисторы могут работать как в режиме обогащения, так и режиме обеднения. При увеличении напряжения на затворе канал обогащается и ток стока растет, а при уменьшении напряжения на затворе канал обедняется и ток стока снижается.

Карта входных и выходных напряжений при заземленном истоке приведена на Рисунке 6.

Карта входных и выходных полярностей транзисторов

Карта входных и выходных полярностей транзисторов

Рисунок 6 - Карта входных и выходных полярностей транзисторов

 

Различные транзисторы, включая биполярные, нарисованы в квадрантах, характеризующих их входное и выходное напряжение в активной области при заземленном истоке (или эмиттере).

При заземленном истоке полевого транзистора включается (переходит в проводящее состояние) путем смещения напряжения затвора в сторону напряжения питания стока. Например, для n-канального полевых транзисторов с управляющим p-n переходом используется положительное напряжение питания стока, как и для всех n-канальных приборов. Таким образом, этот полевой транзистор включается положительным смещением затвора.

На Рисунок 7 приведены выходные вольт-амперные характеристики полевых транзисторов с управляющим переходом с каналом n-типа. Характеристики других типов транзисторов имеют аналогичный вид, но отличаются напряжением на затворе и полярностью приложенных напряжений. На этих вольт-амперных характеристиках можно выделить две области: линейную и насыщения.

Выходные характеристики полевых транзисторов с управляющим переходом и каналом n-типа

Выходные характеристики полевых транзисторов с управляющим переходом и каналом n-типа

Рисунок 7 - Выходные характеристики полевых транзисторов с управляющим переходом и каналом n-типа

 

В линейной области вольт-амперные характеристики вплоть до точки перегиба представляют собой прямые линии, наклон которых зависит от напряжения на затворе. В области насыщения вольт-амперные характеристики идут практически горизонтально, что позволяет говорить о независимости тока стока от напряжения на стоке. Особенности этих характеристик обусловливают применение полевых транзисторов. В линейной области полевые транзисторы используют как сопротивление, управляемое напряжением на затворе, а в области насыщения – как усилительный элемент.

 

Схемы включения полевых транзисторов

Включение полевых транзисторов с управляющим p-n переходом и каналом n типа в схемы усилительных каскадов с общим истоком и общим стоком показано на Рисунок 8, а, б.

 

Включение полевых транзисторов в схемы: с общим истоком, с общим стоком

Включение полевых транзисторов в схемы: с общим истоком, с общим стоком

 

Рисунок 8 - Включение полевых транзисторов в схемы: а) с общим истоком, б) с общим стоком

 

Постоянное напряжение Е1 обеспечивает получение определенного значения тока стока IС=E/(rСИ +RН) в зависимости от сопротивления канала rСИ. При подаче входного усиливаемого напряжения UВХ потенциал затвора меняется, а соответственно меняются и токи стока и истока, а также падение напряжения на резисторе RН. Приращение падения напряжения на резисторе RН при большом его значении гораздо больше приращений входного напряжения. За счет этого осуществляется усиление сигнала. При изменении типа проводимости канала меняются только полярности приложенных напряжений и направления токов.

Параметры полевых транзисторов

Основными параметрами полевых транзисторов, являются:

             крутизна

             внутреннее дифференциальное сопротивление

             начальный ток стока

             напряжение отсечки

             сопротивление сток – исток в открытом состоянии;

             максимальная частота усиления fмакс – частота, на которой коэффициент усиления по мощности равен единице

Преимущества и недостатки полевых транзисторов

Основными преимуществами полевых транзисторов с управляющим переходом перед биполярными транзисторами являются высокое входное сопротивление, малые шумы (обусловлены тем, что носители заряда не пересекают p-n переходов, как в биполярных транзисторах, а двигаются вдоль них), простота изготовления, малое значение остаточного напряжения между истоком и стоком открытого транзистора. Так как в полевом транзисторе ток через канал вызван перемещением основных носителей, концентрация которых определяется преимущественно количеством примеси и поэтому мало зависит от температуры, то полевые транзисторы более температуростабильны. Полевые транзисторы обладают более высокой стойкостью к ионизирующим излучениям.

При изготовлении интегральных схем и микропроцессоров часто на одном чипе изготавливаются и используются полевые транзисторы как с p-, так и с n-каналами. В этом случае транзисторы и схемы называются комплементарными, дополняющими друг друга. Такая технология получила широчайшее распространение при изготовлении микросхем с высокой степенью интеграции.

Мощность сигнала, необходимая для управления полевым транзистором во много раз меньше, чем мощность для управления биполярным транзистором. По этой причине полевые транзисторы широко используются при изготовлении интегральных схем и микропроцессоров. Такие схемы с полевыми транзисторами имеют малую потребляемую мощность, в их состав можно включать увеличенное число транзисторов.

 

Появление мощных полевых транзисторов (30 А и более) позволяет заменить биполярные транзисторы во многих применениях, зачастую получая более простые схемы с улучшенными параметрами.

Недостаток многих полевых транзисторов – невысокая крутизна переходной характеристики, а, следовательно, и малый коэффициент усиления схем на полевых транзисторах. Кроме этого, по быстродействию и, соответственно, по частотным свойствам полевые транзисторы, как правило, не имеют преимуществ перед биполярными транзисторами.

Области применения полевых транзисторов

Схемы с высоким входным сопротивлением (слаботочные). Сюда относятся буферные или обычные усилители для тех применений, где ток базы или конечное полное входное сопротивление биполярных транзисторов ограничивает их характеристики. Можно построить такие схемы на отдельно взятых полевых транзисторах, однако сегодняшняя практика отдает предпочтение использованию интегральных схем, построенных на полевых транзисторах. В некоторых из них полевые транзисторы используются только в качестве высокоомного входного каскада, а вся другая схема построена на биполярных транзисторах, в других вся схема построена на полевых транзисторах.

Аналоговые ключи. МОП-транзисторы являются отличными аналоговыми ключами, управляемыми напряжением. По своим качествам такие ключи гораздо лучше ключей на биполярных транзисторах.

Цифровые микросхемы. МОП-транзисторы доминируют при построении микропроцессоров, схем памяти и большинства высококачественных цифровых логических схем. Микромощные логические схемы изготавливаются исключительно на МОП-транзисторах.

Мощные переключатели. Мощные МОП-транзисторы часто бывают предпочтительнее биполярных транзисторов для переключения нагрузок, в первую очередь из-за того, что в полевых транзисторах практически отсутствует входной ток и мощность управляющих сигналов чрезвычайно мала. Отличные результаты дает использование мощных ключей, построенных на комбинации биполярных и полевых транзисторов.

Переменные резисторы и источники тока. В линейной области стоковых характеристик полевые транзисторы ведут себя подобно резисторам, управляемым напряжением, в области насыщения они являются управляемыми напряжением источниками тока.

Схемы включения

Как и у биполярных транзисторов есть три типовых схемы включения:

1. С общим истоком (а). Используется чаще всех, даёт усиление по току и мощности.

2. С общим затвором (б). Редко используется, низкое входное сопротивления, усиления нет.

3. С общим стоком (в). Усиление по напряжению близко к 1, большое входное сопротивление, а выходное низкое. Другое название – истоковый повторитель.

Три типовых схемы включения

 

Ход работы.

1. Спроектировать схемы применения полевых транзисторов (схемы с высоким входным сопротивлением, аналоговые ключи, цифровые микросхемы, мощные переключатели, переменные резисторы и источники тока).

 


 

Скачано с www.znanio.ru