Сформулируйте определение квадратного уравнения.
2. Объясните, в чём заключается смысл ограничения в определении квадратного уравнения (а ≠ 0).
3. Перечислите виды квадратных уравнений.
4. Какое квадратное уравнение называется неполным? Приведите пример.
5. Какое квадратное уравнение называется приведённым? Приведите пример.
6. Способы решения полного квадратного уравнения?
Вопросы
теоретической разминки:
подробнее
подробнее
Метод “переброски” старшего коэффициента
ax2 + bx + c = 0 и y2+ by + ac = 0
связаны соотношениями:
Решите уравнение 2х2 - 9х – 5 = 0.
у2 - 9у - 10 = 0.
D>0, по теореме, обратной теореме Виета, получаем корни: -1; 10,
далее возвращаемся к корням исходного уравнения: - 0,5; 5.
Ответ: 5; -0,5.
Метод разложения на множители.
Решите уравнение 4х2 + 5х + 1 = 0.
4х2 + 5х + 1 = 0.
4х2 + 4х + х + 1 = 0.
4х(х+1) + (х+1) = 0.
4х(х + 1) = 0.
Произведение двух множителей равно нулю, если хотя бы один из них равен нулю, а второй при этом не теряет смысла, или когда оба равны нулю.
4х = 0, х + 1 = 0.
х = 0, х = -1.
Ответ: 0; -1.
№ уравнения | № метода | |
1 | 100x2 + 53x – 153 = 0 | |
2 | 20x2 - 6x = 0 | |
3 | 299x2 + 300x + 1 = 0 | |
4 | 3x2 - 5x + 4 = 0 | |
5 | 7x2 + 8x + 2 = 0 | |
6 | 35x2 – 8 = 0 | |
7 | 4x2 – 4x + 3 = 0 | |
8 | (x – 8)2 – (3x + 1)2 = 0 | |
9 | 4(x – 1)2 + 0,5(x – 1) – 1 = 0 | |
10 | 12x2 = 0 |
3. в=0
ах2+с=0
2. с=0
ах2+вх=0
1. в,с=0
ах2=0
4. b - нечётное
ах2+bx+с=0
5. b - чётное
ах2+bx+с=0
6. Теорема Виета.
7. Метод выделения квадрата двучлена.
8. Метод «переброски» старшего коэффициента.
9. Т1 или Т2.
10. Метод разложения на множители.
11. Метод введения новой переменной.
© ООО «Знанио»
С вами с 2009 года.