Презентация по математике для 11 класса по теме "Площадь криволинейной трапеции""

  • pptx
  • 06.10.2022
Публикация в СМИ для учителей

Публикация в СМИ для учителей

Бесплатное участие. Свидетельство СМИ сразу.
Мгновенные 10 документов в портфолио.

Иконка файла материала Площадь криволинейной трапеции.pptx

Площадь криволинейной трапеции и интеграл.

Криволинейная трапеция

Отрезок [a;b] называют основанием
этой криволинейной трапеции

Криволинейной трапецией называется фигура,
ограниченная графиком непрерывной и не меняющей
на отрезке [а;b] знака функции f(х), прямыми
х=а, x=b и отрезком [а;b].

криволинейной трапеции

Метод трапеций

Способы вычисления площади

Метод прямоугольников

Криволинейная трапеция

0

2

0

0

0

1

-1

-1

2

-1

-2

У=х²+2х

У=0,5х+1

Какие из заштрихованных на рисунке фигур являются криволинейными трапециями, а какие нет?

Заполнить таблицу

№1

Да/нет

№2

№3

№4

№5

№6

у

1

Не верно

у

у

у

у

у

У=1

2

верно

3

3

y = f(x)

y = f(x)

y = f(x)

y = f(x)

y = f(x)

y = f(x)

У=3

4

5

6

Не верно

Не верно

верно

верно

Теорема. Любая функция f(х), непрерывная на отрезке [a;b] и имеющая на нем конечное количество экстремумов, имеет на этом отрезке первообразную.

Площадь криволинейной трапеции

Площадь криволинейной трапеции.

где F(x) – любая первообразная функции f(x).

Формула Ньютона-Лейбница

1643—1727

1646—1716

Схематично изобразить график функции f(x).

Алгоритм вычисления площади криволинейной трапеции:

Провести прямые x=a и x=b.

Записать одну из первообразных F(x) функции f(x).

Составить и вычислить разность F(b) – F(a).

F(x)=… …

S=F(b) – F(a)=… …

Формула Ньютона-Лейбница

Изобразить криволинейную трапецию, ограниченную графиком функции y = (x-1)2, осью Ox и прямой x=2.

x = 2

Найти площадь криволинейной трапеции,
изображенной на рисунке

0

1

3

У=х²

1

Формулы вычисления площади с помощью
интеграла

Формулы вычисления площади с помощью интеграла

х

S= S1+ S2

Формулы вычисления площади с помощью интеграла

x

Найдите площадь фигуры, ограниченной линиями у = х2 + 2, х = 1, х = -2

у

S = 9 ед.кв

х

у = х2 - 3

Найдите площадь фигуры, ограниченной линиями у = х - 3, у = х2 -3

Найдите площадь фигуры, ограниченной линиями g(x) = 3 – х, f(x) = 0,5х2 + 2х + 3, х = -3, х = 2, у = 0

у

х

S1

S2

Sф = S1 + S2

Sф = 4,5

y

Запишите формулы для вычисления площади фигуры.

y= f(x)

y= f(x)

-4

2

- 2

3

0

- 4

2

- 4

y= g(x)

y= g(x)

y= f(x)

y= f(x)

y= f(x)

y= g(x)

-3

3

0

Запишите формулы для вычисления площади фигуры.

y= g(x)

-2

3

0

Вариант 1

Вариант 2

а) f(x) = 2x +1
б) f(x) =х2

а) f(x) = 1-х
б) f(x)= х2

y = 0, x = 0, x = 3

y = 0, x = 2, x = 4

Сделать проверку, используя любой другой известный способ.

Вычислить площадь фигуры, ограниченной линиями