Программа по математике 5-6 классы ФГОС
Оценка 5

Программа по математике 5-6 классы ФГОС

Оценка 5
Руководства для учителя
doc
математика
6 кл
21.01.2017
Программа по математике 5-6 классы ФГОС
Программа разработана на основании: - Федерального закона Российской Федерации от 29 декабря 2012 г. N 273-ФЗ "Об образовании в Российской Федерации"; - Федерального государственного образовательного стандарта основного общего образования, утвержденного приказом Министерства образования и науки РФ от 17.12.2010 № 1897, федерального базисного учебного плана, утвержденного приказом Министерства образования и науки РФ от 09.03.2004 №1312 с изменениями от 01.02.2012 № 74; - Примерной основной образовательной программы основного общего образования, одобренной решением федерального учебно-методического объединения по общему образованию (протокол от 8 апреля 2015 года № 1/15) .учебно-методического комплекса (УМК). Учебно-методические комплекты «Математика. 5 класс» и «Математика. 6 класс» под редакцией Г.В. Дорофеева и И. Ф. Шарыгина и др. - составная часть единой линии УМК по математике для 5-9 классов, в которых преемственные связи прослеживаются не только в содержательном плане, но и в методических подходах.Программа разработана на основании: - Федерального закона Российской Федерации от 29 декабря 2012 г. N 273-ФЗ "Об образовании в Российской Федерации"; - Федерального государственного образовательного стандарта основного общего образования, утвержденного приказом Министерства образования и науки РФ от 17.12.2010 № 1897, федерального базисного учебного плана, утвержденного приказом Министерства образования и науки РФ от 09.03.2004 №1312 с изменениями от 01.02.2012 № 74; - Примерной основной образовательной программы основного общего образования, одобренной решением федерального учебно-методического объединения по общему образованию (протокол от 8 апреля 2015 года № 1/15) .учебно-методического комплекса (УМК). Учебно-методические комплекты «Математика. 5 класс» и «Математика. 6 класс» под редакцией Г.В. Дорофеева и И. Ф. Шарыгина и др. - составная часть единой линии УМК по математике для 5-9 классов, в которых преемственные связи прослеживаются не только в содержательном плане, но и в методических подходах.
Программа матем 5-6 классы ФГОС.doc

1.      Пояснительная записка

 

Программа разработана на основании:

-  Федерального закона Российской Федерации от 29 декабря 2012 г. N 273-ФЗ "Об образовании в Российской Федерации";

- Федерального государственного образовательного стандарта основного общего образования, утвержденного  приказом Министерства образования и науки РФ от 17.12.2010 № 1897, федерального базисного учебного плана, утвержденного приказом Министерства образования и науки РФ от 09.03.2004 №1312 с изменениями от 01.02.2012 № 74;

- Примерной основной образовательной программы основного общего образования, одобренной решением федерального учебно-методического объединения по общему образованию (протокол от 8 апреля 2015 года № 1/15) .

 

Срок реализации программы: 5 лет.

 

Целью реализации основной образовательной программы основного общего образования МКОУ «Колпаковская СОШ» является обеспечение планируемых результатов по достижению выпускником целевых установок, знаний, умений, навыков, компетенций и компетентностей, определяемых личностными, семейными, общественными, государственными потребностями и возможностями обучающегося среднего школьного возраста, индивидуальными особенностями его развития и состояния здоровья.

Целью реализации основной образовательной программы основного общего образования по предмету «Математика» (далее – Программы) является усвоение содержания  предмета « Математика» и достижение обучающимися результатов изучения в соответствии с требованиями, установленными Федеральным государственным образовательным стандартом основного общего образования

Школьный курс математики играет важную роль в реализации основной цели современного российского образования — формировании всесторонне образованной, инициативной и успешной личности, обладающей системой современных мировоззренческих взглядов, ценностных ориентации, идейно-нравственных, культурных и этических принципов и норм поведения. Математическое образование играет важную роль, как в практической, так и в духовной жизни общества.

Практическая сторона математического образования связана с формированием способов деятельности, духовная — с интеллектуальным развитием человека, формированием характера и общей культуры.

Практическая полезность математики обусловлена тем, что ее предметом являются фундаментальные структуры реального мира: пространственные формы и количественные отношения — от простейших, усваиваемых в непосредственном опыте, до достаточно сложных, необходимых для развития научных и технологических идей. Без конкретных математических знаний затруднено понимание принципов устройства и использования современной техники, восприятие и интерпретация разнообразной социальной, экономической, политической информации, малоэффективна повседневная практическая деятельность. Каждому человеку в своей жизни приходится выполнять достаточно сложные расчеты, находить в справочниках нужные формулы и применять их, владеть практическими приемами геометрических измерений и построений, читать информацию, представленную в виду таблиц, диаграмм, графиков, понимать вероятностный характер случайных событий, составлять несложные алгоритмы и др.

Без базовой математической подготовки невозможно стать образованным современным человеком. В школе математика служит опорным предметом для изучения смежных дисциплин. В после школьной жизни реальной необходимостью в наши дни является непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и математической. И наконец, все больше специальностей, где необходим высокий уровень образования, связано с непосредственным применением математики (экономика, бизнес, финансы, физика, химия, техника, информатика, биология, психология и др.). Таким образом, расширяется круг школьников, для которых математика становится значимым предметом.

Для жизни в современном обществе важным является формирование математического стиля мышления, проявляющегося в определенных умственных навыках. В процессе математической деятельности в арсенал приемов и методов человеческого мышления естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. Объекты математических умозаключений и правила их конструирования вскрывают механизм логических построений, вырабатывают умения формулировать, обосновывать и доказывать суждения, тем самым развивают логическое мышление. Ведущая роль принадлежит математике в формировании алгоритмического мышления и воспитании умений действовать по заданному алгоритму и конструировать новые. В ходе решения задач — основной учебной деятельности на уроках математики — развиваются творческая и прикладная стороны мышления.

Обучение математике дает возможность развивать у учащихся точную, экономную и информативную речь, умение отбирать наиболее подходящие языковые (в частности, символические, графические) средства.

Математическое образование вносит свой вклад в формирование общей культуры человека. Необходимым компонентом общей культуры в современном толковании является общее знакомство с методами познания действительности, представление о предмете и методе математики, его отличия от методов естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач.

Изучение математики способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии.

История развития математического знания дает возможность пополнить запас историко-научных знаний школьников, сформировать у них представления о математике как части общечеловеческой культуры. Знакомство с основными историческими вехами возникновения и развития математической науки, с историей великих открытий, именами людей, творивших науку, должно войти в интеллектуальный багаж каждого культурного человека.

Целями изучения математики в основной школе являются:

1.      В направлении личностного развития

·         развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;

·         формирование у учащихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;

·         воспитание качеств личности, обеспечивающих мобильность. Способность принимать самостоятельные решения;

·         формирование качеств мышления, необходимых для адаптации в современном информационном обществе;

·         развитие интереса к математическому творчеству и математических способностей.

2.      В метапредметном направлении

·         Формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации современного общества;

·         Развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;

·         Формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер деятельности.

3.      В предметном направлении

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
  • создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.

Задачи:

·         овладеть системой математических знаний и умений, необходимых для применения в практической деятельности, изучении смежных дисциплин;

·         способствовать интеллектуальному развитию, формировать качества, необходимые человеку для полноценной жизни в современном обществе, свойственные математической деятельности: ясности и точности мысли, интуиции, логического мышления, пространственных представлений, способности к преодолению трудностей;

·         формировать представления об идеях и методах математики как универсального языка науки и техники, средствах моделирования явлений и процессов;

·         воспитывать культуру личности, отношение к математике как части общечеловеческой культуры, играющей особую роль в общественном развитии.

 

Особенности содержания и методического аппарата

учебно-методического комплекса (УМК)

Учебно-методические комплекты «Математика. 5 класс» и «Математика. 6 класс» под редакцией Г.В. Дорофеева и И. Ф. Шарыгина и др. - составная часть единой линии УМК по математике для 5-9 классов, в которых преемственные связи прослеживаются не только в содержательном плане, но и в методических подходах.

К общим идеям, составляющим  основу концепции курса, относятся:

·          интеллектуальное развитие учащихся средствами математики;

·          ознакомление с математикой как частью общечеловеческой культуры;

·          развитие интереса к математике;

·          создание условий для дифференциации обучения;

·          внимание к практико-ориентированному знанию.

Идея развивающего обучения реализуется в учебниках через систему методических решений. УМК содержит достаточный и специальным образом организованный учебный материал (теорию и задачи), обеспечивающий формирование универсальных учебных действий. Школьники имеют возможность овладевать исследовательскими и логическими действиями, предполагающими умение видеть проблему, ставить вопросы, наблюдать и проводить эксперименты, делать несложные выводы и умозаключения, обосновывать и опровергать утверждения, сравнивать и классифицировать.

Эффективности интеллектуального развития способствует понимание и осознание самого процесса мыслительной деятельности (механизмов рассуждений, умозаключений). Поэтому в доработанных в соответствии с ФГОС изданиях учебников инициируется рефлексия способов и условий действий, акцентируется внимание на собственно процессе решения задачи.

Развитие мышления тесно связано с речью, со способностью грамотно говорить, правильно выражать свои мысли. Свидетельством чёткого и организованного мышления является грамотный математический язык. Обучение математическому языку как специфическому средству коммуникации в его сопоставлении с реальным языком авторы считают важнейшей задачей, для решения которой используются адекватные методические приёмы.

Отличительной особенностью данного УМК является внимание к развитию и формированию различных видов мышления. Этому, в частности, способствует включение в курс большего, чем это бывает традиционно, объёма геометрического материала. Изучая геометрию, учащиеся начинают последовательное продвижение в развитии мышления от конкретных, практических его форм до абстрактных, логических.

Серьёзное внимание в УМК уделяется формированию личностно-ценностного отношения к математическим знаниям, развитию интереса к предмету, знаниям культурологического характера. Авторы ставят целью доступное, живое изложение содержания курса, создание учебников, которые можно читать.

К  методическим особенностям учебников относятся:

·     мотивированное и доступное изложение теоретических сведений, формирование понятий на содержательной основе, широкое использование наглядности, опора на здравый смысл, повышение роли интуиции и воображения как основы для формирования математического мышления и интеллектуальных способностей;

·     создание широкого круга математических представлений, лежащих в основе общей культуры человека;

·     организация разнообразной практической деятельности, способствующей как формированию умений, так и эффективному умственному развитию, а также способности применять полученные знания в жизненных ситуациях;

·     структурирование содержания курса по спирали, что позволяет возвращаться к изученному материалу на новом уровне, включать знания в новые связи, формировать их в системе;

·     личностно ориентированный стиль изложения, привлечение современных сюжетов, близких жизненному опыту учащихся, в теории и задачном материале, что является средством создания продуктивной мотивации к занятиям математикой;

·     реализация технологии уровневой дифференциации, позволяющей каждому учащемуся добиться оптимальных результатов в усвоении курса.

Методический аппарат учебников ориентирован на формирование у учащихся способности к осознанному выбору уровня овладения материалом, индивидуальной траектории учебной деятельности. Этому способствует выделение групп А и Б в системе упражнений. Упражнения к пункту разбиты на группы А (базовый уровень) и Б (более высокие уровни); диапазон сложности заданий широк и достаточен для работы с учащимися, имеющими разные уровни подготовки. В тексте и системе упражнений даны образцы решения, советы, подсказки, что помогает включению ученика в учебную работу.

Ряд заданий снабжён «указателями», которые выделяют в системе упражнений сквозные рубрики. Тем самым выделяется определённый вид учебной деятельности. Это позволяет ученику стать активным субъектом учения в плане  освоения универсальных учебных действий. Так, задания, снабжённые указателями «Работаем с символами», «Действуем по правилу», выполняются на этапе введения новых элементов математического языка, закрепления нового алгоритма. Через задания рубрики «Верно или неверно» учащиеся целенаправленно обучаются приёмам самоконтроля и самопроверки при изучении самых разных разделов. Кроме того, они учатся распознавать верные и неверные утверждения, опровергать неверные утверждения с помощью контрпримера.

Система упражнений насыщена заданиями, направленными на формирование логического мышления учащихся. Выделены специальные рубрики «Рассуждаем», «Анализируем», «Исследуем», «Ищем закономерность» и др. Учащиеся в ходе выполнения упражнений обучаются некоторым приёмам доказательных рассуждений, учатся проводить обоснования со ссылкой на правила, свойства и признаки.

В курсе математики 5-6 классов учебная цель, как правило, — это решение математической задачи. Формирование умения самостоятельно найти идею решения, спланировать ход решения — серьёзная методическая проблема. Чтобы помочь учащемуся приступить к решению, в учебниках ряд задач снабжён советами, указаниями и подсказками, которые помогают ученику увидеть идею решения и начать решение. С помощью рубрики «Разбираем способ решения» учащиеся получают возможность познакомиться с идеей нового способа, разобраться в её применении и воспользоваться в решении последующих задач. В учебниках постоянно подчёркивается возможность действовать при решении задач разными способами, применять различные приёмы и алгоритмы, при этом учащемуся предоставляется право выбирать тот способ, который ему более удобен и понятен.

Заключительный структурный элемент каждой главы — фрагмент «Чему вы научились», который позволяет ученику самостоятельно проверить, достиг ли он уровня обязательных требований, обнаружить пробелы, осознать свои возможности при выполнении более сложных заданий. Учащийся может по ходу изучения материала главы или при подведении итогов соотнести свои умения с требуемыми и при необходимости скорректировать их при подготовке к контролю.

 

 

 

 

 

Структура рабочей программы:

 

          1.   Пояснительная записка

2.      Общая характеристика учебного предмета

3.      Описание места учебного предмета  в учебном плане

4.      Личностные, метапредметные и предметные результаты освоения учебного курса

5.      Содержание предметного курса

6.      Тематическое планирование с определение основных видов учебной деятельности

7.      Описание учебно-методического и материально-технического обеспечения образовательного процесса

8.      Планируемые результаты изучения учебного предмета (курса)

9.       Приложения к программе


2.   Общая характеристика учебного предмета «Математика»

 

      Содержание математического образования в основной школе формируется на основе фундаментального ядра школьного математического образования. Оно в основной школе включает следующие разделы: арифметика, алгебра, функции, вероятность и статистика, геометрия. Наряду с этим в него включены два дополнительных раздела: логика и множества, математика в историческом развитии, что связано с реализацией целей общеинтеллектуального и общекультурного развития учащихся. Содержание каждого из этих разделов разворачивается в содержательно-методическую линию, пронизывающую все основные разделы содержания математического образования на данной ступени обучения.

     Содержание раздела «Арифметика» служит базой для дальнейшего изучения учащимися математики, способствует развитию их логического мышления, формированию умения пользоваться алгоритмами, а также приобретению практических навыков, необходимых в повседневной жизни. Развитие понятия о числе в основной школе связано с рациональными и иррациональными числами, формированием первичных представлений о действительном числе. Завершение числовой линии (систематизация сведений о действительных числах, о комплексных числах), так же как и более сложные вопросы арифметики (алгоритм Евклида, основная теорема арифметики), отнесено к ступени общего среднего (полного) образования.

    Содержание раздела «Алгебра» направлено на формирование у учащихся математического аппарата для решения задач из разных разделов математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей процессов и явлений реального мира. В задачи изучения алгебры входят также развитие алгоритмического мышления, необходимого, в частности, для усвоения курса информатики, овладения навыками дедуктивных рассужде­ний. Преобразование символьных форм вносит специфический вклад в развитие воображения учащихся, их способностей к математическо­му творчеству. В основной школе материал группируется вокруг рациональных выражений, а вопросы, связанные с иррациональными выражениями, с тригонометрическими функциями и преобразованиями, входят в содержание курса математики на старшей ступени обучения в школе.

Содержание раздела «Функции» нацелено на получение школьниками конкретных знаний о функции как важнейшей математической модели для описания и исследования разнообразных процессов. Изучение этого материала способствует развитию у учащихся умения использовать различные языки математики (словесный, символический, графический), вносит вклад в формирование представлений о роли математики в развитии цивилизации и культуры.

Раздел «Вероятность и статистика» — обязательный компонент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования у учащихся функциональной грамотности - умений воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, проводить простейшие вероятностные расчеты. Изучение основ комбинаторики позволит учащимся рассматривать случаи, осуществлять перебор и подсчет числа вариантов, в том числе в простейших прикладных задачах.

При изучении статистики и вероятности расширяются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации, и закладываются основы вероятностного мышле­ния.

Цель содержания раздела «Геометрия» — развить у учащихся пространственное воображение и логическое мышление путем систематического изучения свойств геометрических фигур на плоскости и в пространстве и применения этих свойств при решении задач вычислительного и конструктивного характера. Существенная роль при этом отводится развитию геометрической интуиции. Сочетание наглядности со строгостью является неотъемлемой частью геометрических знаний. Материал, относящийся к блокам «Координаты» и «Векторы», в значительной степени несет в себе межпредметные знания, которые находят применение, как в различных математических дисциплинах, так и в смежных предметах.

Особенностью раздела «Логика и множества» является то, что представленный в нем материал преимущественно изучается и используется в ходе рассмотрения различных вопросов курса. Соответствующий материал нацелен на математическое развитие учащихся, формирование у них умения точно, сжато и ясно излагать мысли в устной и письменной речи.

     Раздел «Математика в историческом развитии» предназначен для формирования представлений о математике как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения. На него не выделяется специальных уроков, усвоение его не контролируется, но содержание этого раздела органично присутствует в учебном процессе как своего рода гуманитарный фон при рассмотрении проблематики основного содержания математического образования.

 

 

 

 

             


  3. Описание места учебного предмета «Математика»  в учебном плане

    Учебный (образовательный) план на изучение математики в основной школе отводит 5 учебных часов в неделю в течение каждого года обучения. Согласно Базисного учебного (образовательного) плана в 5—6 классах изучается предмет «Математика» (интегрированный предмет)в 7—9 классах - «Математика» (включающий разделы «Алгебра» и «Геометрия»). Учебное время может быть увеличено до 6 и более уроков в неделю за счет вариативной части Базисного плана.

   Предмет «Математика» в 5—6 классах включает арифметический материал, элементы алгебры и геометрии, а также элементы вероятностно-статистической линии.

   Предмет «Математика» в 7 – 9 классах включает в себя некоторые вопросы арифметики, развивающие числовую линию 5–6 классов, алгебраический материал, элементарные функции, элементы вероятностно-статистической линии, а также геометрический материал, традиционно изучаются, евклидова геометрия, элементы векторной алгебры, геометрические преобразования.

   Раздел «Алгебра» включает некоторые вопросы арифметики, развивающие числовую линию 5—6 классов, собственно алгебраический материал, элементарные функции.

   В рамках учебного раздела «Геометрия» традиционно изучаются, Евклидова геометрия, элементы векторной алгебры, геометрические преобразования.

В силу новизны для школы вероятностно-статистического материала и отсутствия методических традиций возможна вариативность при его структурировании. Начало изучения соответствующего материала может быть отнесено к 7 - 9 классам. Кроме того, его изложение возможно как в рамках курса алгебры, так и в виде отдельного модуля.

При этом предполагается построение курса в форме последовательных тематических блоков с чередованием материала по содержательным компонентам (VIIIX классы).

 

РАСПРЕДЕЛЕНИЕ УЧЕБНЫХ ЧАСОВ ПО КЛАССАМ

КЛАСС

КОЛИЧЕСТВО ЧАСОВ В НЕДЕЛЮ

КОЛИЧЕСТВО ЧАСОВ

5

5

170

6

5

170

7

5

170

8

5

170

9

5

170

ИТОГО

 

850

 

 

 

 

 

 

 

 

 

 

 

 

                               Количество тематических контрольных работ, 

                               проверочных работ,   тематических         тестов:

 

класс

контрольных работ

проверочных работ

тематических         тестов

5

6

44

12

6

7

49

14

 

 

 

 

      

 

 

 

 

4.                   Личностные, метапредметные и предметные результаты освоения конкретного учебного предмета, курса

Изучение математики в основной школе дает возможность обучающимся достичь следующих результатов развития:

I          В  личностном направлении:

           •           умение ясно, точно, грамотно излагать свои мысли в устной и письменной  

           речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить

           примеры и контрпримеры;

                     критичность мышления, умение распознавать логически некорректные   высказывания, отличать гипотезу от факта;

                    представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;

                    креативность мышления, инициатива, находчивость, активность при решении математических задач;

                    умение контролировать процесс и результат учебной математической деятельности;

                    способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;

I I       В метапредметном  направлении:

      первоначальные представления об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов;

      умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

      умение находить в различных источниках информацию, необходимую для решения математических проблем, представлять ее в понятной форме, принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

      умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;

      умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки;

      умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

      понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;

      умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

      умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

Ш     В предметном направлении:

·        овладение базовым понятийным аппаратом по основным разделам содержания, представление об основных изучаемых понятиях (число, геометрическая фигура, уравнение, функция, вероятность) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;

·       умение работать с математическим текстом (анализировать, извлекать необходимую информацию), грамотно применять математическую терминологию и символику, использовать различные языки математики;

·       умение проводить классификации, логические обоснования, доказательства математических утверждений;

·       умение распознавать виды математических утверждений (аксиомы, определения, теоремы и др.), прямые и обратные теоремы;

·       развитие представлений о числе и числовых системах от натуральных до действительных чисел, овладение навыками  устных, письменных, инструментальных вычислений;

·       овладение символьным языком алгебры, приемами выполнения тождественных преобразований рациональных выражений, решения уравнений, систем уравнений, неравенств и систем неравенств, умение использовать идею координат на плоскости для интерпре­тации уравнений, неравенств, систем, умение применять алгебраические преобразования, аппарат уравнений и неравенств для решения задач из различных разделов курса;

·       овладение системой функциональных понятий, функциональным языком и символикой, умение на основе функционально-графических представлений описывать и анализировать реальные зависимости;

·  овладение основными способами представления и анализа статистических данных; наличие представлений о статистических закономерностях в реальном мире и о различных способах их изучения, о вероятностных моделях;

·       овладение геометрическим языком, умение использовать его для описания предметов окружающего мира, развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений;

·        усвоение систематических знаний о плоских фигурах и их свойствах, а также на наглядном уровне — о простейших пространственных телах, умение применять систематические знания о них для решения геометрических и практических задач;

·       умения измерять длины отрезков, величины углов, использовать формулы для нахождения периметров, площадей и объемов геометрических фигур;

·       умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера.

 

                               


                                                                                     Приложение 1.

Планируемые результаты формирования УУД

в процессе освоения курса «математика»

 

Класс

Личностные УУД

Регулятивные УУД

Познавательные УУД

Коммуникативные УУД

5-6кл

умение развивать мотивы и интересы своей познавательной деятельности

умение оценивать правильность выполнения учебной задачи,  собственные возможности её решения, владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной деятельности;

воспитание чувства ответственности;

формулировать, аргументировать и отстаивать своё мнение

самостоятельно обнаруживать и формулировать учебную проблему, определять цель учебной деятельности, выбирать тему проекта;

 выдвигать версии решения проблемы, осознавать (и интерпретировать в случае необходимости) конечный результат, выбирать средства достижения цели из предложенных, а также искать их самостоятельно;

 составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);

– работая по плану, сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно (в том числе и корректировать план);

– в диалоге с учителем совершенствовать самостоятельно выработанные критерии оценки

анализировать, сравнивать, классифицировать и обобщать факты и явления;

 осуществлять сравнение, сериацию и классификацию, самостоятельно выбирая основания и критерии для указанных логических операций; строить классификацию путём дихотомического деления (на основе отрицания);

 строить логически обоснованное рассуждение, включающее установление причинно-следственных связей;

 создавать математические модели;

– составлять тезисы, различные виды планов (простых, сложных и т. п.). Преобразовывать информацию из одного вида в другой (таблицу в текст, диаграмму и пр.);

 вычитывать все уровни текстовой информации.

 уметь определять возможные источники необходимых сведений, производить поиск информации, анализировать и оценивать её достоверность.

 понимая позицию другого человека, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории. Для этого самостоятельно использовать различные виды чтения (изучающее, просмотровое, ознакомительное, поисковое), приёмы слушания.

 самому создавать источники информации разного типа и для разных аудиторий, соблюдать информационную гигиену и правила информационной безопасности;

- уметь использовать компьютерные и коммуникационные технологии как инструмент для достижения своих целей. Уметь выбирать адекватные задаче инструментальные программно-аппаратные средства и сервисы.

– Использование математических знаний для решения различных математических задач и оценки полученных результатов.

– Совокупность умений по использованию доказательной математической речи.

– Совокупность умений по работе с информацией, в том числе и с различными математическими текстами.

 Умения использовать математические средства для изучения и описания реальных процессов и явлений.

 Независимость и критичность мышления.

 Воля и настойчивость в достижении цели.

 

 

умение организовывать  учебное сотрудничество и совместную деятельность с учителем и сверстниками;   работать индивидуально и в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; 

формирование осознанного, уважительного и доброжелательного отношения к другому человеку, его мнению, мировоззрению, культуре, языку, вере, гражданской позиции, к истории, культуре, религии, традициям, языкам, ценностям народов России и народов мира; готовности и способности вести диалог с другими людьми и достигать в нём

 

7-9 кл

Развивать независимость и критичность мышления;

воля и настойчивость в достижении цели.

умение оценивать правильность выполнения учебной задачи,  собственные возможности её решения, владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной деятельности;

осознанному выбору и построению дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений, с учётом устойчивых познавательных интересов, а также на основе формирования уважительного отношения к труду, развития опыта участия в социально значимом труде;

 

самостоятельно обнаруживать и формулировать проблему в классной и индивидуальной учебной деятельности;

выдвигать версии решения проблемы, осознавать конечный результат, выбирать средства достижения цели из предложенных или их искать самостоятельно;

составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);

– работая по предложенному или самостоятельно составленному плану, использовать наряду с основными и дополнительные средства (справочная литература, сложные приборы, компьютер);

планировать свою индивидуальную образовательную траекторию;

– свободно пользоваться выработанными критериями оценки и самооценки, исходя из цели и имеющихся критериев, различая результат и способы действий;

– в ходе представления проекта давать оценку его результатам;

– самостоятельно осознавать причины своего успеха или неуспеха и находить способы выхода из ситуации неуспеха;

уметь оценить степень успешности своей индивидуальной образовательной деятельности;

- давать оценку своим личностным качествам и чертам характера («каков я»), определять направления своего развития («каким я хочу стать», «что мне для этого надо сделать»).

 

 

– самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, договариваться друг с другом и т.д.);

– отстаивая свою точку зрения, приводить аргументы, подтверждая их фактами;

– в дискуссии уметь выдвинуть контраргументы;

– учиться критично относиться к своему мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;

– понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;

овладение геометрическим языком; развитие умения использовать его для описания предметов окружающего мира; развитие пространственных представлений, изобразительных умений, навыков геометрических построений;

 

 


5.      Содержание учебного предмета «Математика»

Содержание курса математики в 5–6 классах

Натуральные числа и нуль.

Натуральный ряд чисел и его свойства

Натуральное число, множество натуральных чисел и его свойства, изображение натуральных чисел точками на числовой прямой. Использование свойств натуральных чисел при решении задач.

Запись и чтение натуральных чисел

Различие между цифрой и числом. Позиционная запись натурального числа, поместное значение цифры, разряды и классы, соотношение между двумя соседними разрядными единицами, чтение и запись натуральных чисел.

Округление натуральных чисел

Необходимость округления. Правило округления натуральных чисел.

Сравнение натуральных чисел, сравнение с числом 0

Понятие о сравнении чисел, сравнение натуральных чисел друг с другом и с нулем, математическая запись сравнений, способы сравнения чисел.

Действия с натуральными числами

Сложение и вычитание, компоненты сложения и вычитания, связь между ними, нахождение суммы и разности, изменение суммы и разности при изменении компонентов сложения и вычитания.

Умножение и деление, компоненты умножения и деления, связь между ними, умножение и сложение в столбик, деление уголком, проверка результата с помощью прикидки и обратного действия.

Переместительный и сочетательный законы сложения и умножения, распределительный закон умножения относительно сложения, обоснование алгоритмов выполнения арифметических  действий.

Степень с натуральным показателем

Запись числа в виде суммы разрядных слагаемых, порядок выполнения действий в выражениях, содержащих степень, вычисление значений выражений, содержащих степень.

Числовые выражения

Числовое выражение и его значение, порядок выполнения действий.

Деление с остатком

Деление с остатком на множестве натуральных чисел, свойства деления с остатком. Практические задачи на деление с остатком.

Свойства и признаки делимости

Свойство делимости суммы (разности) на число. Признаки делимости на 2, 3, 5, 9, 10. Признаки делимости на 4, 6, 8, 11. Доказательство признаков делимости. Решение практических задач с применением признаков делимости.

Разложение числа на простые множители

Простые и составные числа, решето Эратосфена.

Разложение натурального числа на множители, разложение на простые множители. Количество делителей числа, алгоритм разложения числа на простые множители, основная теорема арифметики.

Алгебраические выражения

Использование букв для обозначения чисел, вычисление значения алгебраического выражения, применение алгебраических выражений для записи свойств арифметических действий, преобразование алгебраических выражений.

Делители и кратные

Делитель и его свойства, общий делитель двух и более чисел, наибольший общий делитель, взаимно простые числа, нахождение наибольшего общего делителя. Кратное и его свойства, общее кратное двух и более чисел, наименьшее общее кратное, способы нахождения наименьшего общего кратного.

Дроби

Обыкновенные дроби

Доля, часть, дробное число, дробь. Дробное число как результат деления. Правильные и неправильные дроби, смешанная дробь (смешанное число).

Запись натурального числа в виде дроби с заданным знаменателем, преобразование смешанной дроби в неправильную дробь и наоборот.

Приведение дробей к общему знаменателю. Сравнение обыкновенных дробей.

Сложение и вычитание обыкновенных дробей. Умножение и деление обыкновенных дробей.

Арифметические действия со смешанными дробями.

Арифметические действия с дробными числами.          

Способы рационализации вычислений и их применение при выполнении действий.

Десятичные дроби

Целая и дробная части десятичной дроби. Преобразование десятичных дробей в обыкновенные. Сравнение десятичных дробей. Сложение и вычитание десятичных дробей. Округление десятичных дробей. Умножение и деление десятичных дробей. Преобразование обыкновенных дробей в десятичные дроби. Конечные и бесконечные десятичные дроби.

 

Отношение двух чисел

Масштаб на плане и карте. Пропорции. Свойства пропорций, применение пропорций и отношений при решении задач.

Среднее арифметическое чисел

Среднее арифметическое двух чисел. Изображение среднего арифметического двух чисел на числовой прямой. Решение практических задач с применением среднего арифметического. Среднее арифметическое нескольких чисел.

Проценты

Понятие процента. Вычисление процентов от числа и числа по известному проценту, выражение отношения в процентах. Решение несложных практических задач с процентами.

Диаграммы

Столбчатые и круговые диаграммы. Извлечение информации из диаграмм. Изображение диаграмм по числовым данным.

Рациональные числа

Положительные и отрицательные числа

Изображение чисел на числовой (координатной) прямой. Сравнение чисел. Модуль числа, геометрическая интерпретация модуля числа. Действия с положительными и отрицательными числами. Множество целых чисел.

Понятие о рациональном числе. Первичное представление о множестве рациональных чисел. Действия с рациональными числами.

Решение текстовых задач

Единицы измерений: длины, площади, объема, массы, времени, скорости. Зависимости между единицами измерения каждой величины. Зависимости между величинами: скорость, время, расстояние; производительность, время, работа; цена, количество, стоимость.

Задачи на все арифметические действия

Решение текстовых задач арифметическим способом. Использование таблиц, схем, чертежей, других средств представления данных при решении задачи.

Задачи на движение, работу и покупки

 Решение несложных задач на движение в противоположных направлениях, в одном направлении, движение по реке по течению и против течения. Решение задач на совместную работу. Применение дробей при решении задач.

Задачи на части, доли, проценты

Решение задач на нахождение части числа и числа по его части. Решение задач на проценты и доли. Применение пропорций при решении задач.

Логические задачи

Решение несложных логических задач. Решение логических задач с помощью графов, таблиц.

Основные методы решения текстовых задач: арифметический, перебор вариантов.

Наглядная геометрия

Фигуры в окружающем мире. Наглядные представления о фигурах на плоскости: прямая, отрезок, луч, угол, ломаная, многоугольник, окружность, круг. Четырехугольник, прямоугольник, квадрат. Треугольник, виды треугольников. Правильные многоугольники. Изображение основных геометрических фигур. Взаимное расположение двух прямых, двух окружностей, прямой и окружности. Длина отрезка, ломаной. Единицы измерения длины. Построение отрезка заданной длины. Виды углов. Градусная мера угла. Измерение и построение углов с помощью транспортира.

Периметр многоугольника. Понятие площади фигуры; единицы измерения площади. Площадь прямоугольника, квадрата. Приближенное измерение площади фигур на клетчатой бумаге. Равновеликие фигуры.

Наглядные представления о пространственных фигурах: куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр. Изображение пространственных фигур. Примеры сечений. Многогранники. Правильные многогранники. Примеры разверток многогранников, цилиндра и конуса.

Понятие объема; единицы объема. Объем прямоугольного параллелепипеда, куба.

Понятие о равенстве фигур. Центральная, осевая и зеркальная симметрии. Изображение симметричных фигур.

Решение практических задач с применением простейших свойств фигур.

История математики

Появление цифр, букв, иероглифов в процессе счета и распределения продуктов на Древнем Ближнем Востоке. Связь с Неолитической революцией.

Рождение шестидесятеричной системы счисления. Появление десятичной записи чисел.

Рождение и развитие арифметики натуральных чисел. НОК, НОД, простые числа. Решето Эратосфена. 

Появление нуля и отрицательных чисел в математике древности. Роль Диофанта. Почему ?

Дроби в Вавилоне, Египте, Риме. Открытие десятичных дробей. Старинные системы мер. Десятичные дроби и метрическая система мер.  Л. Магницкий.

Содержание курса математики в 7–9 классах

Алгебра

Числа

Рациональные числа

Множество рациональных чисел. Сравнение рациональных чисел. Действия с рациональными числами. Представление рационального числа десятичной дробью.

Иррациональные числа

Понятие иррационального числа. Распознавание иррациональных чисел. Примеры доказательств в алгебре. Иррациональность числа . Применение в геометрии. Сравнение иррациональных чисел. Множество действительных чисел.

Тождественные преобразования

Числовые и буквенные выражения

Выражение с переменной. Значение выражения. Подстановка выражений вместо переменных.

Целые выражения

Степень с натуральным показателем и ее свойства. Преобразования выражений, содержащих степени с натуральным показателем.

Одночлен, многочлен. Действия с одночленами и многочленами (сложение, вычитание, умножение). Формулы сокращенного умножения: разность квадратов, квадрат суммы и разности. Разложение многочлена на множители: вынесение общего множителя за скобки, группировка, применение формул сокращенного умножения. Квадратный трехчлен, разложение квадратного трехчлена на множители.

Дробно-рациональные выражения

Степень с целым показателем. Преобразование дробно-линейных выражений: сложение, умножение, деление. Алгебраическая дробь. Допустимые значения переменных в дробно-рациональных выражениях. Сокращение алгебраических дробей. Приведение алгебраических дробей к общему знаменателю. Действия с алгебраическими дробями: сложение, вычитание, умножение, деление, возведение в степень.

Преобразование выражений, содержащих знак модуля.

Квадратные корни

Арифметический квадратный корень. Преобразование выражений, содержащих квадратные корни: умножение, деление, вынесение множителя из-под знака корня, внесение множителя под знак корня.

Уравнения и неравенства

Равенства

Числовое равенство. Свойства числовых равенств. Равенство с переменной.

Уравнения

Понятие уравнения и корня уравнения. Представление о равносильности уравнений. Область определения уравнения (область допустимых значений переменной).

Линейное уравнение и его корни

Решение линейных уравнений. Линейное уравнение с параметром. Количество корней линейного уравнения. Решение линейных уравнений с параметром.

Квадратное уравнение и его корни

Квадратные уравнения. Неполные квадратные уравнения. Дискриминант квадратного уравнения. Формула корней квадратного уравнения. Теорема Виета. Теорема, обратная теореме Виета. Решение квадратных уравнений:использование формулы для нахождения корней, графический метод решения, разложение на множители, подбор корней с использованием теоремы Виета. Количество корней квадратного уравнения в зависимости от его дискриминанта. Биквадратные уравнения. Уравнения, сводимые к линейным и квадратным. Квадратные уравнения с параметром.

Дробно-рациональные уравнения

Решение простейших дробно-линейных уравнений. Решение дробно-рациональных уравнений.

Методы решения уравнений: методы равносильных преобразований, метод замены переменной, графический метод. Использование свойств функций при решении уравнений.

Простейшие иррациональные уравнения вида , .

Уравнения вида .Уравнения в целых числах.

Системы уравнений

Уравнение с двумя переменными. Линейное уравнение с двумя переменными. Прямая как графическая интерпретация линейного уравнения с двумя переменными.

Понятие системы уравнений. Решение системы уравнений.

Методы решения систем линейных уравнений с двумя переменными: графический метод, метод сложения, метод подстановки.

Системы линейных уравнений с параметром.

Неравенства

Числовые неравенства. Свойства числовых неравенств. Проверка справедливости неравенств при заданных значениях переменных.

Неравенство с переменной. Строгие и нестрогие неравенства. Область определения неравенства (область допустимых значений переменной).

Решение линейных неравенств.

Квадратное неравенство и его решения. Решение квадратных неравенств: использование свойств и графика квадратичной функции, метод интервалов. Запись решения квадратного неравенства.

Решение целых и дробно-рациональных неравенств методом интервалов.

Системы неравенств

Системы неравенств с одной переменной. Решение систем неравенств с одной переменной: линейных, квадратных. Изображение решения системы неравенств на числовой прямой. Запись решения системы неравенств.

Функции

Понятие функции

Декартовы координаты на плоскости. Формирование представлений о метапредметном понятии «координаты». Способы задания функций: аналитический, графический, табличный. График функции. Примеры функций, получаемых в процессе исследования различных реальных процессов и решения задач. Значение функции в точке. Свойства функций: область определения, множество значений, нули, промежутки знакопостоянства, четность/нечетность, промежутки возрастания и убывания, наибольшее и наименьшее значения. Исследование функции по ее графику.

Представление об асимптотах.

Непрерывность функции. Кусочно заданные функции.

Линейная функция

Свойства и график линейной функции. Угловой коэффициент прямой. Расположение графика линейной функции в зависимости от ее углового коэффициента и свободного члена. Нахождение коэффициентов линейной функции по заданным условиям: прохождение прямой через две точки с заданными координатами, прохождение прямой через данную точку и параллельной данной прямой.

Квадратичная функция

Свойства и график квадратичной функции (парабола). Построение графика квадратичной функции по точкам. Нахождение нулей квадратичной функции, множества значений, промежутков знакопостоянства, промежутков монотонности.

Обратная пропорциональность

Свойства функции . Гипербола.

Графики функций. Преобразование графика функции  для построения графиков функций вида .

Графики функций , ,, .

Последовательности и прогрессии

Числовая последовательность. Примеры числовых последовательностей. Бесконечные последовательности. Арифметическая прогрессия и ее свойства. Геометрическая прогрессия. Формула общего члена и суммы n первых членов арифметической и геометрической прогрессий. Сходящаяся геометрическая прогрессия.

Решение текстовых задач

Задачи на все арифметические действия

Решение текстовых задач арифметическим способом. Использование таблиц, схем, чертежей, других средств представления данных при решении задачи.

Задачи на движение, работу и покупки

Анализ возможных ситуаций взаимного расположения объектов при их движении, соотношения объемов выполняемых работ при совместной работе.

Задачи на части, доли, проценты

Решение задач на нахождение части числа и числа по его части. Решение задач на проценты и доли. Применение пропорций при решении задач.

Логические задачи

Решение логических задач. Решение логических задач с помощью графов, таблиц.

Основные методы решения текстовых задач: арифметический, алгебраический, перебор вариантов. Первичные представления о других методах решения задач (геометрические и графические методы).

Статистика и теория вероятностей

Статистика

Табличное и графическое представление данных, столбчатые и круговые диаграммы, графики, применение диаграмм и графиков для описания зависимостей реальных величин, извлечение информации из таблиц, диаграмм и графиков. Описательные статистические показатели числовых наборов: среднее арифметическое, медиана, наибольшее и наименьшее значения. Меры рассеивания: размах, дисперсия и стандартное отклонение.

Случайная изменчивость. Изменчивость при измерениях. Решающие правила. Закономерности в изменчивых величинах.

Случайные события

Случайные опыты (эксперименты), элементарные случайные события (исходы). Вероятности элементарных событий. События в случайных экспериментах и благоприятствующие элементарные события. Вероятности случайных событий. Опыты с равновозможными элементарными событиями. Классические вероятностные опыты с использованием монет, кубиков. Представление событий с помощью диаграмм Эйлера. Противоположные события, объединение и пересечение событий. Правило сложения вероятностей. Случайный выбор. Представление эксперимента в виде дерева. Независимые события. Умножение вероятностей независимых событий. Последовательные независимые испытания. Представление о независимых событиях в жизни.

Элементы комбинаторики

Правило умножения, перестановки, факториал числа. Сочетания и число сочетаний. Формула числа сочетаний. Треугольник Паскаля. Опыты с большим числом равновозможных элементарных событий. Вычисление вероятностей в опытах с применением комбинаторных формул. Испытания Бернулли. Успех и неудача. Вероятности событий в серии испытаний Бернулли.

Случайные величины

Знакомство со случайными величинами на примерах конечных дискретных случайных величин. Распределение вероятностей. Математическое ожидание. Свойства математического ожидания. Понятие о законе больших чисел. Измерение вероятностей. Применение закона больших чисел в социологии, страховании, в здравоохранении, обеспечении безопасности населения в чрезвычайных ситуациях.

Геометрия

Геометрические фигуры

Фигуры в геометрии и в окружающем мире

Геометрическая фигура. Формирование представлений о метапредметном понятии «фигура». 

Точка, линия, отрезок, прямая, луч, ломаная, плоскость, угол, биссектриса угла и ее свойства, виды углов, многоугольники, круг.

Осевая симметрия геометрических фигур. Центральная симметрия геометрических фигур.

Многоугольники

Многоугольник, его элементы и его свойства. Распознавание некоторых многоугольников. Выпуклые и невыпуклые многоугольники. Правильные многоугольники.

Треугольники. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренный треугольник, его свойства и признаки. Равносторонний треугольник. Прямоугольный, остроугольный, тупоугольный треугольники. Внешние углы треугольника. Неравенство треугольника.

Четырехугольники. Параллелограмм, ромб, прямоугольник, квадрат, трапеция, равнобедренная трапеция. Свойства и признаки параллелограмма, ромба, прямоугольника, квадрата.

Окружность, круг

Окружность, круг, их элементы и свойства; центральные и вписанные углы. Касательная и секущая к окружности, их свойства. Вписанные и описанные окружности для треугольников, четырехугольников, правильных многоугольников.

Геометрические фигуры в пространстве (объемные тела)

Многогранник и его элементы. Названия многогранников с разным положением и количеством граней. Первичные представления о пирамиде, параллелепипеде, призме, сфере, шаре, цилиндре, конусе, их элементах и простейших свойствах.

Отношения

Равенство фигур

Свойства равных треугольников. Признаки равенства треугольников.

Параллельно­сть прямых

Признаки и свойства параллельных прямых. Аксиома параллельности Евклида. Теорема Фалеса.

Перпендикулярные прямые

Прямой угол. Перпендикуляр к прямой. Наклонная, проекция. Серединный перпендикуляр к отрезку. Свойства и признаки перпендикулярности.

Подобие

Пропорциональные отрезки, подобие фигур. Подобные треугольники. Признаки подобия.

Взаимное расположение прямой и окружности, двух окружностей.

Измерения и вычисления

Величины

Понятие величины. Длина. Измерение длины. Единицы измерения длины. Величина угла. Градусная мера угла.

Понятие о площади плоской фигуры и ее свойствах. Измерение площадей. Единицы измерения площади.

Представление об объеме и его свойствах. Измерение объема. Единицы измерения объемов.

Измерения и вычисления

Инструменты для измерений и построений; измерение и вычисление углов, длин (расстояний), площадей. Тригонометрические функции острого угла в прямоугольном треугольнике Тригонометрические функции тупого угла. Вычисление элементов треугольников с использованием тригонометрических соотношений. Формулы площади треугольника, параллелограмма и его частных видов, формулы длины ок­ружности и площади круга. Сравнение и вычисление площадей. Теорема Пифагора. Теорема синусов. Теорема косинусов.

Расстояния

Расстояние между точками. Расстояние от точки до прямой. Расстояние между фигурами.

Геометрические построения

Геометрические построения для иллюстрации свойств геометрических фигур.

Инструменты для построений: циркуль, линейка, угольник. Простейшие построения циркулем и линейкой: построение биссектрисы угла, перпендикуляра к прямой, угла, равного данному,

Построение треугольников по трем сторонам, двум сторонам и углу между ними, стороне и двум прилежащим к ней углам.

Деление отрезка в данном отношении.

Геометрические преобразования

Преобразования

Понятие преобразования. Представление о метапредметном понятии «преобразование». Подобие.

Движения

Осевая и центральная симметрия, поворот и параллельный перенос. Комбинации движений на плоскости и их свойства.

Векторы и координаты на плоскости

Векторы

Понятие вектора, действия над векторами, использование векторов в физике, разложение вектора на составляющие, скалярное произведение.

Координаты

Основные понятия, координаты вектора, расстояние между точками. Координаты середины отрезка. Уравнения фигур.

Применение векторов и координат для решения простейших геометрических задач.

История математики

Возникновение математики как науки, этапы ее развития. Основные разделы математики. Выдающиеся математики и их вклад в развитие науки.

Бесконечность множества простых чисел. Числа и длины отрезков. Рациональные числа. Потребность в иррациональных числах. Школа Пифагора

Зарождение алгебры в недрах арифметики. Ал-Хорезми. Рождение буквенной символики. П. Ферма, Ф. Виет, Р. Декарт. История вопроса о нахождении формул корней алгебраических уравнений степеней, больших четырех. Н. Тарталья, Дж. Кардано, Н.Х. Абель, Э. Галуа.

Появление метода координат, позволяющего переводить геометрические объекты на язык алгебры. Появление графиков функций. Р. Декарт, П. Ферма. Примеры различных систем координат.

Задача Леонардо Пизанского (Фибоначчи) о кроликах, числа Фибоначчи. Задача о шахматной доске. Сходимость геометрической прогрессии.

Истоки теории вероятностей: страховое дело, азартные игры. П. Ферма, Б.Паскаль, Я. Бернулли, А.Н.Колмогоров.

От земледелия к геометрии. Пифагор и его школа. Фалес, Архимед. Платон и Аристотель. Построение правильных многоугольников. Триссекция угла. Квадратура круга. Удвоение куба. История числа π. Золотое сечение. «Начала» Евклида. Л Эйлер, Н.И.Лобачевский. История пятого постулата.

Геометрия и искусство. Геометрические закономерности окружающего мира.

Астрономия и геометрия. Что и как узнали Анаксагор, Эратосфен и Аристарх о размерах Луны, Земли и Солнца. Расстояния от Земли до Луны и Солнца. Измерение расстояния от Земли до Марса.

Роль российских ученых в развитии математики: Л. Эйлер. Н.И. Лобачевский, П.Л.Чебышев, С. Ковалевская, А.Н. Колмогоров.

Математика в развитии России: Петр I, школа математических и навигацких наук, развитие российского флота, А.Н. Крылов. Космическая программа и М.В. Келдыш.

 

 

                                                                                                               


                                                                                                                            Приложение 2.

6.Тематическое планирование с определением основных видов учебной деятельности

                                

 

№ п/п

Предметное содержание

Основные виды учебной деятельности

1

2

3

1

Натуральные числа и нуль

Натуральный ряд чисел и его свойства

Натуральное число, множество натуральных чисел и его свойства, изображение натуральных чисел точками на числовой прямой. Использование свойств натуральных чисел при решении задач.

Запись и чтение натуральных чисел

Различие между цифрой и числом. Позиционная запись натурального числа, поместное значение цифры, разряды и классы, соотношение между двумя соседними разрядными единицами, чтение и запись натуральных чисел.

Округление натуральных чисел

Необходимость округления. Правило округления натуральных чисел.

Сравнение натуральных чисел, сравнение с числом 0

Понятие о сравнении чисел, сравнение натуральных чисел друг с другом и с нулем, математическая запись сравнений, способы сравнения чисел.

Действия с натуральными числами

Сложение и вычитание, компоненты сложения и вычитания, связь между ними, нахождение суммы и разности, изменение суммы и разности при изменении компонентов сложения и вычитания.

Умножение и деление, компоненты умножения и деления, связь между ними, умножение и сложение в столбик, деление уголком, проверка результата с помощью прикидки и обратного действия.

Переместительный и сочетательный законы сложения и умножения, распределительный закон умножения относительно сложения, обоснование алгоритмов выполнения арифметических  действий.

Степень с натуральным показателем

Запись числа в виде суммы разрядных слагаемых, порядок выполнения действий в выражениях, содержащих степень, вычисление значений выражений, содержащих степень.

Числовые выражения

Числовое выражение и его значение, порядок выполнения действий.

Деление с остатком

Деление с остатком на множестве натуральных чисел, свойства деления с остатком. Практические задачи на деление с остатком.

Свойства и признаки делимости

Свойство делимости суммы (разности) на число. Признаки делимости на 2, 3, 5, 9, 10. Признаки делимости на 4, 6, 8, 11. Доказательство признаков делимости. Решение практических задач с применением признаков делимости.

Разложение числа на простые множители

Простые и составные числа, решето Эратосфена.

Разложение натурального числа на множители, разложение на простые множители. Количество делителей числа, алгоритм разложения числа на простые множители, основная теорема арифметики.

Делители и кратные

Делитель и его свойства, общий делитель двух и более чисел, наибольший общий делитель, взаимно простые числа, нахождение наибольшего общего делителя. Кратное и его свойства, общее кратное двух и более чисел, наименьшее общее кратное, способы нахождения наименьшего общего кратного.

 

Описывать свойства натураль­ного ряда.

Читать и записывать натураль­ные числа, срав­нивать и упорядо­чивать их.

Выполнять вычисления с нату­ральными чис­лами; вы­числять значения степеней.

Формулировать свойства арифме­тических дейст­вий, записы­вать их с помощью букв, преоб­разовывать на их основе чи­словые выраже­ния.

Анализировать и осмысливать текст за­дачи, пере­фор­мулиро­вать условие, извле­кать необхо­димую ин­формацию, моделиро­вать усло­вие с помощью схем, ри­сунков, ре­альных предметов; строить логическую це­почку рас­суждений; критически оцени­вать получен­ный ответ, осуществ­лять самокон­троль, про­веряя от­вет на соответ­ствие усло­вию.

Формулировать определения делителя и крат­ного, про­стого числа и составного числа, свой­ства и при­знаки делимости.

Доказывать и опровергать с по­мощью контр­приме­ров утвержде­ния о делимости чи­сел. Клас­сифи­цировать нату­ральные числа (четные и нечетные, по ос­таткам от де­ления на 3 и т. п.).

Исследовать простейшие число­вые закономер­ности, про­водить числовые экспери­менты (в том числе с исполь­зова­нием калькулятора, компью­тера)

2

Дроби

Обыкновенные дроби.  Доля, часть, дробное число, дробь. Дробное число как результат деления. Правильные и неправильные дроби, смешанная дробь (смешанное число).

Запись натурального числа в виде дроби с заданным знаменателем, преобразование смешанной дроби в неправильную дробь и наоборот. Приведение дробей к общему знаменателю. Сравнение обыкновенных дробей.

Сложение и вычитание обыкновенных дробей. Умножение и деление обыкновенных дробей.

Арифметические действия со смешанными дробями. Арифметические действия с дробными числами. Способы рационализации вычислений и их применение при выполнении действий.

Десятичные дроби. Целая и дробная части десятичной дроби. Преобразование десятичных дробей в обыкновенные. Сравнение десятичных дробей. Сложение и вычитание десятичных дробей. Округление десятичных дробей. Умножение и деление десятичных дробей. Преобразование обыкновенных дробей в десятичные дроби. Конечные и бесконечные десятичные дроби.

Отношение двух чисел. Масштаб на плане и карте. Пропорции. Свойства пропорций, применение пропорций и отношений при решении задач.

Среднее арифметическое чисел. Среднее арифметическое двух чисел. Изображение среднего арифметического двух чисел на числовой прямой. Решение практических задач с применением среднего арифметического. Среднее арифметическое нескольких чисел.

Проценты. Понятие процента. Вычисление процентов от числа и числа по известному проценту, выражение отношения в процентах. Решение несложных практических задач с процентами.

Моделировать в графической, предметной форме по­нятия и свой­ства, связан­ные с поня­тием обыкновенной дроби.

Формулировать, записывать с помощью букв основ­ное свой­ство обыкновен­ной дроби, пра­вила действий с обыкновенными дробями.

Преобразовывать обыкновен­ные дроби, срав­нивать и упорядо­чивать их. Выполнять вычисле­ния с обыкновен­ными дробями.

Читать и записывать десятич­ные дроби. Представ­лять обыкно­венные дроби в виде деся­тичных и десятич­ные в виде обык­новен­ных; находить десятич­ные прибли­жения обык­но­венных дробей.

Сравнивать и упорядочивать десятичные дроби. Вы­полнять вычисления с десятич­ными дро­бями.

Использовать эквивалентные представления дробных чисел при их сравне­нии, при вычисле­ниях.

Выполнять прикидку и оценку в ходе вычис­лений.

Объяснять, что такое процент. Представ­лять процен­ты в виде дробей и дроби в виде процентов.

Осуществлять поиск информа­ции (в СМИ), содержа­щей дан­ные, выражен­ные в процен­тах, интерпретиро­вать их. Приводить при­меры использо­вания отноше­ний на практике.

Решать задачи на проценты и дроби (в том числе за­дачи из ре­альной прак­тики), исполь­зуя при необходимо­сти калькулятор; ис­пользо­вать понятия отно­шения и пропор­ции при решении задач.

Анализировать и осмысливать текст за­дачи, пере­форму­лиро­вать усло­вие, извле­кать необхо­димую ин­формацию, моделиро­вать условие с помо­щью схем, ри­сунков, ре­альных предметов; строить логическую це­почку рас­суждений; критически оцени­вать получен­ный ответ, осуществ­лять само­кон­троль, про­веряя ответ на соответ­ствие усло­вию.

Проводить несложные исследова­ния, связан­ные со свойст­вами дробных чисел, опира­ясь на числовые экспе­ри­менты том числе с использова­нием калькуля­тора, компью­тера

3

Рациональные числа

Положительные и отрицательные числа

Изображение чисел на числовой (координатной) прямой. Сравнение чисел. Модуль числа, геометрическая интерпретация модуля числа. Действия с положительными и отрицательными числами. Множество целых чисел.

Понятие о рациональном числе. Первичное представление о множестве рациональных чисел. Действия с рациональными числами.

Решение текстовых задач

Единицы измерений: длины, площади, объема, массы, времени, скорости. Зависимости между единицами измерения каждой величины. Зависимости между величинами: скорость, время, расстояние; производительность, время, работа; цена, количество, стоимость.

Задачи на все арифметические действия

Решение текстовых задач арифметическим способом. Использование таблиц, схем, чертежей, других средств представления данных при решении задачи.

Задачи на движение, работу и покупки

Решение несложных задач на движение в противоположных направлениях, в одном направлении, движение по реке по течению и против течения. Решение задач на совместную работу. Применение дробей при решении задач.

Задачи на части, доли, проценты

Решение задач на нахождение части числа и числа по его части. Решение задач на проценты и доли. Применение пропорций при решении задач.

 

Приводить примеры использова­ния в окру­жающем мире положи­тельных и отрицатель­ных чисел (темпера­тура, выигрыш — проиг­рыш, выше — ниже уровня моря и т. п.).

Изображать точками координат­ной прямой положи­тель­ные и от­рицатель­ные рациональ­ные числа.

Характеризовать множество це­лых чисел, множество рациональ­ных чи­сел.

Формулировать и записывать с помощью букв свой­ства действий с рацио­нальными чис­лами, приме­нять для преобразования чи­словых выраже­ний.

Сравнивать и упорядочивать рациональ­ные числа, вы­полнять вычисле­ния с рацио­нальными чис­лами

4

Элементы алгебры

Алгебраические выражения

Использование букв для обозначения чисел, вычисление значения алгебраического выражения, применение алгебраических выражений для записи свойств арифметических действий, преобразование алгебраических выражений.

Примеры зависимостей между вели­чи­нами ско­рость, время, рас­стояние; производи­тель­ность, время, работа; цена, коли­чество, стоимость и др. Пред­став­ление зависимостей в виде фор­мул. Вычисления по форму­лам.

Решение текстовых задач арифмети­че­скими спосо­бами

Читать и записывать буквенные выраже­ния, состав­лять буквенные выражения по усло­виям задач.

Вычислять числовое значение буквенного выраже­ния при задан­ных значениях букв.

Составлять уравнения по усло­виям задач. Решать про­стейшие уравнения на основе зави­симо­стей между компо­нентами арифме­тических действий.

Строить на координатной плоско­сти точки и фигуры по за­данным координатам; опреде­лять координаты точек

Выражать одни единицы измере­ния вели­чины в дру­гих единицах (метры в километ­рах, минуты в часах и т. п.).

Округлять натуральные числа и десятичные дроби. Выпол­нять при­кидку и оценку в ходе вычисле­ний.

Моделировать несложные зависи­мости с помощью фор­мул; выполнять вычисления по форму­лам.

Использовать знания о зависимо­стях между величи­нами (ско­рость, время, расстояние; работа, производи­тельность, время и т. п.) при решении текстовых задач

5

Описательная статистика

 Вероятность.

Комбинаторика. Множества

Диаграммы. Столбчатые и круговые диаграммы. Извлечение информации из диаграмм. Изображение диаграмм по числовым данным.

Множества и отношения между ними

Множество, характеристическое свойство множества, элемент множества, пустое, конечное, бесконечное множество. Элементы множества, способы задания множеств, распознавание подмножеств и элементов подмножеств с использованием кругов Эйлера.

Операции над множествами

Пересечение и объединение множеств.

Элементы логики

Определение. Утверждения.

Высказывания

Истинность и ложность высказывания. Сложные и простые высказывания.

Логические задачи Решение несложных логических задач. Решение логических задач с помощью графов, таблиц.

Основные методы решения текстовых задач: арифметический, перебор вариантов.

Извлекать информацию из таб­лиц и диа­грамм, вы­пол­нять вычис­ления по таблич­ным дан­ным, сравнивать величины, нахо­дить наибольшие и наимень­шие значе­ния и др.

Выполнять сбор информации в несложных случаях, пред­став­лять информацию в виде таблиц и диаграмм, в том числе с помо­щью компьютерных программ.

Приводить примеры случайных событий, достоверных и невозмож­ных событий. Сравни­вать шансы наступления собы­тий; строить речевые конструк­ции с использова­нием словосочета­ний более вероятно, мало­вероятно и др.

Выполнять перебор всех возмож­ных вариан­тов для пере­счета объек­тов или комбина­ций, выде­лять комби­нации, отвечаю­щие заданным условиям

Приводить примеры конечных и бесконеч­ных мно­жеств. Находить объединение и пересе­чение конкретных множеств. Приво­дить примеры несложных классифика­ций из различных областей жизни. Иллюстрировать теоретико-множественные понятия с помощью кругов Эйлера

6

Наглядная геометрия

 Фигуры в окружающем мире. Наглядные представления о фигурах на плоскости: прямая, отрезок, луч, угол, ломаная, многоугольник, окружность, круг. Четырехугольник, прямоугольник, квадрат. Треугольник, виды треугольников. Правильные многоугольники. Изображение основных геометрических фигур. Взаимное расположение двух прямых, двух окружностей, прямой и окружности. Длина отрезка, ломаной. Единицы измерения длины. Построение отрезка заданной длины. Виды углов. Градусная мера угла. Измерение и построение углов с помощью транспортира.

Периметр многоугольника. Понятие площади фигуры; единицы измерения площади. Площадь прямоугольника, квадрата. Приближенное измерение площади фигур на клетчатой бумаге. Равновеликие фигуры.

Наглядные представления о пространственных фигурах: куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр. Изображение пространственных фигур. Примеры сечений. Многогранники. Правильные многогранники. Примеры разверток многогранников, цилиндра и конуса.

Понятие объема; единицы объема. Объем прямоугольного параллелепипеда, куба.

Понятие о равенстве фигур. Центральная, осевая и зеркальная симметрии. Изображение симметричных фигур.

Решение практических задач с применением простейших свойств фигур

Распознавать на чертежах, рисун­ках и моде­лях гео­метриче­ские фигуры, конфигурации фи­гур (плоские и пространствен­ные). Приво­дить примеры анало­гов гео­метриче­ских фигур в окру­жающем мире.

Изображать геометрические фи­гуры и их конфигура­ции от руки и с использованием чертежных инст­рументов. Изображать геомет­рические фигуры на клетча­той бу­маге.

Измерять с помощью инструмен­тов и сравни­вать дли­ны отрезков и величины уг­лов. Строить от­резки заданной длины с помо­щью линейки и циркуля и углы задан­ной ве­личины с помощью транспор­тира. Вы­ражать одни еди­ни­цы измерения длин через другие.

Вычислять площади квадратов и прямоуголь­ников, исполь­зуя фор­мулы пло­щади квадрата и пло­щади прямо­угольника.

Выражать одни единицы измере­ния пло­щади через дру­гие.

Изготавливать пространствен­ные фигуры из развер­ток; распо­знавать развертки куба, параллеле­пипеда, пи­ра­миды, ци­линдра и ко­нуса. Рассматри­вать простейшие сечения про­странствен­ных фигур, получае­мые путем пред­метного или ком­пьютерного моделирова­ния, опре­делять их вид. Вычислять объемы куба и прямо­угольного паралле­лепи­педа, используя формулы объ­ема куба и объема прямо­уголь­ного параллеле­пи­педа. Выра­жать одни еди­ницы измерения объема через другие.

Исследовать и описывать свой­ства геометри­ческих фи­гур (пло­ских и пространст­венных), исполь­зуя экспери­мент, наблюде­ние, измерение. Модели­ровать гео­метри­ческие объекты, исполь­зуя бумагу, пла­стилин, проволо­ку и др. Исполь­зовать компь­ютер­ное мо­делирование и экспе­римент для изучения свойств геометриче­ских объ­ектов.

Находить в окружающем мире плоские и про­стран­ствен­ные сим­метричные фигуры. Решать задачи на нахождение длин отрез­ков, пери­мет­ров мно­гоугольников, градусной меры уг­лов, площа­дей квадратов и прямо­уголь­ников, объемов ку­бов и пря­моуголь­ных параллеле­пипедов, куба. Выде­лять в усло­вии задачи данные, необходимые для ее реше­ния, стро­ить логическую це­почку рас­суждений, сопостав­лять полу­ченный резуль­тат с усло­вием задачи.

Изображать равные фигуры, сим­метричные фигуры

 

История математики

Появление цифр, букв, иероглифов в процессе счета и распределения продуктов на Древнем Ближнем Востоке. Связь с Неолитической революцией.

Рождение шестидесятеричной системы счисления. Появление десятичной записи чисел.

Рождение и развитие арифметики натуральных чисел. НОК, НОД, простые числа. Решето Эратосфена. 

Появление нуля и отрицательных чисел в математике древности. Роль Диофанта. Почему ?

Дроби в Вавилоне, Египте, Риме. Открытие десятичных дробей. Старинные системы мер. Десятичные дроби и метрическая система мер.  Л. Магницкий.

 

Математика 7-9 классы

1

Число.

Рациональные числа

Множество рациональных чисел. Сравнение рациональных чисел. Действия с рациональными числами. Представление рационального числа десятичной дробью.

Иррациональные числа

Понятие иррационального числа. Распознавание иррациональных чисел. Примеры доказательств в алгебре. Иррациональность числа . Применение в геометрии. Сравнение иррациональных чисел. Множество действительных чисел.

 

Описывать множество целых чисел, множество рациональных чисел, соотношение между этими множествами.

Сравнивать и упорядочивать рациональные числа, выполнять вычисления с рациональными числами, вычислять значения степеней с целым показателем.

Формулировать определение квадратного корня из числа. Использовать график функции  у = х2 для нахож­дения квад­ратных кор­ней. Вычислять точные и прибли­женные значения корней, используя при необходимо­сти калькуля­тор; проводить оценку квадрат­ных корней.

Формулировать определение корня третьей степени; нахо­дить значения кубических кор­ней, при необходимо­сти используя, калькуля­тор.

Приводить примеры иррациональных чисел; распознавать рациональные и иррациональные числа; изображать числа точками на координатной прямой.

Находить десятичные приближе­ния рацио­нальных и иррацио­нальных чисел; сравни­вать и упорядочивать действи­тельные числа.

Описывать множество действи­тельных чи­сел.

Использовать в письменной ма­тематиче­ской речи обозначе­ния и графические изобра­жения чи­словых мно­жеств, теоретико-мно­жественную символику.

2

            Измерения, приближения, оценки.

Приближённое значение   величины,   точ­ность приближения. Размеры объек­тов окружаю­щего мира (от элементар­ных частиц до Вселенной), длительность процессов в окру­жающем мире. Выделе­ние множите­ля — сте­пени 10 в записи числа.

Прикидка и оценка результатов вычислений

Находить, анализировать, сопоставлять числовые характе­ри­стики объектов окру­жаю­щего мира.

Использовать запись чисел в стандартном виде для выраже­ния размеров объектов, длитель­ности процессов в окру­жающем мире.

Сравнивать числа и величины, записанные с исполь­зова­нием степени 10.

Использовать разные формы записи прибли­женных значе­ний; делать выводы о точности приближения по за­писи прибли­женного значения.

Выполнять вычисления с реаль­ными дан­ными.

Выполнять прикидку и оценку результатов вычислений.

3

Тождественные

Числовые и буквенные выражения

Выражение с переменной. Значение выражения. Подстановка выражений вместо переменных.

.

 

Выполнять элементарные зна­ково-символиче­ские дейст­вия: применять буквы для обозначе­ния чисел, для записи общих ут­верждений; состав­лять буквенные выра­же­ния по условиям, заданным словесно, рисун­ком или чертежом; преоб­разовывать алгебраи­че­ские суммы и произведения (вы­полнять приведение подоб­ных слагае­мых, раскрытие ско­бок, упрощение произведе­ний)

Вычислять числовое значение буквенного выраже­ния; нахо­дить область допустимых значе­ний перемен­ных в выраже­нии.

4

Целые выражения

Степень с натуральным показателем и ее свойства. Преобразования выражений, содержащих степени с натуральным показателем.

Одночлен, многочлен. Действия с одночленами и многочленами (сложение, вычитание, умножение). Формулы сокращенного умножения: разность квадратов, квадрат суммы и разности. Разложение многочлена на множители: вынесение общего множителя за скобки, группировка, применение формул сокращенного умножения. Квадратный трехчлен, разложение квадратного трехчлена на множители.

 

Формулировать, записывать в символиче­ской фор­ме и обос­новывать свойства сте­пени с натуральным по­казате­лем; при­ме­нять свойства степени для преобразо­вания выражений и вычислений.

Выполнять действия с многочленами.

Выводить формулы сокращен­ного умноже­ния, при­менять их в преобразованиях выраже­ний и вычислениях.

Выполнять разложение много­членов на мно­жители.

Распознавать квадратный трех­член, выяс­нять возмож­ность разложения на множи­тели, представлять квадрат­ный трехчлен в виде произведе­ния линейных множителей.

Применять различные формы самоконтроля при выполнении преобразований.

5

Дробно-рациональные выражения

Степень с целым показателем. Преобразование дробно-линейных выражений: сложение, умножение, деление. Алгебраическая дробь. Допустимые значения переменных в дробно-рациональных выражениях. Сокращение алгебраических дробей. Приведение алгебраических дробей к общему знаменателю. Действия с алгебраическими дробями: сложение, вычитание, умножение, деление, возведение в степень.

Преобразование выражений, содержащих знак модуля

Формулировать основное свой­ство алгебраи­ческой дроби и применять его для преобразо­вания дробей.

Выполнять действия с алгебраическими дробями.

Представлять целое выраже­ние в виде много­члена, дробное — в виде отношения многочле­нов; доказывать тождества.

Формулировать определение степени с це­лым пока­зателем.

Формулировать, записывать в символиче­ской форме и иллю­стрировать примерами свойства степени с целым показа­телем; приме­нять свой­ства степени для преобразова­ния выражений и вычислений.

 

6

Квадратные корни 

Арифметический квадратный корень. Преобразование выражений, содержащих квадратные корни: умножение, деление, вынесение множителя из-под знака корня, внесение множителя под знак корня.

 

Доказывать свойства арифмети­ческих квад­ратных корней; применять их для пре­образо­вания выражений.

Вычислять значения выраже­ний, содержа­щих квад­ратные корни; выражать перемен­ные из геометрических и физиче­ских фор­мул.

Исследовать уравнение вида х2 = а; нахо­дить точ­ные и при­ближенные корни при  а> 0

7

Уравнения с одной переменной

Понятие уравнения и корня уравнения. Представление о равносильности уравнений. Область определения уравнения (область допустимых значений переменной).

Линейное уравнение и его корни

Решение линейных уравнений. Линейное уравнение с параметром. Количество корней линейного уравнения. Решение линейных уравнений с параметром.

Квадратное уравнение и его корни

Квадратные уравнения. Неполные квадратные уравнения. Дискриминант квадратного уравнения. Формула корней квадратного уравнения. Теорема Виета. Теорема, обратная теореме Виета. Решение квадратных уравнений:использование формулы для нахождения корней, графический метод решения, разложение на множители, подбор корней с использованием теоремы Виета. Количество корней квадратного уравнения в зависимости от его дискриминанта. Биквадратные уравнения. Уравнения, сводимые к линейным и квадратным. Квадратные уравнения с параметром.

Дробно-рациональные уравнения

Решение простейших дробно-линейных уравнений. Решение дробно-рациональных уравнений.

Методы решения уравнений: методы равносильных преобразований, метод замены переменной, графический метод. Использование свойств функций при решении уравнений.

Простейшие иррациональные уравнения вида , .

Уравнения вида .Уравнения в целых числах.

 

Распознавать линейные и квад­ратные уравне­ния, це­лые и дробные уравнения.

Решать линейные, квадратные уравнения, а также уравнения, сводящиеся к ним; ре­шать дробно-рацио­нальные уравне­ния.

Исследовать квадратные уравне­ния по дискри­ми­нанту и коэффициентам.

Решать текстовые задачи алгеб­раическим способом: пере­ходить от словесной форму­лировки условия задачи к алгебраической мо­дели путем составления уравнения; ре­шать составленное уравнение; интерпретировать результат.

8

Системы  уравнений 

Уравнение с двумя переменными. Линейное уравнение с двумя переменными. Прямая как графическая интерпретация линейного уравнения с двумя переменными.

Понятие системы уравнений. Решение системы уравнений.

Методы решения систем линейных уравнений с двумя переменными: графический метод, метод сложения, метод подстановки.

Системы линейных уравнений с параметром.

 

Определять, является ли пара чисел реше­нием дан­ного уравне­ния с двумя перемен­ными; приводить при­меры ре­шения уравне­ний с двумя пере­менными.

Решать задачи, алгебраической моделью кото­рых яв­ляется урав­нение с двумя перемен­ными; находить целые решения пу­тем перебора.

Решать текстовые задачи алгеб­раическим способом: пере­ходить от словесной форму­лировки условия задачи к алгебраической мо­дели путем составления системы уравне­ний; решать составленную сис­тему уравне­ний; ин­терпретиро­вать результат.

Строить графики уравнений с двумя перемен­ными.

Конструировать эквивалент­ные речевые вы­сказывания с использованием алгебраиче­ского и геометрического язы­ков.

Решать и исследовать уравне­ния и системы уравне­ний на ос­нове функционально-графиче­ских представле­ний уравнений.

9

Неравенства

Числовые неравенства. Свойства числовых неравенств. Проверка справедливости неравенств при заданных значениях переменных.

Неравенство с переменной. Строгие и нестрогие неравенства. Область определения неравенства (область допустимых значений переменной).

Решение линейных неравенств.

Квадратное неравенство и его решения. Решение квадратных неравенств: использование свойств и графика квадратичной функции, метод интервалов. Запись решения квадратного неравенства.

Решение целых и дробно-рациональных неравенств методом интервалов.

Системы неравенств

       Системы неравенств с одной переменной. Решение систем неравенств с одной переменной: линейных, квадратных. Изображение решения системы неравенств на числовой прямой. Запись решения системы неравенств.

 

Формулировать свойства число­вых нера­венств, ил­люстри­ровать их на координат­ной прямой, доказы­вать алгебраически; приме­нять свойства неравенств при ре­ше­нии задач.

Распознавать линейные и квад­ратные неравен­ства

Решать линейные неравенства, системы линей­ных нера­венств

Решать квадратные неравен­ства на основе гра­фиче­ских пред­ставлений.

10

Числовые функции

Понятие функции

Декартовы координаты на плоскости. Формирование представлений о метапредметном понятии «координаты». Способы задания функций: аналитический, графический, табличный. График функции. Примеры функций, получаемых в процессе исследования различных реальных процессов и решения задач. Значение функции в точке. Свойства функций: область определения, множество значений, нули, промежутки знакопостоянства, четность/нечетность, промежутки возрастания и убывания, наибольшее и наименьшее значения. Исследование функции по ее графику.

Представление об асимптотах.

Непрерывность функции. Кусочно заданные функции.

Линейная функция

Свойства и график линейной функции. Угловой коэффициент прямой. Расположение графика линейной функции в зависимости от ее углового коэффициента и свободного члена. Нахождение коэффициентов линейной функции по заданным условиям: прохождение прямой через две точки с заданными координатами, прохождение прямой через данную точку и параллельной данной прямой.

Квадратичная функция

Свойства и график квадратичной функции (парабола). Построение графика квадратичной функции по точкам. Нахождение нулей квадратичной функции, множества значений, промежутков знакопостоянства, промежутков монотонности.

Обратная пропорциональность

Свойства функции . Гипербола.

Графики функций. Преобразование графика функции  для построения графиков функций вида .

Графики функций , ,, .

Вычислять значения функций, заданных фор­мулами (при необ­ходимости использо­вать калькулятор); со­ставлять таб­лицы значе­ний функций.

 

11

Последовательности и прогрессии

Числовая последовательность. Примеры числовых последовательностей. Бесконечные последовательности. Арифметическая прогрессия и ее свойства. Геометрическая прогрессия. Формула общего члена и суммы n первых членов арифметической и геометрической прогрессий. Сходящаяся геометрическая прогрессия.

 

Применять индексные обозначе­ния, стро­ить рече­вые высказывания с использова­нием терминологии, свя­занной с понятием последо­вательно­сти.

Вычислять члены последова­тельностей, задан­ных форму­лой п-го члена или рекуррент­ной формулой.

Устанавливать закономерность в построе­нии последова­тельно­сти, если из­вестны пер­вые несколько ее чле­нов.

Изображать члены по­следователь­ности точ­ками на ко­ординатной плоскости.

Распознавать арифметическую и геометриче­скую прогрессии при разных спосо­бах задания.

Выводить на основе доказатель­ных рассужде­ний фор­мулы общего чле­на арифме­тической и геометрической про­грессий, суммы первых л членов арифметиче­ской и гео­метрической про­грессий; ре­шать задачи с использованием этих формул.

Рассматривать примеры из ре­альной жизни, иллю­стрирую­щие изменение в арифметиче­ской прогрессии, в геометриче­ской прогрес­сии; изображать соответствую­щие зависимо­сти графически.

Решать задачи на сложные про­центы, в том числе задачи из реальной практики исполь­зованием кальку­лятора)

12

Статистика и теория вероятностей.  Статистика.

Табличное и графическое представление данных, столбчатые и круговые диаграммы, графики, применение диаграмм и графиков для описания зависимостей реальных величин, извлечение информации из таблиц, диаграмм и графиков. Описательные статистические показатели числовых наборов: среднее арифметическое, медиана, наибольшее и наименьшее значения. Меры рассеивания: размах, дисперсия и стандартное отклонение.

Случайная изменчивость. Изменчивость при измерениях. Решающие правила. Закономерности в изменчивых величинах.

Случайные события

Случайные опыты (эксперименты), элементарные случайные события (исходы). Вероятности элементарных событий. События в случайных экспериментах и благоприятствующие элементарные события. Вероятности случайных событий. Опыты с равновозможными элементарными событиями. Классические вероятностные опыты с использованием монет, кубиков. Представление событий с помощью диаграмм Эйлера. Противоположные события, объединение и пересечение событий. Правило сложения вероятностей. Случайный выбор. Представление эксперимента в виде дерева. Независимые события. Умножение вероятностей независимых событий. Последовательные независимые испытания. Представление о независимых событиях в жизни.

Извлекать информацию из таб­лиц и диа­грамм, вы­полнять вычисления по таблич­ным дан­ным. Определять по диаграм­мам наибольшие и наименьшие данные, сравни­вать величины.

Представлять информацию в виде таблиц, столбча­тых и круго­вых диаграмм, в том числе с помощью компьютер­ных программ.

Приводить примеры числовых данных (цена, рост, время на дорогу и т. д.), нахо­дить сред­нее арифмети­ческое, размах чи­сло­вых наборов.

Приводить содержательные примеры исполь­зования сред­них для описания данных (уро­вень воды в водоеме, спортив­ные показа­тели, определение границ климати­ческих зон)

Проводить случайные экспери­менты, в том числе с помощью компьютерного моделирова­ния, интерпретиро­вать их резуль­таты. Вычислять частоту слу­чайного собы­тия; оценивать ве­роятность с помощью частоты, получен­ной опытным путем.

Решать задачи на нахождение вероятностей событий.

Приводить примеры случай­ных событий, в частности досто­верных и невозможных собы­тий, маловероятных со­бы­тий.

Приводить примеры   рав­новероятных событий

13

Решение текстовых задач

Задачи на все арифметические действия

Решение текстовых задач арифметическим способом. Использование таблиц, схем, чертежей, других средств представления данных при решении задачи.

Задачи на движение, работу и покупки

Анализ возможных ситуаций взаимного расположения объектов при их движении, соотношения объемов выполняемых работ при совместной работе.

Задачи на части, доли, проценты

Решение задач на нахождение части числа и числа по его части. Решение задач на проценты и доли. Применение пропорций при решении задач.

Логические задачи

Решение логических задач. Решение логических задач с помощью графов, таблиц.

Основные методы решения текстовых задач: арифметический, алгебраический, перебор вариантов. Первичные представления о других методах решения задач (геометрические и графические методы).

 

 

Составлять формулы, выра­жающие зависимо­сти между ве­личинами, вычислять по форму­лам.

Решать тексто­вые за­дачи том числе с контек­стом из смежных дисцип­лин, из реаль­ной жизни)

14

Элементы комбинаторики

Правило умножения, перестановки, факториал числа. Сочетания и число сочетаний. Формула числа сочетаний. Треугольник Паскаля. Опыты с большим числом равновозможных элементарных событий. Вычисление вероятностей в опытах с применением комбинаторных формул. Испытания Бернулли. Успех и неудача. Вероятности событий в серии испытаний Бернулли.

Случайные величины

Знакомство со случайными величинами на примерах конечных дискретных случайных величин. Распределение вероятностей. Математическое ожидание. Свойства математического ожидания. Понятие о законе больших чисел. Измерение вероятностей. Применение закона больших чисел в социологии, страховании, в здравоохранении, обеспечении безопасности населения в чрезвычайных ситуациях.

 

Выполнять перебор всех воз­можных вариан­тов для пере­счета объектов или комбина­ций.

Применять правило комбина­торного умноже­ния для реше­ния задач на нахожде­ние числа объектов или ком­бинаций (диа­го­нали многоугольника, рукопо­жатия, число ко­дов, шиф­ров, паролей и т. п.).

Распо­знавать задачи на опреде­ление числа переста­но­вок и выполнять соответствую­щие вычисления.

Решать задачи на вычисление вероятности с приме­нением ком­бинаторики

15

Множества. Элементы логики. Множество, характеристическое свойство множества, элемент множества, пустое, конечное, бесконечное множество. Подмножество. Отношение принадлежности, включения, равенства. Элементы множества, способы задания множеств, распознавание подмножеств и элементов подмножеств с использованием кругов Эйлера.

Операции над множествами

Пересечение и объединение множеств. Разность множеств, дополнение множества. Интерпретация операций над множествами с помощью кругов Эйлера.

Элементы логики

Определение. Утверждения. Аксиомы и теоремы. Доказательство. Доказательство от противного. Теорема, обратная данной. Пример и контрпример.

Высказывания

Истинность и ложность высказывания. Сложные и простые высказывания. Операции над высказываниями с использованием логических связок: и, или, не. Условные высказывания (импликации).

 

 

Приводить примеры конечных и бесконеч­ных мно­жеств. Нахо­дить объединение и пересе­че­ние множеств. Приводить при­меры несложных классифика­ций.

Использовать теоретико-множе­ственную символику и язык при решении задач в ходе изучения различных разделов курса.

Иллюстрировать математиче­ские понятия и утверж­дения при­мерами. Использовать при­меры и контрпри­меры в аргумен­тации.

Конструировать математиче­ские предложе­ния с по­мощью связок если то, в том и только том слу­чае, логиче­ских связок  и, или

Воспроизводить    формули­ровки    определений; конст­руировать несложные опреде­ления самостоя­тель­но. Воспроизводить формули­ровки и доказатель­ства изучен­ных теорем, проводить несложные доказа­тельства самостоятельно, ссылаться в ходе обоснова­ний на опре­деле­ния, теоремы, аксиомы

Геометрия

 

 

1

Геометрические фигуры

Фигуры в геометрии и в окружающем мире

Геометрическая фигура. Формирование представлений о метапредметном понятии «фигура». 

Точка, линия, отрезок, прямая, луч, ломаная, плоскость, угол, биссектриса угла и ее свойства, виды углов, многоугольники, круг.

Параллельно­сть прямых

Признаки и свойства параллельных прямых. Аксиома параллельности Евклида. Теорема Фалеса.

Перпендикулярные прямые

Прямой угол. Перпендикуляр к прямой. Наклонная, проекция. Серединный перпендикуляр к отрезку. Свойства и признаки перпендикулярности.

 

 

Осевая симметрия геометрических фигур. Центральная симметрия геометрических фигур.

 

 

Формулировать и доказывать теоремы, выражающие свойства вертикальных и смежных углов, свойства и признаки параллельных прямых, о единственности пер­пендикуляра к прямой, свойстве перпендикуляра и наклонной, свойствах биссектрисы угла и серединного перпендикуляра к отрезку.

Решать задачи на построение, доказательство и вычисле­ния. Выделять в условии задачи условие и заклю­чение. Опираясь на условие задачи, проводить необходимые доказательные рассуждения. Сопостав­лять полученный результат с условием задачи.

2

Треугольники

Треугольники. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренный треугольник, его свойства и признаки. Равносторонний треугольник. Прямоугольный, остроугольный, тупоугольный треугольники. Внешние углы треугольника. Неравенство треугольника.

Равенство фигур

Свойства равных треугольников. Признаки равенства треугольников.

Подобие

Пропорциональные отрезки, подобие фигур. Подобные треугольники. Признаки подобия.

Тригонометрические функции острого угла в прямоугольном треугольнике Тригонометрические функции тупого угла. Вычисление элементов треугольников с использованием тригонометрических соотношений. Формулы площади треугольника . Сравнение и вычисление площадей. Теорема Пифагора. Теорема синусов. Теорема косинусов.

 

Формулировать определения прямоугольного, ост­ро­уголь­ного, тупоугольного, равнобед­ренного, равносто­роннего треугольников; вы­соты, медианы, биссек­трисы, средней линии треугольника; распознавать и изобра­жать их на чертежах и рисунках.

Формулировать определение равных треугольников. Форму­лировать и доказы­вать теоремы о признаках ра­венства треугольников.

Объяснять и иллюстриро­вать неравенство тре­уголь­ника.

Формулировать и доказы­вать теоремы о свойствах и признаках равнобедренного треугольника, соотноше­ни­ях между сторонами и углами тре­угольника, сумме углов тре­угольника, внешнем угле треугольника, о сред­ней ли­нии треугольника.

Формулировать определение подобных треугольни­ков.

Формулировать и доказы­вать теоремы о призна­ках подо­бия треугольников, тео­рему Фалеса.

Формулировать определения и иллюстрировать поня­тия синуса, косинуса, тангенса и котангенса ост­рого угла прямо­угольного треугольника. Выводить формулы, выражаю­щие функции угла прямоугольного треугольни­ка через его стороны. Формулиро­вать и доказы­вать те­орему Пифагора.

Формулировать определения синуса, косинуса, тан­генса, ко­тангенса углов от 0 до 180°.

 Выводить формулы, выражаю­щие функции углов от 0 до 180° через функции острых углов.

 Формулиро­вать и разъяснять основное тригонометри­ческое тожде­ство. По значениям одной три­гонометрической функ­ции угла вычислять значе­ния дру­гих тригонометриче­ских функций этого угла.

Формули­ровать и доказы­вать теоремы синусов и коси­нусов.

Формулировать и доказы­вать теоремы о точках пересе­чения серединных пер­пендикуляров, биссек­трис, медиан, высот или их продолжений.

Исследовать свойства тре­угольника с помощью компь­ю­терных программ.

Решать задачи на построе­ние, доказательство и вы­чис­ления. Выделять в усло­вии задачи условие и заключе­ние.

Моделировать условие задачи с помощью чертежа или рисунка, прово­дить дополнительные по­строения в хо­де решения. Опираясь на данные усло­вия задачи, прово­дить необхо­димые рассуждения.

Интерпретировать полу­чен­ный результат и сопостав­лять его с условием задачи.

3

Четырёхугольники

Четырехугольники. Параллелограмм, ромб, прямоугольник, квадрат, трапеция, равнобедренная трапеция. Свойства и признаки параллелограмма, ромба, прямоугольника, квадрата.

Формулы площади параллелограмма и его частных видов. Сравнение и вычисление площадей.

Формулировать определения параллелограмма, пря­моуголь­ника, квадрата, ромба, трапе­ции, равнобедрен­ной и прямо­угольной трапеции, средней линии трапе­ции; распозна­вать и изображать их на чер­тежах и рисун­ках.

Формулировать и доказы­вать теоремы о свойствах и признаках параллелограмма, прямоугольника, квадра­та, ромба, трапеции.

Исследовать свойства четы­рехугольников с по­мо­щью компьютерных про­грамм.

Решать задачи на построение, доказательство и вы­числе­ния. Моделировать условие за­дачи с помощью чер­тежа или рисунка, проводить дополни­тельные по­строения в ходе ре­шения.

 Выделять на чертеже конфигурации, не­обходимые для проведения обоснований логических шагов реше­ния.

Интерпретировать получен­ный резуль­тат и сопостав­лять его с условием задачи

4

Многоугольники

Многоугольник, его элементы и его свойства. Распознавание некоторых многоугольников. Выпуклые и невыпуклые многоугольники. Правильные многоугольники.

Многогранник и его элементы. Названия многогранников с разным положением и количеством граней. Первичные представления о пирамиде, параллелепипеде, призме, сфере, шаре, цилиндре, конусе, их элементах и простейших свойствах.

Многогранник и его элементы. Названия многогранников с разным положением и количеством граней. Первичные представления о пирамиде, параллелепипеде, призме, сфере, шаре, цилиндре, конусе, их элементах и простейших свойствах.

 

Распознавать многоуголь­ники, формулировать оп­реде­ление и приводить при­меры многоугольников.

Формулировать и доказы­вать теорему о сумме уг­лов выпуклого многоугольника.

Исследовать свойства много­угольников с помощью компью­терных программ.

Решать задачи на доказатель­ство и вычисления.

Моделиро­вать условие за­дачи с помощью чертежа или рисунка, проводить дополни­тельные построения в ходе ре­шения.

Интерпретировать полученный результат и сопос­тав­лять его с условием задачи

5

Окружность и круг

Окружность, круг, их элементы и свойства; центральные и вписанные углы. Касательная и секущая к окружности, их свойства. Вписанные и описанные окружности для треугольников, четырехугольников, правильных многоугольников

 Взаимное расположение прямой и окружности, двух окружностей.  Формулы длины ок­ружности и площади круга. Сравнение и вычисление площадей.

Формулировать определения понятий, связанных с окружно­стью, центрального и вписанного углов, секу­щей и касательной к окружности, уг­лов, связанных с окруж­но­стью.

Формулировать и доказы­вать теоремы о вписан­ных уг­лах, углах, связанных с окруж­ностью.

Изображать, распознавать и описывать взаимное располо­жение прямой и окружности.

Изображать и формулиро­вать определения впи­сан­ных и описанных многоугольников и треугольников;

окружности, вписанной в тре­угольник, и окружности, описанной около треуголь­ника.

Формулировать и доказы­вать теоремы о вписанной и описанной окружностях тре­угольника и многоуголь­ника.

Исследовать свойства конфи­гураций, связанных с ок­ружностью, с помощью компьютерных программ.

Решать задачи на построе­ние, доказательство и вы­чис­ления.

Моделировать ус­ловие задачи с помощью чер­тежа или рисунка, прово­дить дополнительные по­строения в ходе решения.

Вы­делять на чертеже конфи­гурации, необходимые для проведения обоснований ло­гических шагов реше­ния.

Ин­терпретировать получен­ный результат и сопостав­лять его с условием задачи

6

Преобразования

Понятие преобразования. Представление о метапредметном понятии «преобразование». Подобие.

Движения

Осевая и центральная симметрия, поворот и параллельный перенос. Комбинации движений на плоскости и их свойства.

 

Объяснять и иллюстриро­вать понятия равенства фи­гур, подобия. Строить равные и симметричные фигу­ры, вы­полнять параллельный пере­нос и поворот.

Исследовать свойства движе­ний с помощью компь­ютер­ных программ.

Выполнять проекты по темам геометрических преоб­разова­ний на плоскости

7

Построения с помощью циркуля и ли­нейки

Инструменты для измерений и построений; измерение и вычисление углов, длин (расстояний), площадей.

Геометрические построения для иллюстрации свойств геометрических фигур.

Инструменты для построений: циркуль, линейка, угольник. Простейшие построения циркулем и линейкой: построение биссектрисы угла, перпендикуляра к прямой, угла, равного данному,

Построение треугольников по трем сторонам, двум сторонам и углу между ними, стороне и двум прилежащим к ней углам.

Деление отрезка в данном отношении.

 

Решать задачи на построение с помощью циркуля и ли­нейки.

Находить условия существова­ния решения, выпол­нять построение точек, необходимых для построения ис­ко­мой фигуры.

 Доказы­вать, что построенная фигура удовлетворяет условиям за­дачи (определять число реше­ний задачи при каждом возмож­ном выборе данных)

8

Измерение геометрических величин 

Величины

Понятие величины. Длина. Измерение длины. Единицы измерения длины. Величина угла. Градусная мера угла.

Расстояния

Расстояние между точками. Расстояние от точки до прямой. Расстояние между фигурами.

Понятие о площади плоской фигуры и ее свойствах. Измерение площадей. Единицы измерения площади.

Представление об объеме и его свойствах. Измерение объема. Единицы измерения объемов

 

Объяснять и иллюстриро­вать понятие периметра много­угольника. Формулировать определения расстояния между точ­ка­ми, от точки до прямой, между парал­лельными пря­мыми.

Формулировать и объяснять свойства длины, гра­дус­ной меры угла, площади. Формулировать соответствие между величиной централь­ного угла и длиной дуги окруж­ности.

Объяснять и иллюстриро­вать понятия равновеликих и равносоставленных фигур.

Выводить формулы площадей прямоугольника, па­ралле­ло­грамма, треугольника и трапе­ции, а также фор­мулу, выра­жающую площадь треуголь­ника через две сто­роны и угол между ними, длину окружно­сти, пло­щадь круга.

Находить площадь многоуголь­ника разбиением на тре­угольники и четырех­угольники.

Объяснять и иллюстриро­вать отношение площадей по­добных фигур.

Решать задачи на вычисление линейных величин, градус­ной меры угла и площадей треуголь­ников, четы­рехуголь­ников и многоугольников, длины окружности и площади круга. Опираясь на данные ус­ловия задачи, на­ходить воз­можности применения необхо­димых фор­мул, преобразовы­вать формулы.

Использовать формулы для обоснования дока­затель­ных рассуждений в ходе решения.  Интерпретиро­вать получен­ный результат и сопо­став­лять его с условием задачи

9

Координаты

Основные понятия, координаты вектора, расстояние между точками. Координаты середины отрезка. Уравнения фигур.

Применение векторов и координат для решения простейших геометрических задач.

 

Объяснять и иллюстриро­вать понятие декартовой сис­темы координат.

Выводить и использовать формулы координат се­ре­дины отрезка, расстояния между двумя точками пло­скости, урав­нения прямой и окружно­сти.

Выполнять проекты по темам использования коор­динат­ного метода при решении задач на вычисления и доказательства

10

Вектор

Понятие вектора, действия над векторами, использование векторов в физике, разложение вектора на составляющие, скалярное произведение.

 

Формулировать определения и иллюстрировать по­нятия век­тора, длины (модуля) век­тора, коллинеарных векторов, равных векторов.

Вычислять длину и коорди­наты вектора.

Находить угол между векто­рами.

Выполнять операции над век­торами.

Выполнять проекты по темам использования вектор­ного ме­тода при решении задач на вы­числения и доказа­тельства

 

История математики

Возникновение математики как науки, этапы ее развития. Основные разделы математики. Выдающиеся математики и их вклад в развитие науки.

Бесконечность множества простых чисел. Числа и длины отрезков. Рациональные числа. Потребность в иррациональных числах. Школа Пифагора

Зарождение алгебры в недрах арифметики. Ал-Хорезми. Рождение буквенной символики. П. Ферма, Ф. Виет, Р. Декарт. История вопроса о нахождении формул корней алгебраических уравнений степеней, больших четырех. Н. Тарталья, Дж. Кардано, Н.Х. Абель, Э. Галуа.

Появление метода координат, позволяющего переводить геометрические объекты на язык алгебры. Появление графиков функций. Р. Декарт, П. Ферма. Примеры различных систем координат.

Задача Леонардо Пизанского (Фибоначчи) о кроликах, числа Фибоначчи. Задача о шахматной доске. Сходимость геометрической прогрессии.

Истоки теории вероятностей: страховое дело, азартные игры. П. Ферма, Б.Паскаль, Я. Бернулли, А.Н.Колмогоров.

От земледелия к геометрии. Пифагор и его школа. Фалес, Архимед. Платон и Аристотель. Построение правильных многоугольников. Триссекция угла. Квадратура круга. Удвоение куба. История числа π. Золотое сечение. «Начала» Евклида. Л Эйлер, Н.И.Лобачевский. История пятого постулата.

Геометрия и искусство. Геометрические закономерности окружающего мира.

Астрономия и геометрия. Что и как узнали Анаксагор, Эратосфен и Аристарх о размерах Луны, Земли и Солнца. Расстояния от Земли до Луны и Солнца. Измерение расстояния от Земли до Марса.

Роль российских ученых в развитии математики: Л. Эйлер. Н.И. Лобачевский, П.Л.Чебышев, С. Ковалевская, А.Н. Колмогоров.

Математика в развитии России: Петр I, школа математических и навигацких наук, развитие российского флота, А.Н. Крылов. Космическая программа и М.В. Келдыш.

 

 

 

 


7. Учебно-методическое и материально-техническое обеспечения образовательного процесса

1.Нормативные документы: Программа основного общего образо­вания по матема­тике

2.  Математика. Учебник. 5 класс. (ФГОС) Дорофеев Г. В., Шарыгин И. Ф., Суворова С. Б. и др. М.: Просвещение, 2013

3. «Математика 6», Г.В.Дорофеев, И.Ф.Шарыгин, С.Б. Суворова, Е.А. Бунимович, и др. М.: Просвещение, 2010

6.      Математика. Рабочая тетрадь. 5 класс. В 2-х частях. (ФГОС) Бунимович Е. А., Краснянская К. А., Кузнецова Л. В. и др. М.: Просвещение, 2013

7.      Математика. Рабочая тетрадь. 6 класс. В 2-х частях. Бунимович Е. А., Краснянская К. А., Кузнецова Л. В. и др. М.: Просвещение, 2008

8.      Математика. Дидактические материалы. 5 класс. Дорофеев Г. В., Кузнецова Л. В., Минаева С. С. и др. М.: Просвещение, 2012

9.      Математика. Дидактические материалы. 6 класс. Дорофеев Г. В., Кузнецова Л. В., Минаева С. С. и др. М.: Просвещение, 2012

10.  Математика. Тематические тесты. 5 класс. Кузнецова Л. В., Сафонова Н. В. М.: Просвещение, 2012

11.  Математика. Контрольные работы. 5-6 классы. Кузнецова Л. В., Минаева С. С., Рослова Л. О. и др. М.: Просвещение, 2012

12.  Математика. Устные упражнения. 5-6 классы. Минаева С.С. М.: Просвещение, 2012

13.  С.А. Бокарева, Т.В. Смирнова.  Математика.  Поурочные разработки для 6 класса. Книга для учителя.М. Просвещение . 2009

14.  Л.В. Кузнецова, Н.В. Сафонова Математика. Тематические тесты 6 класс. М Просвещение. 2010

15.  Алгебра 7: Учеб. для общеобразоват. учреждений/Г.В. Дорофеев, С.Б. Суворова и др. – Дрофа, 2010

16.  Поурочные планы по учебнику под редакцией Г.В. Дорофеева 7класс. Автор-составитель М.Ф. Калинина. Волгоград, Изд-во «Учитель». 2008

17.  Г.В.Дорофеев,  С. С. Минаева Алгебра 7 класс. Книга для учителя. М. Просвещение 2009.

18.  Алгебра 8: Учеб. для общеобразоват. учреждений/Г.В. Дорофеев, С.Б. Суворова и др. – Дрофа, 2010

19.  Поурочные планы по учебнику под редакцией Г.В. Дорофеева 8 класс. Автор-составитель М.Ф. Калинина. Волгоград, Изд-во «Учитель». 2008

20.  Г.В.Дорофеев,  С. С. Минаева Алгебра 8 класс. Книга для учителя. М. Просвещение 2009.

21.  Алгебра 9: Учеб. для общеобразоват. учреждений/Г.В. Дорофеев, С.Б. Суворова и др. – Дрофа, 2010

22.  Поурочные планы по учебнику под редакцией Г.В. Дорофеева 9 класс. Автор-составитель М.Ф. Калинина. Волгоград, Изд-во «Учитель». 2009

23.  Геометрия, 7-9: Учеб. для общеобразоват. учреждений/Л.С. Атанасян, В.Ф. Бутузов и др. – М.: Просвещение, 2010

24.  Геометрия. Рабочая тетрадь 7 класса общеобразовательных утверждений./Л.С. Атанасян и др.- М.: Просвещение, 2012

25.  Н.Ф. Гаврилова Универсальные поурочные разработки по геометрии 7класс. М. ВАКО, 2010

26.  А.В. Фарков. Тесты по геометрии к учебнику Л.С. Анатасяна и др. «Геометрия. 7-9 классы» М.Экзамен. 2011

27.  Геометрия. Рабочая тетрадь 8 класса общеобразовательных утверждений./Л.С. Атанасян и др.- М.: Просвещение, 2012

28.  Н.Ф. Гаврилова Универсальные поурочные разработки по геометрии 8 класс. М. ВАКО, 2010

Интернет-ресурсы

1.Федеральный центр информационно-образовательных ресурсов (ФЦИОР) http://fcior.edu.ru

2. Единая коллекция цифровых образовательных ресурсов http://school-collection.edu.ru

3. «Карман для учителя математики» http://karmanform.ucoz.ru.

4. Я иду на урок математики (методические разработки): www.festival.1sepember.ru

5. Уроки – конспекты  www.pedsovet.ru

Информационные средства

·                    Мультимедийные обучающие программы и электронные учебные издания по основным разделам математики.

·                    Электронная база данных для создания тематических и итоговых разноуровневых тренировочных и проверочных материалов для организации фронтальной и индивидуальной работы.

Экранно-звуковые пособия

·                    Видеофильмы по истории математики, математических идей и методов.

Технические средства обучения

·                    Компьютер.

·                     Мультимедиа проектор.

·                     Интерактивная доска.

Учебно-практическое и учебно-лабораторное оборудование

·                    Комплект чертежных инструментов (классных)

·                    Комплект планиметрических и стереометрических тел (демонстрационных и раздаточных).

 


8. Планируемые результаты изучения учебного предмета, курса

Выпускник научится в 5-6 классах (для использования в повседневной жизни и обеспечения возможности успешного продолжения образования на базовом уровне)

·      Оперировать на базовом уровне[1] понятиями: множество, элемент множества, подмножество, принадлежность;

·      задавать множества перечислением их элементов;

·      находить пересечение, объединение, подмножество в простейших ситуациях.

В повседневной жизни и при изучении других предметов:

·      распознавать логически некорректные высказывания.

Числа

·      Оперировать на базовом уровне понятиями: натуральное число, целое число, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число;

·      использовать свойства чисел и правила действий с рациональными числами при выполнении вычислений;

·      использовать признаки делимости на 2, 5, 3, 9, 10 при выполнении вычислений и решении несложных задач;

·      выполнять округление рациональных чисел в соответствии с правилами;

·      сравнивать рациональные числа.

В повседневной жизни и при изучении других предметов:

·      оценивать результаты вычислений при решении практических задач;

·      выполнять сравнение чисел в реальных ситуациях;

·      составлять числовые выражения при решении практических задач и задач из других учебных предметов.

Статистика и теория вероятностей

·      Представлять данные в виде таблиц, диаграмм,

·      читать информацию, представленную в виде таблицы, диаграммы.

Текстовые задачи

·      Решать несложные сюжетные задачи разных типов на все арифметические действия;

·      строить модель условия задачи (в виде таблицы, схемы, рисунка), в которой даны значения двух из трех взаимосвязанных величин, с целью поиска решения задачи;

·      осуществлять способ поиска решения задачи, в котором рассуждение строится от условия к требованию или от требования к условию;

·      составлять план решения задачи;

·      выделять этапы решения задачи;

·      интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;

·      знать различие скоростей объекта в стоячей воде, против течения и по течению реки;

·      решать задачи на нахождение части числа и числа по его части;

·      решать задачи разных типов (на работу, на покупки, на движение), связывающих три величины, выделять эти величины и отношения между ними;

·      находить процент от числа, число по проценту от него, находить процентное отношение двух чисел, находить процентное снижение или процентное повышение величины;

·      решать несложные логические задачи методом рассуждений.

В повседневной жизни и при изучении других предметов:

·      выдвигать гипотезы о возможных предельных значениях искомых величин в задаче (делать прикидку)

Наглядная геометрия

Геометрические фигуры

·      Оперировать на базовом уровне понятиями: фигура, точка, отрезок, прямая, луч, ломаная, угол, многоугольник, треугольник и четырехугольник, прямоугольник и квадрат, окружность и круг, прямоугольный параллелепипед, куб, шар. Изображать изучаемые фигуры от руки и с помощью линейки и циркуля.

В повседневной жизни и при изучении других предметов:

·      решать практические задачи с применением простейших свойств фигур.

Измерения и вычисления

·      выполнять измерение длин, расстояний, величин углов, с помощью инструментов для измерений длин и углов;

·      вычислять площади прямоугольников.

В повседневной жизни и при изучении других предметов:

·      вычислять расстояния на местности в стандартных ситуациях, площади прямоугольников;

·      выполнять простейшие построения и измерения на местности, необходимые в реальной жизни.

История математики

·      описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки;

·      знать примеры математических открытий и их авторов, в связи с отечественной и всемирной историей.

Выпускник получит возможность научиться в 5-6 классах (для обеспечения возможности успешного продолжения образования на базовом и углубленном уровнях)

Элементы теории множеств и математической логики

·           Оперировать[2] понятиями: множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность,

·           определять принадлежность элемента множеству, объединению и пересечению множеств; задавать множество с помощью перечисления элементов, словесного описания.

В повседневной жизни и при изучении других предметов:

·      распознавать логически некорректные высказывания;

·      строить цепочки умозаключений на основе использования правил логики.

Числа

·           Оперировать понятиями: натуральное число, множество натуральных чисел, целое число, множество целых чисел, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, множество рациональных чисел, геометрическая интерпретация натуральных, целых, рациональных;

·           понимать и объяснять смысл позиционной записи натурального числа;

·           выполнять вычисления, в том числе с использованием приемов рациональных вычислений, обосновывать алгоритмы выполнения действий;

·           использовать признаки делимости на 2, 4, 8, 5, 3, 6, 9, 10, 11, суммы и произведения чисел при выполнении вычислений и решении задач, обосновывать признаки делимости;

·           выполнять округление рациональных чисел с заданной точностью;

·           упорядочивать числа, записанные в виде обыкновенных и десятичных дробей;

·           находить НОД и НОК чисел и использовать их при решении зада;.

·           оперировать понятием модуль числа, геометрическая интерпретация модуля числа.

В повседневной жизни и при изучении других предметов:

·           применять правила приближенных вычислений при решении практических задач и решении задач других учебных предметов;

·           выполнять сравнение результатов вычислений при решении практических задач, в том числе приближенных вычислений;

·           составлять числовые выражения и оценивать их значения при решении практических задач и задач из других учебных предметов.

 

Уравнения и неравенства

·           Оперировать понятиями: равенство, числовое равенство, уравнение, корень уравнения, решение уравнения, числовое неравенство.

Статистика и теория вероятностей

·           Оперировать понятиями: столбчатые и круговые диаграммы, таблицы данных, среднее арифметическое,

·           извлекать, информацию, представленную в таблицах, на диаграммах;

·           составлять таблицы, строить диаграммы на основе данных.

В повседневной жизни и при изучении других предметов:

·           извлекать, интерпретировать и преобразовывать информацию, представленную в таблицах и на диаграммах, отражающую свойства и характеристики реальных процессов и явлений.

Текстовые задачи

·           Решать простые и сложные задачи разных типов, а также задачи повышенной трудности;

·           использовать разные краткие записи как модели текстов сложных задач для построения поисковой схемы и решения задач;

·           знать и применять оба способа поиска решения задач (от требования к условию и от условия к требованию);

·           моделировать рассуждения при поиске решения задач с помощью граф-схемы;

·           выделять этапы решения задачи и содержание каждого этапа;

·           интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;

·           анализировать всевозможные ситуации взаимного расположения двух объектов и изменение их характеристик при совместном движении (скорость, время, расстояние) при решении задач на движение двух объектов как в одном, так и в противоположных направлениях;

·           исследовать всевозможные ситуации при решении задач на движение по реке, рассматривать разные системы отсчета;

·           решать разнообразные задачи «на части»,

·           решать и обосновывать свое решение задач (выделять математическую основу) на нахождение части числа и числа по его части на основе конкретного смысла дроби;

·           осознавать и объяснять идентичность задач разных типов, связывающих три величины (на работу, на покупки, на движение); выделять эти величины и отношения между ними, применять их при решении задач, конструировать собственные задачи указанных типов.

В повседневной жизни и при изучении других предметов:

·           выделять при решении задач характеристики рассматриваемой в задаче ситуации, отличные от реальных (те, от которых абстрагировались), конструировать новые ситуации с учетом этих характеристик, в частности, при решении задач на концентрации, учитывать плотность вещества;

·           решать и конструировать задачи на основе рассмотрения реальных ситуаций, в которых не требуется точный вычислительный результат;

·           решать задачи на движение по реке, рассматривая разные системы отсчета.

Наглядная геометрия

Геометрические фигуры

·           Извлекать, интерпретировать и преобразовывать информацию о геометрических фигурах, представленную на чертежах;

·           изображать изучаемые фигуры от руки и с помощью компьютерных инструментов.

 

Измерения и вычисления

·           выполнять измерение длин, расстояний, величин углов, с помощью инструментов для измерений длин и углов;

·           вычислять площади прямоугольников, квадратов, объемы прямоугольных параллелепипедов, кубов.

В повседневной жизни и при изучении других предметов:

·           вычислять расстояния на местности в стандартных ситуациях, площади участков прямоугольной формы, объемы комнат;

·                       выполнять простейшие построения на местности, необходимые в реальной жизни;

·           оценивать размеры реальных объектов окружающего мира.

История математики

·                    Характеризовать вклад выдающихся математиков в развитие математики и иных научных областей.

Выпускник научится в 7-9 классах (для использования в повседневной жизни и обеспечения возможности успешного продолжения образования на базовом уровне)

Элементы теории множеств и математической логики

·           Оперировать на базовом уровне[3] понятиями: множество, элемент множества, подмножество, принадлежность;

·           задавать множества перечислением их элементов;

·      находить пересечение, объединение, подмножество в простейших ситуациях;

·      оперировать на базовом уровне понятиями: определение, аксиома, теорема, доказательство;

·      приводить примеры и контрпримеры для подтверждения своих высказываний.

В повседневной жизни и при изучении других предметов:

·           использовать графическое представление множеств для описания реальных процессов и явлений, при решении задач других учебных предметов.

Числа

·           Оперировать на базовом уровне понятиями: натуральное число, целое число, обыкновенная дробь, десятичная дробь, смешанная дробь, рациональное число, арифметический квадратный корень;

·           использовать свойства чисел и правила действий при выполнении вычислений;

·           использовать признаки делимости на 2, 5, 3, 9, 10 при выполнении вычислений и решении несложных задач;

·           выполнять округление рациональных чисел в соответствии с правилами;

·           оценивать значение квадратного корня из положительного целого числа;

·           распознавать рациональные и иррациональные числа;

·           сравнивать числа.

В повседневной жизни и при изучении других предметов:

·           оценивать результаты вычислений при решении практических задач;

·           выполнять сравнение чисел в реальных ситуациях;

·           составлять числовые выражения при решении практических задач и задач из других учебных предметов.

Тождественные преобразования

·           Выполнять несложные преобразования для вычисления значений числовых выражений, содержащих степени с натуральным показателем, степени с целым отрицательным показателем;

·           выполнять несложные преобразования целых выражений: раскрывать скобки, приводить подобные слагаемые;

·           использовать формулы сокращенного умножения (квадрат суммы, квадрат разности, разность квадратов) для упрощения вычислений значений выражений;

·           выполнять несложные преобразования дробно-линейных выражений и выражений с квадратными корнями.

В повседневной жизни и при изучении других предметов:

·           понимать смысл записи числа в стандартном виде;

·           оперировать на базовом уровне понятием «стандартная запись числа».

Уравнения и неравенства

·           Оперировать на базовом уровне понятиями: равенство, числовое равенство, уравнение, корень уравнения, решение уравнения, числовое неравенство, неравенство, решение неравенства;

·           проверять справедливость числовых равенств и неравенств;

·           решать линейные неравенства и несложные неравенства, сводящиеся к линейным;

·           решать системы несложных линейных уравнений, неравенств;

·           проверять, является ли данное число решением уравнения (неравенства);

·           решать квадратные уравнения по формуле корней квадратного уравнения;

·           изображать решения неравенств и их систем на числовой прямой.

В повседневной жизни и при изучении других предметов:

·           составлять и решать линейные уравнения при решении задач, возникающих в других учебных предметах.

Функции

·           Находить значение функции по заданному значению аргумента;

·           находить значение аргумента по заданному значению функции в несложных ситуациях;

·           определять положение точки по ее координатам, координаты точки по ее положению на координатной плоскости;

·           по графику находить область определения, множество значений, нули функции, промежутки знакопостоянства, промежутки возрастания и убывания, наибольшее и наименьшее значения функции;

·           строить график линейной функции;

·           проверять, является ли данный график графиком заданной функции (линейной, квадратичной, обратной пропорциональности);

·           определять приближенные значения координат точки пересечения графиков функций;

·           оперировать на базовом уровне понятиями: последовательность, арифметическая прогрессия, геометрическая прогрессия;

·           решать задачи на прогрессии, в которых ответ может быть получен непосредственным подсчетом без применения формул.

В повседневной жизни и при изучении других предметов:

·           использовать графики реальных процессов и зависимостей для определения их свойств (наибольшие и наименьшие значения, промежутки возрастания и убывания, области положительных и отрицательных значений и т.п.);

·           использовать свойства линейной функции и ее график при решении задач из других учебных предметов.

Статистика и теория вероятностей

·           Иметь представление о статистических характеристиках, вероятности случайного события, комбинаторных задачах;

·           решать простейшие комбинаторные задачи методом прямого и организованного перебора;

·           представлять данные в виде таблиц, диаграмм, графиков;

·           читать информацию, представленную в виде таблицы, диаграммы, графика;

·           определять основные статистические характеристики числовых наборов;

·           оценивать вероятность события в простейших случаях;

·           иметь представление о роли закона больших чисел в массовых явлениях.

В повседневной жизни и при изучении других предметов:

·           оценивать количество возможных вариантов методом перебора;

·           иметь представление о роли практически достоверных и маловероятных событий;

·           сравнивать основные статистические характеристики, полученные в процессе решения прикладной задачи, изучения реального явления;

·           оценивать вероятность реальных событий и явлений в несложных ситуациях.

 

Текстовые задачи

·           Решать несложные сюжетные задачи разных типов на все арифметические действия;

·           строить модель условия задачи (в виде таблицы, схемы, рисунка или уравнения), в которой даны значения двух из трех взаимосвязанных величин, с целью поиска решения задачи;

·           осуществлять способ поиска решения задачи, в котором рассуждение строится от условия к требованию или от требования к условию;

·           составлять план решения задачи;

·           выделять этапы решения задачи;

·           интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;

·           знать различие скоростей объекта в стоячей воде, против течения и по течению реки;

·           решать задачи на нахождение части числа и числа по его части;

·           решать задачи разных типов (на работу, на покупки, на движение), связывающих три величины, выделять эти величины и отношения между ними;

·           находить процент от числа, число по проценту от него, находить процентное снижение или процентное повышение величины;

·           решать несложные логические задачи методом рассуждений.

В повседневной жизни и при изучении других предметов:

·           выдвигать гипотезы о возможных предельных значениях искомых в задаче величин (делать прикидку).

Геометрические фигуры

·           Оперировать на базовом уровне понятиями геометрических фигур;

·           извлекать информацию о геометрических фигурах, представленную на чертежах в явном виде;

·           применять для решения задач геометрические факты, если условия их применения заданы в явной форме;

·           решать задачи на нахождение геометрических величин по образцам или алгоритмам.

 

 

В повседневной жизни и при изучении других предметов:

·           использовать свойства геометрических фигур для решения типовых задач, возникающих в ситуациях повседневной жизни, задач практического содержания.

Отношения

·           Оперировать на базовом уровне понятиями: равенство фигур, равные фигуры, равенство треугольников, параллельность прямых, перпендикулярность прямых, углы между прямыми, перпендикуляр, наклонная, проекция.

В повседневной жизни и при изучении других предметов:

·           использовать отношения для решения простейших задач, возникающих в реальной жизни.

Измерения и вычисления

·           Выполнять измерение длин, расстояний, величин углов, с помощью инструментов для измерений длин и углов;

·           применять формулы периметра, площади и объема, площади поверхности отдельных многогранников при вычислениях, когда все данные имеются в условии;

·           применять теорему Пифагора, базовые тригонометрические соотношения для вычисления длин, расстояний, площадей в простейших случаях.

В повседневной жизни и при изучении других предметов:

·           вычислять расстояния на местности в стандартных ситуациях, площади в простейших случаях, применять формулы в простейших ситуациях в повседневной жизни.

Геометрические построения

·           Изображать типовые плоские фигуры и фигуры в пространстве от руки и с помощью инструментов.

В повседневной жизни и при изучении других предметов:

·           выполнять простейшие построения на местности, необходимые в реальной жизни.

Геометрические преобразования

·           Строить фигуру, симметричную данной фигуре относительно оси и точки.

В повседневной жизни и при изучении других предметов:

·           распознавать движение объектов в окружающем мире;

·           распознавать симметричные фигуры в окружающем мире.

Векторы и координаты на плоскости

·           Оперировать на базовом уровне понятиями вектор, сумма векторов, произведение вектора на число, координаты на плоскости;

·           определять приближенно координаты точки по ее изображению на координатной плоскости.

В повседневной жизни и при изучении других предметов:

·           использовать векторы для решения простейших задач на определение скорости относительного движения.

История математики

·           Описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки;

·           знать примеры математических открытий и их авторов, в связи с отечественной и всемирной историей;

·           понимать роль математики в развитии России.

 

Методы математики

·           Выбирать подходящий изученный метод для решения изученных типов математических задач;

·           Приводить примеры математических закономерностей в окружающей действительности и произведениях искусства.

 

Выпускник получит возможность научиться в 7-9 классах для обеспечения возможности успешного продолжения образования на базовом и углубленном уровнях

Элементы теории множеств и математической логики

·           Оперировать[4] понятиями: определение, теорема, аксиома, множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность, включение, равенство множеств;

·           изображать множества и отношение множеств с помощью кругов Эйлера;

·           определять принадлежность элемента множеству, объединению и пересечению множеств;

·           задавать множество с помощью перечисления элементов, словесного описания;

·           оперировать понятиями: высказывание, истинность и ложность высказывания, отрицание высказываний, операции над высказываниями: и, или, не, условные высказывания (импликации);

·           строить высказывания, отрицания высказываний.

В повседневной жизни и при изучении других предметов:

·           строить цепочки умозаключений на основе использования правил логики;

·           использовать множества, операции с множествами, их графическое представление для описания реальных процессов и явлений.

 

Числа

·           Оперировать понятиями: множество натуральных чисел, множество целых чисел, множество рациональных чисел, иррациональное число, квадратный корень, множество действительных чисел, геометрическая интерпретация натуральных, целых, рациональных, действительных чисел;

·           понимать и объяснять смысл позиционной записи натурального числа;

·           выполнять вычисления, в том числе с использованием приемов рациональных вычислений;

·           выполнять округление рациональных чисел с заданной точностью;

·           сравнивать рациональные и иррациональные числа;

·           представлять рациональное число в виде десятичной дроби

·           упорядочивать числа, записанные в виде обыкновенной и десятичной дроби;

·           находить НОД и НОК чисел и использовать их при решении задач.

В повседневной жизни и при изучении других предметов:

·           применять правила приближенных вычислений при решении практических задач и решении задач других учебных предметов;

·           выполнять сравнение результатов вычислений при решении практических задач, в том числе приближенных вычислений;

·           составлять и оценивать числовые выражения при решении практических задач и задач из других учебных предметов;

·           записывать и округлять числовые значения реальных величин с использованием разных систем измерения.

Тождественные преобразования

·           Оперировать понятиями степени с натуральным показателем, степени с целым отрицательным показателем;

·           выполнять преобразования целых выражений: действия с одночленами (сложение, вычитание, умножение), действия с многочленами (сложение, вычитание, умножение);

·           выполнять разложение многочленов на множители одним из способов: вынесение за скобку, группировка, использование формул сокращенного умножения;

·           выделять квадрат суммы и разности одночленов;

·           раскладывать на множители квадратный   трехчлен;

·           выполнять преобразования выражений, содержащих степени с целыми отрицательными показателями, переходить от записи в виде степени с целым отрицательным показателем к записи в виде дроби;

·           выполнять преобразования дробно-рациональных выражений: сокращение дробей, приведение алгебраических дробей к общему знаменателю, сложение, умножение, деление алгебраических дробей, возведение алгебраической дроби в натуральную и целую отрицательную степень;

·           выполнять преобразования выражений, содержащих квадратные корни;

·           выделять квадрат суммы или разности двучлена в выражениях, содержащих квадратные корни;

·           выполнять преобразования выражений, содержащих модуль.

В повседневной жизни и при изучении других предметов:

·           выполнять преобразования и действия с числами, записанными в стандартном виде;

·           выполнять преобразования алгебраических выражений при решении задач других учебных предметов.

Уравнения и неравенства

·           Оперировать понятиями: уравнение, неравенство, корень уравнения, решение неравенства, равносильные уравнения, область определения уравнения (неравенства, системы уравнений или неравенств);

·           решать линейные уравнения и уравнения, сводимые к линейным с помощью тождественных преобразований;

·           решать квадратные уравнения и уравнения, сводимые к квадратным с помощью тождественных преобразований;

·           решать дробно-линейные уравнения;

·           решать простейшие иррациональные уравнения вида , ;

·           решать уравнения вида ;

·           решать уравнения способом разложения на множители и замены переменной;

·           использовать метод интервалов для решения целых и дробно-рациональных неравенств;

·           решать линейные уравнения и неравенства с параметрами;

·           решать несложные квадратные уравнения с параметром;

·           решать несложные системы линейных уравнений с параметрами;

·           решать несложные уравнения в целых числах.

 

 

В повседневной жизни и при изучении других предметов:

·           составлять и решать линейные и квадратные уравнения, уравнения, к ним сводящиеся, системы линейных уравнений, неравенств при решении задач других учебных предметов;

·           выполнять оценку правдоподобия результатов, получаемых при решении линейных и квадратных уравнений и систем линейных уравнений и неравенств при решении задач других учебных предметов;

·           выбирать соответствующие уравнения, неравенства или их системы для составления математической модели заданной реальной ситуации или прикладной задачи;

·           уметь интерпретировать полученный при решении уравнения, неравенства или системы результат в контексте заданной реальной ситуации или прикладной задачи.

Функции

·           Оперировать понятиями: функциональная зависимость, функция, график функции, способы задания функции, аргумент и значение функции, область определения и множество значений функции, нули функции, промежутки знакопостоянства, монотонность функции, четность/нечетность функции;

·           строить графики линейной, квадратичной функций, обратной пропорциональности, функции вида: , ,, ;

·           на примере квадратичной функции, использовать преобразования графика функции y=f(x) для построения графиков функций ;

·           составлять уравнения прямой по заданным условиям: проходящей через две точки с заданными координатами, проходящей через данную точку и параллельной данной прямой;

·           исследовать функцию по ее графику;

·           находить множество значений, нули, промежутки знакопостоянства, монотонности квадратичной функции;

·           оперировать понятиями: последовательность, арифметическая прогрессия, геометрическая прогрессия;

·           решать задачи на арифметическую и геометрическую прогрессию.

В повседневной жизни и при изучении других предметов:

·           иллюстрировать с помощью графика реальную зависимость или процесс по их характеристикам;

·           использовать свойства и график квадратичной функции при решении задач из других учебных предметов.

Текстовые задачи

·           Решать простые и сложные задачи разных типов, а также задачи повышенной трудности;

·           использовать разные краткие записи как модели текстов сложных задач для построения поисковой схемы и решения задач;

·           различать модель текста и модель решения задачи, конструировать к одной модели решения несложной задачи разные модели текста задачи;

·           знать и применять оба способа поиска решения задач (от требования к условию и от условия к требованию);

·           моделировать рассуждения при поиске решения задач с помощью граф-схемы;

·           выделять этапы решения задачи и содержание каждого этапа;

·           уметь выбирать оптимальный метод решения задачи и осознавать выбор метода, рассматривать различные методы, находить разные решения задачи, если возможно;

·           анализировать затруднения при решении задач;

·           выполнять различные преобразования предложенной задачи, конструировать новые задачи из данной, в том числе обратные;

·           интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;

·           анализировать всевозможные ситуации взаимного расположения двух объектов и изменение их характеристик при совместном движении (скорость, время, расстояние) при решении задач на движение двух объектов как в одном, так и в противоположных направлениях;

·           исследовать всевозможные ситуации при решении задач на движение по реке, рассматривать разные системы отсчета;

·           решать разнообразные задачи «на части»,

·           решать и обосновывать свое решение задач (выделять математическую основу) на нахождение части числа и числа по его части на основе конкретного смысла дроби;

·           осознавать и объяснять идентичность задач разных типов, связывающих три величины (на работу, на покупки, на движение), выделять эти величины и отношения между ними, применять их при решении задач, конструировать собственные задач указанных типов;

·           владеть основными методами решения задач на смеси, сплавы, концентрации;

·           решать задачи на проценты, в том числе, сложные проценты с обоснованием, используя разные способы;

·           решать логические задачи разными способами, в том числе, с двумя блоками и с тремя блоками данных с помощью таблиц;

·           решать задачи по комбинаторике и теории вероятностей на основе использования изученных методов и обосновывать решение;

·           решать несложные задачи по математической статистике;

·           овладеть основными методами решения сюжетных задач: арифметический, алгебраический, перебор вариантов, геометрический, графический, применять их в новых по сравнению с изученными ситуациях.

В повседневной жизни и при изучении других предметов:

·           выделять при решении задач характеристики рассматриваемой в задаче ситуации, отличные от реальных (те, от которых абстрагировались), конструировать новые ситуации с учетом этих характеристик, в частности, при решении задач на концентрации, учитывать плотность вещества;

·           решать и конструировать задачи на основе рассмотрения реальных ситуаций, в которых не требуется точный вычислительный результат;

·           решать задачи на движение по реке, рассматривая разные системы отсчета.

Статистика и теория вероятностей

·           Оперировать понятиями: столбчатые и круговые диаграммы, таблицы данных, среднее арифметическое, медиана, наибольшее и наименьшее значения выборки, размах выборки, дисперсия и стандартное отклонение, случайная изменчивость;

·           извлекать информацию, представленную в таблицах, на диаграммах, графиках;

·           составлять таблицы, строить диаграммы и графики на основе данных;

·           оперировать понятиями: факториал числа, перестановки и сочетания, треугольник Паскаля;

·           применять правило произведения при решении комбинаторных задач;

·           оперировать понятиями: случайный опыт, случайный выбор, испытание, элементарное случайное событие (исход), классическое определение вероятности случайного события, операции над случайными событиями;

·           представлять информацию с помощью кругов Эйлера;

·           решать задачи на вычисление вероятности с подсчетом количества вариантов с помощью комбинаторики.

В повседневной жизни и при изучении других предметов:

·           извлекать, интерпретировать и преобразовывать информацию, представленную в таблицах, на диаграммах, графиках, отражающую свойства и характеристики реальных процессов и явлений;

·           определять статистические характеристики выборок по таблицам, диаграммам, графикам, выполнять сравнение в зависимости от цели решения задачи;

·           оценивать вероятность реальных событий и явлений.

Геометрические фигуры

·           Оперировать понятиями геометрических фигур;

·           извлекать, интерпретировать и преобразовывать информацию о геометрических фигурах, представленную на чертежах;

·           применять геометрические факты для решения задач, в том числе, предполагающих несколько шагов решения;

·           формулировать в простейших случаях свойства и признаки фигур;

·           доказывать геометрические утверждения;

·           владеть стандартной классификацией плоских фигур (треугольников и четырехугольников).

В повседневной жизни и при изучении других предметов:

·           использовать свойства геометрических фигур для решения задач практического характера и задач из смежных дисциплин.

Отношения

·           Оперировать понятиями: равенство фигур, равные фигуры, равенство треугольников, параллельность прямых, перпендикулярность прямых, углы между прямыми, перпендикуляр, наклонная, проекция, подобие фигур, подобные фигуры, подобные треугольники;

·           применять теорему Фалеса и теорему о пропорциональных отрезках при решении задач;

·           характеризовать взаимное расположение прямой и окружности, двух окружностей.

В повседневной жизни и при изучении других предметов:

·           использовать отношения для решения задач, возникающих в реальной жизни.

Измерения и вычисления

·           Оперировать представлениями о длине, площади, объеме как величинами. Применять теорему Пифагора, формулы площади, объема при решении многошаговых задач, в которых не все данные представлены явно, а требуют вычислений, оперировать более широким количеством формул длины, площади, объема, вычислять характеристики комбинаций фигур (окружностей и многоугольников) вычислять расстояния между фигурами, применять тригонометрические формулы для вычислений в более сложных случаях, проводить вычисления на основе равновеликости и равносоставленности;

·           проводить простые вычисления на объемных телах;

·           формулировать задачи на вычисление длин, площадей и объемов и решать их.

В повседневной жизни и при изучении других предметов:

·           проводить вычисления на местности;

·           применять формулы при вычислениях в смежных учебных предметах, в окружающей действительности.

Геометрические построения

·           Изображать геометрические фигуры по текстовому и символьному описанию;

·           свободно оперировать чертежными инструментами в несложных случаях,

·           выполнять построения треугольников, применять отдельные методы построений циркулем и линейкой и проводить простейшие исследования числа решений;

·           изображать типовые плоские фигуры и объемные тела с помощью простейших компьютерных инструментов.

В повседневной жизни и при изучении других предметов:

·           выполнять простейшие построения на местности, необходимые в реальной жизни;

·           оценивать размеры реальных объектов окружающего мира.

Преобразования

·           Оперировать понятием движения и преобразования подобия, владеть приемами построения фигур с использованием движений и преобразований подобия, применять полученные знания и опыт построений в смежных предметах и в реальных ситуациях окружающего мира;

·           строить фигуру, подобную данной, пользоваться свойствами подобия для обоснования свойств фигур;

·           применять свойства движений для проведения простейших обоснований свойств фигур.

В повседневной жизни и при изучении других предметов:

·           применять свойства движений и применять подобие для построений и вычислений.

Векторы и координаты на плоскости

·           Оперировать понятиями вектор, сумма, разность векторов, произведение вектора на число, угол между векторами, скалярное произведение векторов, координаты на плоскости, координаты вектора;

·           выполнять действия над векторами (сложение, вычитание, умножение на число), вычислять скалярное произведение, определять в простейших случаях угол между векторами, выполнять разложение вектора на составляющие, применять полученные знания в физике, пользоваться формулой вычисления расстояния между точками по известным координатам, использовать уравнения фигур для решения задач;

·           применять векторы и координаты для решения геометрических задач на вычисление длин, углов.

В повседневной жизни и при изучении других предметов:

·           использовать понятия векторов и координат для решения задач по физике, географии и другим учебным предметам.

История математики

·           Характеризовать вклад выдающихся математиков в развитие математики и иных научных областей;

·           понимать роль математики в развитии России.

Методы математики

·           Используя изученные методы, проводить доказательство, выполнять опровержение;

·           выбирать изученные методы и их комбинации для решения математических задач;

·           использовать математические знания для описания закономерностей в окружающей действительности и произведениях искусства;

·           применять простейшие программные средства и электронно-коммуникационные системы при решении математических задач.

Выпускник получит возможность научиться в 7-9 классах для успешного продолжения образования на углубленном уровне

Элементы теории множеств и математической логики

·           Свободно оперировать[5] понятиями: множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность, включение, равенство множеств, способы задание множества;

·           задавать множества разными способами;

·           проверять выполнение характеристического свойства множества;

·           свободно оперировать понятиями: высказывание, истинность и ложность высказывания, сложные и простые высказывания, отрицание высказываний; истинность и ложность утверждения и его отрицания, операции над высказываниями: и, или, не; условные высказывания (импликации);

·           строить высказывания с использованием законов алгебры высказываний.

В повседневной жизни и при изучении других предметов:

·           строить рассуждения на основе использования правил логики;

·           использовать множества, операции с множествами, их графическое представление для описания реальных процессов и явлений, при решении задач других учебных предметов.

Числа

·           Свободно оперировать понятиями: натуральное число, множество натуральных чисел, целое число, множество целых чисел, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, множество рациональных чисел, иррациональное число, корень степени n, действительное число, множество действительных чисел, геометрическая интерпретация натуральных, целых, рациональных, действительных чисел;

·           понимать и объяснять разницу между позиционной и непозиционной системами записи чисел;

·           переводить числа из одной системы записи (системы счисления) в другую;

·           доказывать и использовать признаки делимости на 2, 4, 8, 5, 3, 6, 9, 10, 11 суммы и произведения чисел при выполнении вычислений и решении задач;

·           выполнять округление рациональных и иррациональных чисел с заданной точностью;

·           сравнивать действительные числа разными способами;

·           упорядочивать числа, записанные в виде обыкновенной и десятичной дроби, числа, записанные с использованием арифметического квадратного корня, корней степени больше 2;

·           находить НОД и НОК чисел разными способами и использовать их при решении задач;

·           выполнять вычисления и преобразования выражений, содержащих действительные числа, в том числе корни натуральных степеней.

В повседневной жизни и при изучении других предметов:

·           выполнять и объяснять результаты сравнения результатов вычислений при решении практических задач, в том числе приближенных вычислений, используя разные способы сравнений;

·           записывать, сравнивать, округлять числовые данные реальных величин с использованием разных систем измерения;

·           составлять и оценивать разными способами числовые выражения при решении практических задач и задач из других учебных предметов.

Тождественные преобразования

·           Свободно оперировать понятиями степени с целым и дробным показателем;

·           выполнять доказательство свойств степени с целыми и дробными показателями;

·           оперировать понятиями «одночлен», «многочлен», «многочлен с одной переменной», «многочлен с несколькими переменными», коэффициенты многочлена, «стандартная запись многочлена», степень одночлена и многочлена;

·           свободно владеть приемами преобразования целых и дробно-рациональных выражений;

·           выполнять разложение многочленов на множители разными способами, с использованием комбинаций различных приемов;

·           использовать теорему Виета и теорему, обратную теореме Виета, для поиска корней квадратного трехчлена и для решения задач, в том числе задач с параметрами на основе квадратного трехчлена;

·           выполнять деление многочлена на многочлен с остатком;

·           доказывать свойства квадратных корней и корней степени n;

·           выполнять преобразования выражений, содержащих квадратные корни, корни степени n;

·           свободно оперировать понятиями «тождество», «тождество на множестве», «тождественное преобразование»;

·           выполнять различные преобразования выражений, содержащих модули.

В повседневной жизни и при изучении других предметов:

·           выполнять преобразования и действия с буквенными выражениями, числовые коэффициенты которых записаны в стандартном виде;

·           выполнять преобразования рациональных выражений при решении задач других учебных предметов;

·           выполнять проверку правдоподобия физических и химических формул на основе сравнения размерностей и валентностей.

Уравнения и неравенства

·           Свободно оперировать понятиями: уравнение, неравенство, равносильные уравнения и неравенства, уравнение, являющееся следствием другого уравнения, уравнения, равносильные на множестве, равносильные преобразования уравнений;

·           решать разные виды уравнений и неравенств и их систем, в том числе некоторые уравнения 3 и 4 степеней, дробно-рациональные и иррациональные;

·           знать теорему Виета для уравнений степени выше второй;

·           понимать смысл теорем о равносильных и неравносильных преобразованиях уравнений и уметь их доказывать;

·           владеть разными методами решения уравнений, неравенств и их систем, уметь выбирать метод решения и обосновывать свой выбор;

·           использовать метод интервалов для решения неравенств, в том числе дробно-рациональных и включающих в себя иррациональные выражения;

·           решать алгебраические уравнения и неравенства и их системы с параметрами алгебраическим и графическим методами;

·           владеть разными методами доказательства неравенств;

·           решать уравнения в целых числах;

·           изображать множества на плоскости, задаваемые уравнениями, неравенствами и их системами.

В повседневной жизни и при изучении других предметов:

·           составлять и решать уравнения, неравенства, их системы при решении задач других учебных предметов;

·           выполнять оценку правдоподобия результатов, получаемых при решении различных уравнений, неравенств и их систем при решении задач других учебных предметов;

·           составлять и решать уравнения и неравенства с параметрами при решении задач других учебных предметов;

·           составлять уравнение, неравенство или их систему, описывающие реальную ситуацию или прикладную задачу, интерпретировать полученные результаты.

Функции

·           Свободно оперировать понятиями: зависимость, функциональная зависимость, зависимая и независимая переменные, функция, способы задания функции, аргумент и значение функции, область определения и множество значения функции, нули функции, промежутки знакопостоянства, монотонность функции, наибольшее и наименьшее значения, четность/нечетность функции, периодичность функции, график функции, вертикальная, горизонтальная, наклонная асимптоты; график зависимости, не являющейся функцией,

·           строить графики функций: линейной, квадратичной, дробно-линейной, степенной при разных значениях показателя степени, ;

·           использовать преобразования графика функции  для построения графиков функций ;

·           анализировать свойства функций и вид графика в зависимости от параметров;

·           свободно оперировать понятиями: последовательность, ограниченная последовательность, монотонно возрастающая (убывающая) последовательность, предел последовательности, арифметическая прогрессия, геометрическая прогрессия, характеристическое свойство арифметической (геометрической) прогрессии;

·           использовать метод математической индукции для вывода формул, доказательства равенств и неравенств, решения задач на делимость;

·           исследовать последовательности, заданные рекуррентно;

·           решать комбинированные задачи на арифметическую и геометрическую прогрессии.

В повседневной жизни и при изучении других предметов:

·           конструировать и исследовать функции, соответствующие реальным процессам и явлениям, интерпретировать полученные результаты в соответствии со спецификой исследуемого процесса или явления;

·           использовать графики зависимостей для исследования реальных процессов и явлений;

·           конструировать и исследовать функции при решении задач других учебных предметов, интерпретировать полученные результаты в соответствии со спецификой учебного предмета.

Статистика и теория вероятностей

·           Свободно оперировать понятиями: столбчатые и круговые диаграммы, таблицы данных, среднее арифметическое, медиана, наибольшее и наименьшее значения выборки, размах выборки, дисперсия и стандартное отклонение, случайная изменчивость;

·           выбирать наиболее удобный способ представления информации, адекватный ее свойствам и целям анализа;

·           вычислять числовые характеристики выборки;

·           свободно оперировать понятиями: факториал числа, перестановки, сочетания и размещения, треугольник Паскаля;

·           свободно оперировать понятиями: случайный опыт, случайный выбор, испытание, элементарное случайное событие (исход), классическое определение вероятности случайного события, операции над случайными событиями, основные комбинаторные формулы;

·           свободно оперировать понятиями: случайный опыт, случайный выбор, испытание, элементарное случайное событие (исход), классическое определение вероятности случайного события, операции над случайными событиями, основные комбинаторные формулы;

·           знать примеры случайных величин, и вычислять их статистические характеристики;

·           использовать формулы комбинаторики при решении комбинаторных задач;

·           решать задачи на вычисление вероятности в том числе с использованием формул.

В повседневной жизни и при изучении других предметов:

·           представлять информацию о реальных процессах и явлениях способом, адекватным ее свойствам и цели исследования;

·           анализировать и сравнивать статистические характеристики выборок, полученных в процессе решения прикладной задачи, изучения реального явления, решения задачи из других учебных предметов;

·           оценивать вероятность реальных событий и явлений в различных ситуациях.

Текстовые задачи

·           Решать простые и сложные задачи, а также задачи повышенной трудности и выделять их математическую основу;

·           распознавать разные виды и типы задач;

·           использовать разные краткие записи как модели текстов сложных задач и задач повышенной сложности для построения поисковой схемы и решения задач, выбирать оптимальную для рассматриваемой в задаче ситуации модель текста задачи;

·           различать модель текста и модель решения задачи, конструировать к одной модели решения сложных задач разные модели текста задачи;

·           знать и применять три способа поиска решения задач (от требования к условию и от условия к требованию, комбинированный);

·           моделировать рассуждения при поиске решения задач с помощью граф-схемы;

·           выделять этапы решения задачи и содержание каждого этапа;

·           уметь выбирать оптимальный метод решения задачи и осознавать выбор метода, рассматривать различные методы, находить разные решения задачи, если возможно;

·           анализировать затруднения при решении задач;

·           выполнять различные преобразования предложенной задачи, конструировать новые задачи из данной, в том числе обратные;

·           интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;

·           изменять условие задач (количественные или качественные данные), исследовать измененное преобразованное;

·           анализировать всевозможные ситуации взаимного расположения двух объектов и изменение их характеристик при совместном движении (скорость, время, расстояние) при решении задач на движение двух объектов как в одном, так и в противоположных направлениях, конструировать новые ситуации на основе изменения условий задачи при движении по реке;

·           исследовать всевозможные ситуации при решении задач на движение по реке, рассматривать разные системы отсчета;

·           решать разнообразные задачи «на части»;

·           решать и обосновывать свое решение задач (выделять математическую основу) на нахождение части числа и числа по его части на основе конкретного смысла дроби;

·           объяснять идентичность задач разных типов, связывающих три величины (на работу, на покупки, на движение), выделять эти величины и отношения между ними, применять их при решении задач, конструировать собственные задач указанных типов;

·           владеть основными методами решения задач на смеси, сплавы, концентрации, использовать их в новых ситуациях по отношению к изученным в процессе обучения;

·            решать задачи на проценты, в том числе, сложные проценты с обоснованием, используя разные способы;

·           решать логические задачи разными способами, в том числе, с двумя блоками и с тремя блоками данных с помощью таблиц;

·           решать задачи по комбинаторике и теории вероятностей на основе использования изученных методов и обосновывать решение;

·           решать несложные задачи по математической статистике;

·           овладеть основными методами решения сюжетных задач: арифметический, алгебраический, перебор вариантов, геометрический, графический, применять их в новых по сравнению с изученными ситуациях.

В повседневной жизни и при изучении других предметов:

·           конструировать новые для данной задачи задачные ситуации с учетом реальных характеристик, в частности, при решении задач на концентрации, учитывать плотность вещества; решать и конструировать задачи на основе рассмотрения реальных ситуаций, в которых не требуется точный вычислительный результат;

·           решать задачи на движение по реке, рассматривая разные системы отсчета;

·           конструировать задачные ситуации, приближенные к реальной действительности.

Геометрические фигуры

·           Свободно оперировать геометрическими понятиями при решении задач и проведении математических рассуждений;

·           самостоятельно формулировать определения геометрических фигур, выдвигать гипотезы о новых свойствах и признаках геометрических фигур и обосновывать или опровергать их, обобщать или конкретизировать результаты на новые классы фигур, проводить в несложных случаях классификацию фигур по различным основаниям;

·           исследовать чертежи, включая комбинации фигур, извлекать, интерпретировать и преобразовывать информацию, представленную на чертежах;

·           решать задачи геометрического содержания, в том числе в ситуациях, когда алгоритм решения не следует явно из условия, выполнять необходимые для решения задачи дополнительные построения, исследовать возможность применения теорем и формул для решения задач;

·           формулировать и доказывать геометрические утверждения.

В повседневной жизни и при изучении других предметов:

·           составлять с использованием свойств геометрических фигур математические модели для решения задач практического характера и задач из смежных дисциплин, исследовать полученные модели и интерпретировать результат.

Отношения

·           Владеть понятием отношения как метапредметным;

·           свободно оперировать понятиями: равенство фигур, равные фигуры, равенство треугольников, параллельность прямых, перпендикулярность прямых, углы между прямыми, перпендикуляр, наклонная, проекция, подобие фигур, подобные фигуры, подобные треугольники;

·           использовать свойства подобия и равенства фигур при решении задач.

В повседневной жизни и при изучении других предметов:

·           использовать отношения для построения и исследования математических моделей объектов реальной жизни.

Измерения и вычисления

·           Свободно оперировать понятиями длина, площадь, объем, величина угла как величинами, использовать равновеликость и равносоставленность при решении задач на вычисление, самостоятельно получать и использовать формулы для вычислений площадей и объемов фигур, свободно оперировать широким набором формул на вычисление при решении сложных задач, в том числе и задач на вычисление в комбинациях окружности и треугольника, окружности и четырехугольника, а также с применением тригонометрии;

·           самостоятельно формулировать гипотезы и проверять их достоверность.

В повседневной жизни и при изучении других предметов:

·           свободно оперировать формулами при решении задач в других учебных предметах и при проведении необходимых вычислений в реальной жизни.

 

Геометрические построения

·           Оперировать понятием набора элементов, определяющих геометрическую фигуру,

·           владеть набором методов построений циркулем и линейкой;

·           проводить анализ и реализовывать этапы решения задач на построение.

В повседневной жизни и при изучении других предметов:

·           выполнять построения на местности;

·           оценивать размеры реальных объектов окружающего мира.

Преобразования

·           Оперировать движениями и преобразованиями как метапредметными понятиями;

·           оперировать понятием движения и преобразования подобия для обоснований, свободно владеть приемами построения фигур с помощью движений и преобразования подобия, а также комбинациями движений, движений и преобразований;

·           использовать свойства движений и преобразований для проведения обоснования и доказательства утверждений в геометрии и других учебных предметах;

·           пользоваться свойствами движений и преобразований при решении задач.

В повседневной жизни и при изучении других предметов:

·           применять свойства движений и применять подобие для построений и вычислений.

Векторы и координаты на плоскости

·           Свободно оперировать понятиями вектор, сумма, разность векторов, произведение вектора на число, скалярное произведение векторов, координаты на плоскости, координаты вектора;

·           владеть векторным и координатным методом на плоскости для решения задач на вычисление и доказательства;

·           выполнять с помощью векторов и координат доказательство известных ему геометрических фактов (свойства средних линий, теорем о замечательных точках и т.п.) и получать новые свойства известных фигур;

·           использовать уравнения фигур для решения задач и самостоятельно составлять уравнения отдельных плоских фигур.

В повседневной жизни и при изучении других предметов:

·           использовать понятия векторов и координат для решения задач по физике, географии и другим учебным предметам.

История математики

·           Понимать математику как строго организованную систему научных знаний, в частности владеть представлениями об аксиоматическом построении геометрии и первичными представлениями о неевклидовых геометриях;

·           рассматривать математику в контексте истории развития цивилизации и истории развития науки, понимать роль математики в развитии России.

Методы математики

·           Владеть знаниями о различных методах обоснования и опровержения математических утверждений и самостоятельно применять их;

·           владеть навыками анализа условия задачи и определения подходящих для решения задач изученных методов или их комбинаций;

·           характеризовать произведения искусства с учетом математических закономерностей в природе, использовать математические закономерности в самостоятельном творчестве.

 


Содержание учебного предмета математика 6 класс

Структура курса


 

№ главы

Тема раздела (модуль)

Количество

часов

1

Дроби и проценты

18

2

Прямые на плоскости и в пространстве

6

3

Десятичные дроби

9

4

Действия с десятичными дробями

31

5

Окружность

8

6

Отношения и проценты

14

7

Симметрия

8

8

Выражения, формулы, уравнения

15

9

Целые числа

14

10

Множества. Комбинаторика.

9

11

Рациональные числа

16

12

Многоугольники и многогранники

9

 

Повторение

13



 

 

Тематическое планирование по математике 6 класс с определением основных видов учебной деятельности

Предметное содержание

Основные виды учебной деятельности

Глава 1. Дроби и проценты.

1.1 Что мы знаем о дробях

Моделировать в графической и предметной форме обыкновенные дроби, свойства дробей (в том числе с помощью компьютера). Сравнивать и упорядочивать обыкновенные дроби, применять различные приёмы сравнения. Выполнять сокращение дробей. Соотносить дробные числа с точками координатной прямой. Проводить числовые эксперименты, на их основе делать выводы, объяснять их.

1.2 Вычисления с дробями.

Формулировать и применять правила выполнения арифметических действий с дробями, выполнять вычисления с дробными числами. Анализировать различные ситуации, связанные с применением дробей, и проводить несложные рассуждения, приводящие к ответу на поставленные вопросы. Решать задачи, включающие дроби, составлять план решения задачи, комментировать свои действия.

1.3 « Многоэтажные дроби»

Использовать дробную  черту как знак деления. Применять различные способы вычисления значений дробных выражений, преобразовывать «многоэтажные» дроби.

1.4 Основные задачи на дроби

Распознавать  и решать основные задачи на дроби, применять разные способы нахождения части числа и числа по его части, комментировать свои действия. Применять полученные знания в  ситуациях  из реальной жизни. Анализировать и осмысливать текст задачи, моделировать условие с помощью схем и рисунков; строить логическую цепочку рассуждений; выполнять самоконтроль, проверяя ответ на соответствие условию.

1.5 Что такое процент

Объяснять, что такое процент, использовать и понимать стандартные обороты речи со словом «процент»; находить информацию, связанную с процентами,  в СМИ. Выражать проценты в дробях и дроби в процентах. Моделировать понятие процента в графической форме (в том числе с помощью компьютера). Решать задачи на нахождение нескольких процентов величины; применять понятие процента в практических ситуациях. Анализировать текст задачи, проводить числовые эксперименты, моделировать условие с помощью схем и рисунков. Вычислять значения числовых выражений, содержащих натуральные числа и дроби. Решать текстовые задачи, содержащие дробные данные.

1.6 Столбчатые и круговые диаграммы

Объяснять, в каких случаях для представления информации используются столбчатые диаграммы, а в каких — круговые.  Извлекать и интерпретировать информацию из готовых диаграмм, выполнять несложные вычисления по данным, представленным на диаграмме. Строить в несложных случаях столбчатые и круговые диаграммы по данным, представленным в табличной форме. Проводить исследования простейших социальных явлений по готовым диаграммам

Контрольная работа №1

Сравнивать и упорядочивать обыкновенные дроби, применять различные приёмы сравнения. Выполнять сокращение дробей. Выполнять вычисления с дробными числами. Решать задачи на нахождение части числа, числа по его части, находить, какую часть одно число составляет от другого. Решать задачи на проценты. Извлекать и интерпретировать информацию из готовых диаграмм.

Глава 2. Прямые на плоскости и в пространстве

2.1 Пересекающие прямые

Распознавать случаи взаимного расположения двух прямых, а также вертикальные углы. Определять углы, образованные двумя пересекающимися прямыми. Изображать две пересекающиеся прямые, строить прямую, перпендикулярную данной

2.2 Параллельные прямые

Распознавать случаи взаимного расположения двух прямых на плоскости и в пространстве, а также параллельные стороны в многоугольниках. Изображать две параллельные прямые, строить прямую, параллельную данной с помощью чертёжных инструментов. Анализировать способ построения параллельных прямых, пошагово заданный рисунками, выполнять построения; осуществлять самоконтроль, проверяя соответствие полученного изображения заданному. Формулировать утверждения о взаимном расположении двух прямых, свойствах параллельных прямых

2.3 Расстояние

Измерять расстояние между двумя точками, от точки до прямой, между двумя параллельными прямыми, от точки до плоскости. Строить параллельные прямые с заданным расстоянием между ними, а также геометрическое место точек, обладающее определённым свойством


 

Глава 3. Десятичные дроби

3.1 Десятичная запись дробей

Записывать и читать десятичные дроби. Представлять десятичную дробь в виде суммы разрядных слагаемых. Моделировать десятичные дроби рисунками. Переходить от десятичных дробей к соответствующим обыкновенным со знаменателями 10, 100, 1000 и т. д. и наоборот. Изображать десятичные дроби точками на координатной прямой

3.2 Десятичные дроби и метрическая система мер

Использовать десятичные дроби для перехода от одних единиц измерения  к другим, объяснять значения десятичных приставок, используемых для образования названий единиц в метрической системе мер

3.3 Перевод обыкновенной дроби в десятичную

Формулировать признак обратимости обыкновенной дроби в десятичную, применять его для распознавания дробей, для которых возможна (или невозможна) десятичная запись. Представлять обыкновенные дроби в виде десятичных. Приводить примеры эквивалентных представлений дробных чисел

3.4 Сравнение десятичных дробей

Распознавать равные десятичные дроби. Объяснять на примерах приём сравнения десятичных дробей. Сравнивать и упорядочивать  десятичные дроби. Сравнивать обыкновенную и десятичную дроби, выбирая подходящую форму записи данных чисел. Выявлять закономерность в построении последовательности десятичных дробей. Решать задачи-исследования, основанные на понимании поразрядного принципа десятичной записи дробных чисел

Контрольная работа №2

Записывать десятичные дроби в виде обыкновенных дробей и обыкновенные дроби со знаменателем 10, 100, 1000 и т.д. в виде десятичных дробей. Находить координаты точек, отмеченных на координатной прямой. Представлять обыкновенные дроби в виде десятичных (если это возможно). Сравнивать и упорядочивать десятичные дроби, сравнивать обыкновенную дробь и десятичную, находить наименьшее или наибольшее число среди дробных чисел, представленных обыкновенными и десятичными дробями. Строить прямые, пересекающиеся под заданным углом, находить углы, образованные двумя пересекающимися прямыми. Строить прямую, параллельную данной прямой, прямую, перпендикулярную данной прямой. Находить расстояние от точки до прямой.

Глава 4. Действия с десятичными дробями

4.1 Сложение и вычитание десятичных дробей

Конструировать алгоритмы сложения и вычитания десятичных дробей, иллюстрировать их примерами. Вычислять суммы и разности десятичных дробей. Вычислять значения сумм и разностей, компонентами которых являются обыкновенная и десятичная дробь, обсуждая при этом, какая форма представления чисел возможна и более целесообразна. Выполнять оценку и прикидку суммы десятичных дробей. Решать текстовые задачи, предполагающие сложение и вычитание десятичных дробей

4.2 Умножение и деление десятичных дробей на 10, 100, 1000

Исследовать закономерность в изменении положения запятой в десятичной дроби при умножении и делении её на 10, 100, 1000 и т. д. Формулировать правила умножения и деления десятичной дроби на 10, 100, 1000  и т. д. Применять умножение и деление десятичной дроби на  степень числа 10 для перехода от одних единиц измерения к другим. Решать задачи с реальными данными, представленными в виде десятичных дробей

4.3 Умножение десятичных дробей

Конструировать алгоритмы умножения десятичной дроби  на десятичную дробь, на натуральное число, иллюстрировать примерами соответствующие правила.  Вычислять произведение десятичных дробей,  десятичной дроби и натурального числа. Вычислять произведение десятичной дроби и обыкновенной, выбирая подходящую форму записи дробных чисел. Возводить десятичную дробь в квадрат и в куб. Вычислять значения числовых выражений, содержащих действия сложения, вычитания и умножения десятичных дробей. Выполнять прикидку и оценку результатов вычислений. Решать текстовые задачи арифметическим способом. Решать задачи на нахождение части, выраженной десятичной дробью, от данной величины

4.4 Деление десятичных дробей

Обсуждать принципиальное отличие действия деления от других действий с десятичными дробями. Осваивать алгоритмы вычислений в случаях, когда частное выражается десятичной дробью. Сопоставлять различные способы представления обыкновенной дроби в виде десятичной. Решать текстовые задачи арифметическим способом, используя различные зависимости между величинами; анализировать и осмысливать текст задачи,  строить логическую цепочку рассуждений; критически оценивать полученный ответ, осуществлять самоконтроль, проверяя ответ на соответствие условию

4.5  Деление десятичных дробей (продолжение)

Вычислять частное от деления на десятичную дробь в общем случае. Осваивать приёмы вычисления значений дробных выражений

4.6 Округление десятичных дробей

Округлять десятичные дроби «по смыслу», выбирая лучшее из приближений с недостатком и с избытком. Формулировать правило округления десятичных дробей, применять его на практике. Объяснять, чем отличается округление десятичных дробей от округления натуральных чисел. Вычислять приближённые частные, выраженные десятичными дробями, в том числе при решении задач практического характера. Выполнять прикидку и оценку результатов действий с десятичными дробями

4.7 Задачи на движение

Решать текстовые задачи арифметическим способом, используя зависимость между величинами (скорость, время и расстояние), анализировать и осмысливать текст задачи, переформулировать условие, извлекать необходимую информацию, моделировать условие с помощью схем, критически оценивать полученный ответ, осуществлять самоконтроль, проверяя ответ на соответствие условию

Контрольная работа №3

Формулировать правила действий с десятичными дробями. Вычислять значения числовых выражений, содержащих дроби; применять свойства арифметических действий для рационализации вычислений. Исследовать числовые закономерности, используя числовые эксперименты (в том числе с помощью компьютера).  Выполнять прикидку и оценку результатов вычислений.  Округлять десятичные дроби, находить десятичные приближения обыкновенных дробей. Решать текстовые задачи арифметическим способом, используя различные зависимости между величинами: анализировать и осмысливать текст задачи, переформулировать условие, извлекать необходимую информацию, моделировать условие с помощью схем, рисунков, реальных предметов; строить логическую цепочку рассуждений; критически оценивать полученный ответ, осуществлять самоконтроль, проверяя ответ на соответствие условию


 

Глава 5. Окружность

5.1 Окружность и прямая.

Распознавать различные случаи взаимного расположения прямой и окружности, изображать их с помощью чертёжных инструментов. Исследовать свойства взаимного расположения прямой и окружности, используя эксперимент, наблюдение, измерение, моделирование. Строить касательную к окружности. Анализировать способ построения касательной к окружности, пошагово заданный рисунками, выполнять построения, осуществлять самоконтроль, проверяя соответствие полученного изображения заданному. Конструировать алгоритм построения изображений, содержащих конфигурацию «касательная к окружности», строить по алгоритму. Формулировать утверждения о взаимном расположении прямой и окружности

5.2 Две окружности на плоскости

Распознавать различные случаи взаимного расположения двух окружностей, изображать их с помощью чертёжных инструментов и от руки. Исследовать свойства взаимного расположения прямой и окружности, используя эксперимент, наблюдение, измерение, моделирование. Конструировать алгоритм построения изображений, содержащих две окружности, касающиеся внешним и внутренним образом, строить по алгоритму. Формулировать утверждения о взаимном расположении двух окружностей. Сравнивать различные случаи взаимного расположения двух окружностей

5.3 Построение треугольника

Строить треугольник по трём сторонам, описывать построение. Формулировать неравенство треугольника. Исследовать возможность построения треугольника по трём сторонам, используя неравенство треугольника

5.4 Круглые тела

Распознавать цилиндр, конус, шар, изображать их от руки, моделировать, используя бумагу, пластилин, проволоку и т. д. Исследовать свойства круглых тел, используя эксперимент, наблюдение, измерение, моделирование. Описывать их свойства. Рассматривать простейшие комбинации тел: куб и шар, цилиндр и шар, куб и цилиндр, пирамида из шаров. Рассматривать простейшие сечения круглых тел, получаемые путём предметного или компьютерного моделирования, определять их вид. Распознавать развёртки конуса, цилиндра, моделировать конус и цилиндр из развёрток

Глава 6. Отношения и проценты

6.1 Что такое отношение

Объяснять, что показывает отношение двух чисел, использовать и понимать стандартные обороты речи со словом «отношение». Составлять отношения, объяснять содержательный смысл составленного отношения. Объяснять, как находят отношение одноимённых и разноимённых величин, находить отношения величин. Моделировать отношения величин с помощью рисунков и чертежей. Распознавать проблемы, для решения которых требуется применение понятия отношения, в том числе проблемы из реальной жизни, и решать их. Анализировать взаимосвязь отношений сторон квадратов, их периметров и площадей. Объяснять, что показывает масштаб (карты, плана, чертежа, модели). Применять знания о масштабе для решения задач практического характера. Строить «копии» фигуры в заданном масштабе

6.2 Деление в данном отношении

Решать задачи на деление чисел и величин в данном отношении, в том числе задачи практического характера. Анализировать, как при постоянном периметре меняется  площадь прямоугольника в зависимости от отношения его сторон

6.3 «Главная» задача на проценты

Выражать проценты десятичной дробью. Характеризовать доли величины  различными эквивалентными способами — с помощью десятичной или обыкновенной  дроби, процентов. Решать задачи на нахождение нескольких процентов величины, на увеличение (уменьшение) величины на несколько процентов, на нахождение величины по её проценту. Применять понятие процента для решения задач практического содержания, задач  с реальными данными. Выполнять самоконтроль при нахождении процентов величины, используя приёмы прикидки

6.4 Выражение отношения в процентах

Переходить от десятичной дроби к процентам.  Выражать отношение двух величин в процентах. Решать задачи на нахождение процентного отношения двух величин, в том числе с задачи с практическим контекстом, с реальными данными. Анализировать текст задачи, моделировать условие с помощью схем и рисунков, объяснять полученный результат

Контрольная работа №4

Находить отношение чисел и величин. Решать задачи, связанные с отношением величин, в том числе задачи практического характера. Решать задачи на проценты, в том числе задачи с реальными данными, применяя округление, приёмы прикидки

Глава 7. Симметрия

7.1 Осевая симметрия

Распознавать плоские фигуры, симметричные относительно прямой. Вырезать из бумаги две фигуры, симметричные относительно прямой. Строить с помощью инструментов фигуру (отрезок, ломаную, треугольник, прямоугольник, окружность), симметричную данной относительно прямой, изображать от руки. Проводить прямую, относительно которой две фигуры симметричны. Конструировать орнаменты и паркеты, используя свойство симметрии. Формулировать свойства двух фигур, симметричных относительно прямой. Исследовать свойства фигур, симметричных относительно плоскости, используя эксперимент, наблюдение, моделирование. Описывать их свойства

7.2 Ось симметрии фигуры

Находить в окружающем мире плоские и пространственные симметричные фигуры. Распознавать фигуры, имеющие ось симметрии. Вырезать их из бумаги, изображать от руки и с помощью инструментов. Проводить ось симметрии фигуры. Формулировать свойства равнобедренного и равностороннего треугольников, прямоугольника, квадрата, круга, связанные с осевой симметрией. Формулировать свойства параллелепипеда, куба, конуса, цилиндра, шара, связанные с симметрией относительно плоскости. Конструировать фигуры, используя свойство симметрии, в том числе с помощью компьютерных программ

7.3 Центральная симметрия

Распознавать плоские фигуры, симметричные относительно точки. Строить фигуру, симметричную данной относительно точки, с помощью инструментов, достраивать, изображать от руки. Находить центр симметрии фигуры, конфигурации. Конструировать орнаменты и паркеты, используя свойство симметрии, в том числе с помощью компьютерных программ. Формулировать свойства фигур, симметричных относительно точки. Исследовать свойства фигур, имеющих ось и центр симметрии, используя эксперимент, наблюдение, измерение, моделирование. Выдвигать гипотезы, формулировать, обосновывать, опровергать с помощью контрпримеров утверждения об осевой и центральной симметрии фигур

 

Глава 8. Выражения, формулы, уравнения

8.1 О математическом языке

Обсуждать  особенности математического языка. Записывать математические выражения с учётом правил синтаксиса математического языка, составлять выражения по условиям задач с буквенными данными. Использовать буквы для записи математических предложений, общих утверждений; осуществлять перевод с математического языка на естественный язык и наоборот. Иллюстрировать общие утверждения, записанные в буквенном виде, числовыми примерами

8.2 Буквенные выражения и числовые подстановки.

Строить речевые конструкции с использованием новой терминологии   (буквенное выражение, числовая подстановка, значение буквенного выражения, допустимые значения букв). Вычислять числовые значения буквенных выражений при данных значениях букв. Находить допустимые значения букв в выражении. Отвечать на вопросы задач с буквенными данными, составляя соответствующие выражения

8.3 Формулы. Вычисления по формулам

Составлять формулы, выражающие зависимости между величинами, в том числе по условиям, заданным рисунком. Вычислять по формулам, выражать из формулы одну величину через другие

8.4 Формулы длины окружности, площади круга и объема шара

Находить экспериментальным путём отношение длины окружности к диаметру. Обсуждать особенности числа π;  находить дополнительную информацию об этом числе. Знакомиться с формулами длины окружности, площади круга, объёма шара; вычислять по этим формулам. Вычислять размеры фигур, ограниченных окружностями и их дугами. Округлять результаты вычислений по формулам

8.5 Что такое уравнение

Строить речевые конструкции с использованием слов «уравнение», «корень уравнения». Проверять, является ли указанное число корнем рассматриваемого уравнения. Решать уравнения на основе зависимостей между компонентами действий. Составлять  математические модели (уравнения) по условиям текстовых задач

Контрольная работа №5

Исследовать свойства фигур, имеющих ось и центр симметрии, используя эксперимент, наблюдение, измерение, моделирование, в том числе компьютерное моделирование. Использовать буквы для записи математических выражений и предложений. Составлять буквенные выражения по условиям задач. Вычислять числовое значение буквенного выражения при заданных значениях букв. Составлять формулы, выражающие зависимости между величинами, вычислять по формулам. Составлять уравнения по условиям задач. Решать простейшие уравнения на основе зависимостей между компонентами арифметических действий

Глава 9. Целые числа

9.1 Какие числа называют целыми

Приводить примеры использования в жизни положительных и отрицательных чисел (температура, выигрыш-проигрыш, выше-ниже уровня море и пр.). Описывать множество целых чисел. Объяснять, какие целые числа называют противоположными. Записывать число, противоположное данному, с помощью знака «минус». Упрощать записи типа –(+3),  –(–3)

9.2 Сравнение целых чисел

Сопоставлять свойства ряда натуральных чисел и ряда целых чисел. Сравнивать и упорядочивать целые числа. Изображать целые числа точками на координатной прямой. Использовать координатную прямую как наглядную опору при решении задач на сравнение целых чисел

9.3 Сложение целых чисел

Объяснять на примерах, как находят сумму двух целых чисел. Записывать на математическом языке свойство нуля при сложении, свойство суммы противоположных чисел. Упрощать запись суммы целых чисел, опуская, где это возможно, знак «+» и скобки. Переставлять слагаемые в сумме целых чисел. Вычислять суммы целых чисел, содержащие два и более слагаемых. Вычислять значения буквенных выражений

9.4 Вычитание целых чисел

Формулировать правило нахождения разности целых чисел, записывать его на математическом языке. Вычислять разность двух целых чисел. Вычислять значения числовых выражений, составленных из целых чисел с помощью знаков «+» и «–», осуществлять самоконтроль. Вычислять значения буквенных выражений при заданных целых значениях букв. Сопоставлять выполнимость действия вычитания в множествах натуральных чисел и целых чисел

9.5 Умножение и деление целых чисел

Формулировать правила знаков при умножении и делении целых чисел, иллюстрировать их примерами. Записывать на математическом языке равенства, выражающие свойства 0 и 1 при умножении, правило умножения на –1. Вычислять произведения и частные целых чисел. Вычислять значения числовых выражений, содержащих разные действия с целыми числами. Вычислять значения буквенных выражений при заданных целых значениях букв. Исследовать вопрос об изменении знака произведения целых чисел при изменении на противоположные знаков множителей. Опровергать с помощью контрпримеров неверные утверждения о знаках результатов действий с целыми числами

Контрольная работа №6

 

 


 

Глава 10. Множества. Комбинаторика.

10.1 Понятие множества

Приводить примеры конечных и бесконечных множеств. Строить речевые конструкции с использованием теоретико-множественной терминологии и символики, переводить утверждения с математического языка на русский и наоборот. Формулировать определение подмножества, иллюстрировать понятие подмножества с помощью кругов Эйлера. Обсуждать соотношения между основными числовыми множествами. Записывать на символическом языке соотношения между множествами и приводить примеры различных вариантов их перевода на русский язык. Исследовать вопрос о числе подмножеств конечного множества

10.2 Операции над множествами.

Формулировать определения объединения и пересечения множеств. Иллюстрировать эти понятия с помощью кругов Эйлера. Использовать схемы в качестве наглядной основы для разбиения множества на непересекающиеся подмножества. Приводить примеры классификаций из математики и из других областей знания

10.3 Решение задач с помощью кругов Эйлера

Проводить логические рассуждения по сюжетам текстовых задач с помощью кругов Эйлера

10.4 Комбинаторные задачи

Решать комбинаторные задачи с помощью перебора возможных вариантов, в том числе путём построения дерева возможных вариантов. Строить теоретико-множественные модели некоторых видов комбинаторных задач

Глава 11 . Рациональные числа

11.1 Какие числа называют рациональными

Применять в речи и понимать терминологию, связанную с рациональными числами; распознавать натуральные, целые, дробные, положительные, отрицательные числа; характеризовать множество рациональных чисел. Применять символьные обозначения для записи утверждений о рациональных числах, о соотношениях между подмножествами множества рациональных чисел. Применять символьное обозначение противоположного числа, объяснять смысл записей типа (–а), упрощать соответствующие записи. Изображать рациональные числа точками координатной прямой

11.2 Сравнение рациональных чисел. Модуль числа

Моделировать с помощью координатной прямой отношения «больше» и «меньше» для рациональных чисел. Применять и понимать геометрический смысл понятия модуля числа, определять модуль рационального числа, использовать символьное обозначение модуля для записи и чтения утверждений. Сравнивать и упорядочивать рациональные числа

11.3 Действия с рациональными числами

Формулировать правила сложения двух чисел одного знака, двух чисел разных знаков, правило вычитания из одного числа другого; применять эти правила для вычисления сумм, разностей. Выполнять числовые подстановки в суммы и разности, записанные с помощью букв, находить соответствующие их значения.  Проводить несложные исследования, связанные со свойствами суммы нескольких рациональных чисел (например, замена знака каждого слагаемого). Формулировать правила нахождения произведения и частного двух чисел одного знака, двух чисел разных знаков, применять эти правила при умножении и делении рациональных чисел. Находить квадраты и кубы рациональных чисел. Вычислять значения числовых выражений, содержащих разные действия. Выполнять числовые подстановки в простейшие буквенные выражения, находить соответствующие их значения

11.4 Что такое координаты

Приводить примеры различных систем координат в окружающем мире, определять и записывать  координаты объектов в различных системах координат (шахматная доска; широта и долгота, азимут и т. д.)

11.5 Прямоугольные координаты на плоскости

Объяснять и иллюстрировать понятие прямоугольной  системы координат на плоскости, применять в речи и понимать соответствующие термины и символику. Строить на координатной плоскости точки и фигуры по заданным координатам, определять координаты точек. Проводить несложные исследования, связанные с расположением точек на координатной плоскости

Контрольная работа №7

Изображать рациональные числа точками координатной прямой. Применять и понимать геометрический  смысл понятия модуля числа, находить модуль рационального числа. Моделировать с помощью координатной прямой отношения «больше» и «меньше» для рациональных чисел, сравнивать и упорядочивать рациональные числа. Выполнять вычисления с рациональными числами. Находить значения буквенных выражений при заданных значениях букв. Строить на координатной плоскости точки и фигуры по заданным координатам, определять координаты точек

Глава 12. Многоугольники и многогранники

12.1 Параллелограмм

Распознавать параллелограмм на чертежах, рисунках, в окружающем мире. Изображать параллелограмм с использованием чертёжных инструментов. Моделировать параллелограмм, используя бумагу, пластилин, проволоку  и т. д. Исследовать и описывать свойства параллелограмма, используя эксперимент, наблюдение, измерение, моделирование. Формулировать, обосновывать, опровергать с помощью контрпримеров утверждения о свойствах параллелограмма. Сравнивать свойства параллелограммов различных видов: ромба, квадрата, прямоугольника. Выдвигать гипотезы, строить логическую цепочку рассуждений о свойствах параллелограммов различных видов, объяснять их. Конструировать способы построения параллелограммов по заданным рисункам, осуществлять самоконтроль, проверяя соответствие полученного изображения заданному

12.2 Площади

Изображать равносоставленные фигуры, определять их площади. Моделировать геометрические фигуры из бумаги (перекраивать прямоугольник в параллелограмм, достраивать треугольник до параллелограмма). Сравнивать фигуры по площади. Формулировать свойства равносоставленных фигур. Составлять формулы для вычисления площади параллелограмма, площади прямоугольного треугольника. Выполнять измерения и вычислять площади параллелограмма и треугольника. Использовать компьютерное моделирование и эксперимент для изучения свойств геометрических фигур. Строить логическую цепочку рассуждений о равновеликих фигурах. Решать задачи на нахождение площадей параллелограммов и треугольников

12.3 Призма

Распознавать призмы на чертежах, рисунках, в окружающем мире. Называть призмы. Копировать призмы, изображённые на клетчатой бумаге, осуществлять самоконтроль, проверяя соответствие полученного изображения заданному. Моделировать призмы, используя бумагу, пластилин, проволоку и т. д., изготавливать из развёрток. Определять взаимное расположение граней, рёбер, вершин призмы. Исследовать свойства призмы, используя эксперимент, наблюдение, измерение, моделирование. Описывать свойства призмы, используя соответствующую терминологию. Формулировать утверждения о свойствах призмы, опровергать утверждения с помощью контрпримеров. Строить логическую цепочку рассуждений о свойствах призм. Составлять формулы, связанные с линейными, плоскими и пространственными характеристиками призмы. Моделировать из призм другие многогранники

Повторение

Выполнять действия с дробными числами.

Сравнивать и упорядочивать десятичные дроби, находить наибольшую и наименьшую десятичную дробь среди заданного набора чисел. Представлять обыкновенные дроби в виде десятичных; выяснять в каких случаях это возможно. Находить десятичное приближение обыкновенной дроби с указанной точностью. Выполнять действия с дробными числами. Решать задачи на движение, содержащие данные, выраженные дробными числами. Представлять доли величины в процентах. Решать текстовые задачи на нахождение процента от данной величины. Решать задачи, требующие владения понятием отношения. Составлять по рисунку формулу для вычисления периметра или площади фигуры. Сравнивать и упорядочивать положительные и отрицательные числа, находить наибольшее и наименьшее из заданного набора чисел. Выполнять числовые подстановки в буквенное выражение (в том числе, подставлять отрицательные числа), вычислять значения выражения. Отмечать точки на координатной плоскости, находить координаты отмеченных точек. Строить фигуру, симметричную данной относительно некоторой прямой; использовать при решении задач равенство симметричных фигур. Решать задачи на взаимное расположение двух окружностей на плоскости

.

 

Итоговая контрольная работа №8

 


Календарно-тематическое планирование по математике 6 класса

Количество часов:170(5  часов в неделю)

Учебник: Математика. Г.В. Дорофеев и другие, Москва, «Просвещение» 2016 год

Плановых контрольных уроков:10

№ п/п

 

 

Раз­дел, тема

 

 

Кол-во часов

Форма проведения

 

 

Форма контроля

 

 

Дата проведения

Примечание

План

Факт

 

1

2

3

4

5

8

10

11

 

1

Обыкновенные дроби (18часов)

 

Что мы зна­ем о дробях

 

5

ПЗУ

Устный счет с самопроверкой

 

 

 

2

ПЗУ

МД

 

 

 

3

ПЗУ

МД

 

 

 

4

ГЖЗУ

ДМ: 0-1 (1, 2, 4, 7) (15 мин)

 

 

 

5

ОСЗ

ДМ: П-3 (2), П-4(2)(10мин)

 

 

 

6

«Много­этажные» дроби

2

Комб.

Тест (действия с дробями) (10 мин)

 

 

 

7

Комб.

ДТ: 0-4 (3 (а, б)) (10 мин)

 

 

 

8

 

 

 

 

Основные задачи на дроби

3

Комб.

МД(12мин)

 

 

 

9

Комб.

ДМ: 0-7 (l; 3, 8) (15 мин)

 

 

 

10

ПЗУ

ДМ:0-6 (10 мин)

 

 

 

11

Что такое процент

5

OHM

ФО (2 вариант). Работа по схеме (1-й вариант)

 

 

 

12

ЗИ

МД с самопро­веркой

 

 

 

13

 

 

ПЗИ

ДМ:П-8 (10 мин)

 

 

 

Урок-дело­вая игра

Отчет

 

 

 

14

ОСЗ

Тест (20 мин)

 

 

 

15

Столбчатые и круговые диаграммы

2

Комб.

Устный счет (8 мин)

 

 

 

Комб.

Лаб. раб. (30 мин)

 

 

 

16

Столбчатые и круговые диаграммы

1

 

OHM

 

 

 

 

 

17

Обобщение по теме «Дроби и проценты»

1

 

Комб

 

 

 

 

18

Контрольная работа №1 по теме «Дроби и проценты»

1

зачёт

 

 

 

 

19

Прямые на плоскости и в пространстве

(6 часов)

Анализ контрольной работы. Пересекающиеся прямые

1

Комб.

РТ: № 1-5

 

 

 

20-21

Параллельные прямые

1

Комб.

РТ: № 7-10, 14 (15 мин)

 

 

 

22-23

Расстояние

1

Комб.

РТ: № 16-23, 25

 

 

 

24

Обобщение по теме «Прямые на плоскости»

4

 

 

 

 

 

25

 

Десятичные дроби (9часов)

Как читают и записывают десятичные дроби

2

 

 

OHM

 

 

 

 

ЗИ

ДМ: 0-11(1, 2) (10 мин)

 

 

 

26

Перевод обыкновенной дроби в десятичную

1

Комб.

ДМ:П-9 (15 мин)

 

 

 

27

Десятичные дроби и метрическая система мер

1

ПЗУ

ДМ: 0-14 (3)

 

 

 

28

 

Сравнение десятичных дробей

2

Комб.

Тест.(20 мин)

 

 

 

Комб.

Устный счет (8 мин)

 

 

 

29-30

Задачи на уравни­вание

2

ПЗУ

Устный опрос. ДМ: 0-15 (2, 5, 6) (10 мин)

 

 

 

31

Комб.

 

 

 

 

 

32

Обобщение по теме «Десятичные дроби»

 

 

 

2

Комб.

 

 

 

 

Комб.

 

 

 

 

33

Контрольная работа №2 по теме «Десятичные дроби»

 

1

Зачет

 

 

 

 

 

 

 

 

 

34

Действия с десятичными дробями (31 час)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Анализ контрольной работы. Сложение и вычита­ние деся­тичных дробей

5

OHM

Устный опрос (10 мин)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

35

ЗИ

Устный счет (5-8 мин)

 

 

 

 

 

 

 

 

 

 

38

Комб.

ДМ:П-11 (10 мин)

 

 

 

39

ПЗУ

ДМ: П-12 (10 мин)

 

 

 

40

ПЗУ

ДМ:0-18(1,3) (10 мин)

 

 

 

41

Умножение и деление десятичной дроби на 10, 100,1000

3

OHM

Устный счет. ДМ: 0-20(1,2, 3) (10 мин)

 

 

 

42

ЗИ

Диктант (10 мин)

 

 

 

43

Комб.

 

 

 

 

44

Умножение десятичных дробей

5

OHM

Устный опрос (1-й вариант). ДМ: 0-22 (2-й ва­риант) (10 мин)

 

 

 

45

Комб.

Устный опрос (2-й вариант). ДМ: 0-22 (1-й ва­риант) (10 мин)

 

 

 

46

Комб.

Тест (20 мин)

 

 

 

47

ОСЗ

ДМ: П-13 (10 мин)

 

 

 

48

ПКЗУ

ДМ:П-14 (10 мин)

 

 

 

49

Деление десятичных дробей

5

OHM

 

 

 

 

50

ЗИ

Диктант (10 мин)

 

 

 

51

ПЗУ

Устный счет (10 мин)

 

 

 

52

Комб.

РТ: № 66-70 или ДМ: 0-24

 

 

 

53

Комб.

ДМ: П-16 (10 мин)

 

 

 

54

Деление десятичных дробей( продолжение)

2

Комб.

ДМ: П-17 (15 мин)

 

 

 

55

Комб.

Тест (20 мин)

 

 

 

56

Округление десятичных дробей

2

OHM

Устный счет (8 мин)

 

 

 

57

Урок-кон-суль-тация

ДМ: 0-28 (15 мин)

 

 

 

58

 

Задачи

на движение

5

Комб.

Устная работа по схемам-чертежам

 

 

 

59

Комб.

Устный счет

 

 

 

60

Комб.

Отчет (30 мин)

 

 

 

61

Комб.

ДМ: 0-30(3, 4)

 

 

 

62

Комб.

 

 

 

 

63

Обобщение на тему «Действия с десятичными дробями»

1

 

 

 

 

 

64

Контрольная работа №3 по теме «Действия с десятичными дробями»

 

1

 

 

 

 

 

65-66

Окружность (8 часов)

Прямая и окружность

2

Комб.

ФО

Проверка д/з

 

 

 

67

Две окружности на плоскости

1

Комб.

РТ: № 32-35, 37, 38 (15 мин)

 

 

 

68-70

Построение треугольника

3

Комб.

ФО

 

 

 

Комб.

Проверка д/з

 

 

 

71-72

Круглые тела

2

Комб.

Устная работа с таблицей (10 мин)

ФО

 

 

 

73

Отношения и проценты (14 часов)

Что такое отношение

2

OHM

ФО

 

 

 

74

ЗИ

ДМ: П-22 (10 мин)

 

 

 

75-76

Деление в данном отношении

2

ПЗУ

Устный опрос по схемам (10 мин)

 

 

 

77

«Главная» задача на проценты

3

OHM

Устный опрос (5-7 мин)

 

 

 

78

Урок-прак­тикум

МД (8 мин)

 

 

 

79

ОСЗ

ДМ: П-24

(10 мин)

 

 

 

80

Выражение отношения в процентах

3

ПЗУ

Устный счет

 

 

 

81

Комб.

ДМ: П-25 (10 мин)

 

 

 

82

ОСЗ

Фронтальная работа

 

 

 

83-85

Решение задач

3

Комб.

Обобщ.урок

 

 

 

 

86

Контрольная работа №4 по теме «Отношения и проценты»

 

1

 

 

 

 

 

87

Симметрия (8 часов)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Осевая симметрия

2

OHM

Анализ зачетной работы

 

 

 

88

Комб.

Устная работа по готовым чер­тежам

 

 

 

89

Ось сим­метрии фигуры

3

Комб.

 

 

 

 

90

Комб.

РТ:№ 51-54

 

 

 

91

 

Комб.

 

РТ: № 55-56

 

 

 

92

Центральная симметрия

2

Комб.

 

 

 

 

93

 

 

Комб.

Лаб. раб.

 

 

 

 

 

 

 

 

 

 

94

Обобщение по теме симметрия

1

 

 

 

 

 

95

Целые числа(14 часов)

Какие числа называют целыми

1

Комб.

РТ: стр.76

 

 

 

96

Сравнение целых чисел

1

Комб.

РТ: стр.77

 

 

 

97

Сложение целых чисел

3

Комб.

Диктант (10 мин)

 

 

 

96

Комб.

Устный счет (8 мин)

 

 

 

98

 

 

99

Комб.

РТ: № Ю2-104 (10 мин)

 

 

 

 

Вычитание целых чисел

2

 

 

 

 

 

100

 

 

 

Комб.

ДМ: П-27 (15 мин)

 

 

 

101

ЗИ

 

 

 

 

102

Умножение целых чисел

3

OHM

МД с самопро­веркой (8 мин)

 

 

 

103

Комб.

ДМ: П-28 (10 мин)

 

 

 

104

ЗИ

 

 

 

 

105

Деление целых чисел

2

OHM

ФО

 

 

 

106

ЗИ

МД(Юмин)

 

 

 

107

Обобщение на тему умножение и деление целых чисел

1

Комб.

 

 

 

 

108

 

Контрольная работа №5 по теме «Целые числа»

 

1

зачёт

 

 

 

 

109

Множества. Комбинаторика. (9 часов)

Понятие множества

1

Комб.

РТ: № 8-12 Решение с ком­ментированием и обоснованием

 

 

 

110

Операции над множествами

1

Комб.

 

 

 

111

Решение задач с помощью кругов Эйлера

3

 

Комб.

РТ: № 13-15

 

 

 

112

Комб.

 

 

 

 

113

Комб.

РТ: № 16

 

 

 

114

Комбинатор

ные задачи

3

Комб.

РТ: № 17-20

 

 

 

115

Комб.

Практическая работа (30 мин)

 

 

 

116

Комб.

 

 

 

 

117

ЗАЧЁТ

 

1

ЗАЧЁТ

 

 

 

 

118

Рациональные числа (16часов)

Какие числа называются рациональны

ми

1

OHM

Устный счет (10 мин)

Игра «Мое настроение»

 

 

 

119

Сравнение рациональных чисел. Модуль числа.

2

OHM

Фронтальная

работа.

ДМ:О-40

 

 

 

120

ЗИ

ДМ:П-31 (10 мин)

 

 

 

121

 

Действия с рацио­нальными числами

 

 

7

 

ПЗУ

Проверка д/з при помощи теста (10 мин)

 

 

 

122

Комб.

ДМ:0-42(1,2, 3) (10 мин)

 

 

 

123

Комб.

ФО

 

 

 

124

Комб.

ДМ: 0-42 (6, 7) (10 мин)

 

 

 

125

Комб.

 

 

 

 

126-127

Комб.

Зачёт

ФО

 

 

 

128

Что такое координаты

2

OHM

Устный счет (8 мин)

 

 

 

129

ЗИ

Устная работа по готовым чер­тежам (10 мин)

 

 

 

130

Прямо­угольные координаты на плоско­сти

2

OHM

Диктант (10 мин)

 

 

 

131

ПЗУ

РТ: № 125-128 (10 мин)

 

 

 

132

Обобщение на действия с рациональными числами

1

 

 

 

 

 

133

Контрольная работа №6 по теме «Рациональные числа»

 

1

 

 

 

 

 

134

Выражения, формулы, уравнения (15часов)

Анализ контрольной работы. О матема­тическом языке

3

OHM

Анализ зачетной работы

 

 

 

135

Комб.

ФО

 

 

 

136

Комб.

ДМ: П-34 (10 мин)

 

 

 

137

Буквенные выражения и числовые подстановки

3

OHM

Устный счет (8 мин)

 

 

 

138

ЗИ

ДМ: П-35 (10 мин)

 

 

 

139

ПЗУ

Тест с выбором ответа (12 мин)

 

 

 

140

Формулы. Вычисления

по форму­лам

2

ПЗУ

ФО (8 мин)

 

 

 

141

Комб.

ДМ: П-36 (15 мин)

 

 

 

142

Формулы длины окружности,  площади круга и объёма шара

1

Комб.

Устная работа по готовым формулам «Ус­тановите соот­ветствие»

 

 

 

143

Что такое уравнение

 

 

 

4

 

OHM

Устная работа по готовым чер­тежам

 

 

 

144

ЗИ

Устный счет (10 мин)

 

 

 

145-146

ПЗУ

ДМ: П-37 (10 мин)

 

 

 

147

Обобщение по теме

1

 

 

 

 

 

148

Контрольная работа №7 по теме «Буквы и формулы»

 

1

 

 

 

 

 

149

Многоугольники и многогранники (9 часов)

Анализ контрольной работы. Сумма углов в треугольнике

1

OHM

Работа над ошибками

 

 

 

150

Параллело

грамм

2

OHM

ФО

 

 

 

151

Комб.

РТ: № 66-70

 

 

 

152

Правильные много­угольники

1

OHM

ПР (20 мин)

 

 

 

153

Площади

3

ПЗУ

ФО

 

 

 

154

 

Комб.

 

 

 

 

155

 

Урок-дело­вая игра

Работа по кар­точкам

 

 

 

156

Призма

2

Комб.

Сам. раб. (15 мин)

 

 

 

157

Комб.

 

 

 

 

159

Повторение (13 часов)

Повторение главы 1

2

Комб.

урок систематизации и обобщения

 

 

 

160

Комб.

 

 

 

 

161

Повторение главы 2,5,12

1

Комб.

урок систематизации и обобщения

 

 

 

162

 

Повторение главы 3,4

2

Комб.

 

 

 

 

163

Комб.

 

 

 

 

164

Повторение главы 6,7

1

Комб.

урок систематизации и обобщения

 

 

 

165

Повторение главы 8,10

3

Комб.

 

 

 

 

166-167

Комб.

Урок контроля и коррекции

 

 

 

168

Итоговая контрольная работа №8

1

Комб.

 

 

 

 

169170

Обобщение. Подведение итогов года.

1

Комб.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


Скачано с www.znanio.ru



 

 

 

 

 

Пояснительная записка Программа разработана на основании: -

Пояснительная записка Программа разработана на основании: -

Без базовой математической подготовки невозможно стать образованным современным человеком

Без базовой математической подготовки невозможно стать образованным современным человеком

В метапредметном направлении ·

В метапредметном направлении ·

Идея развивающего обучения реализуется в учебниках через систему методических решений

Идея развивающего обучения реализуется в учебниках через систему методических решений

Методический аппарат учебников ориентирован на формирование у учащихся способности к осознанному выбору уровня овладения материалом, индивидуальной траектории учебной деятельности

Методический аппарат учебников ориентирован на формирование у учащихся способности к осознанному выбору уровня овладения материалом, индивидуальной траектории учебной деятельности

Пояснительная записка 1.

Пояснительная записка 1.

Общая характеристика учебного предмета «Математика»

Общая характеристика учебного предмета «Математика»

Цель содержания раздела «Геометрия» — развить у учащихся пространственное воображение и логическое мышление путем систематического изучения свойств геометрических фигур на плоскости и в пространстве и…

Цель содержания раздела «Геометрия» — развить у учащихся пространственное воображение и логическое мышление путем систематического изучения свойств геометрических фигур на плоскости и в пространстве и…

Описание места учебного предмета «Математика» в учебном плане

Описание места учебного предмета «Математика» в учебном плане

Личностные, метапредметные и предметные результаты освоения конкретного учебного предмета, курса

Личностные, метапредметные и предметные результаты освоения конкретного учебного предмета, курса

Ш В предметном направлении: · овладение базовым понятийным аппаратом по основным разделам содержания, представление об основных изучаемых понятиях (число, геометрическая фигура, уравнение, функция, вероятность) как…

Ш В предметном направлении: · овладение базовым понятийным аппаратом по основным разделам содержания, представление об основных изучаемых понятиях (число, геометрическая фигура, уравнение, функция, вероятность) как…

Программа по математике 5-6 классы ФГОС

Программа по математике 5-6 классы ФГОС

Приложение 1. Планируемые результаты формирования

Приложение 1. Планируемые результаты формирования

Преобразовывать информацию из одного вида в другой (таблицу в текст, диаграмму и пр

Преобразовывать информацию из одного вида в другой (таблицу в текст, диаграмму и пр

Для этого самостоятельно использовать различные виды чтения (изучающее, просмотровое, ознакомительное, поисковое), приёмы слушания

Для этого самостоятельно использовать различные виды чтения (изучающее, просмотровое, ознакомительное, поисковое), приёмы слушания

Уметь выбирать адекватные задаче инструментальные программно-аппаратные средства и сервисы

Уметь выбирать адекватные задаче инструментальные программно-аппаратные средства и сервисы

Преобразовывать информацию из одного вида в другой (таблицу в текст, диаграмму и пр

Преобразовывать информацию из одного вида в другой (таблицу в текст, диаграмму и пр

Содержание учебного предмета «Математика»

Содержание учебного предмета «Математика»

Разложение натурального числа на множители, разложение на простые множители

Разложение натурального числа на множители, разложение на простые множители

Диаграммы Столбчатые и круговые диаграммы

Диаграммы Столбчатые и круговые диаграммы

Наглядные представления о пространственных фигурах: куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр

Наглядные представления о пространственных фигурах: куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр

Квадратный трехчлен, разложение квадратного трехчлена на множители

Квадратный трехчлен, разложение квадратного трехчлена на множители

Уравнения вида . Уравнения в целых числах

Уравнения вида . Уравнения в целых числах

Обратная пропорциональность Свойства функции

Обратная пропорциональность Свойства функции

Классические вероятностные опыты с использованием монет, кубиков

Классические вероятностные опыты с использованием монет, кубиков

Равенство фигур С войства равных треугольников

Равенство фигур С войства равных треугольников

Векторы Понятие вектора, действия над векторами , использование векторов в физике, разложение вектора на составляющие, скалярное произведение

Векторы Понятие вектора, действия над векторами , использование векторов в физике, разложение вектора на составляющие, скалярное произведение

Приложение 2. 6.Тематическое планирование с определением основных видов учебной деятельности № п/п

Приложение 2. 6.Тематическое планирование с определением основных видов учебной деятельности № п/п

Умножение и деление, компоненты умножения и деления, связь между ними, умножение и сложение в столбик, деление уголком, проверка результата с помощью прикидки и обратного действия

Умножение и деление, компоненты умножения и деления, связь между ними, умножение и сложение в столбик, деление уголком, проверка результата с помощью прикидки и обратного действия

Доказательство признаков делимости

Доказательство признаков делимости

Сложение и вычитание обыкновенных дробей

Сложение и вычитание обыкновенных дробей

Моделировать в графической, предметной форме по­нятия и свой­ства, связан­ные с поня­тием обыкновенной дроби

Моделировать в графической, предметной форме по­нятия и свой­ства, связан­ные с поня­тием обыкновенной дроби

Решение задач на совместную работу

Решение задач на совместную работу

Эйлера . Операции над множествами

Эйлера . Операции над множествами

Площадь прямоугольника, квадрата

Площадь прямоугольника, квадрата

Число. Рациональные числа

Число. Рациональные числа

Преобразования выражений, содержащих степени с натуральным показателем

Преобразования выражений, содержащих степени с натуральным показателем

Доказывать свойства арифмети­ческих квад­ратных корней; применять их для пре­образо­вания выражений

Доказывать свойства арифмети­ческих квад­ратных корней; применять их для пре­образо­вания выражений

Методы решения уравнений: методы равносильных преобразований, метод замены переменной, графический метод

Методы решения уравнений: методы равносильных преобразований, метод замены переменной, графический метод

Строгие и нестрогие неравенства

Строгие и нестрогие неравенства

Исследование функции по ее графику

Исследование функции по ее графику

Графики функций , , , .

Графики функций , , , .

Случайная изменчивость. Изменчивость при измерениях

Случайная изменчивость. Изменчивость при измерениях

Задачи на движение, работу и покупки

Задачи на движение, работу и покупки

Знакомство со случайными величинами на примерах конечных дискретных случайных величин

Знакомство со случайными величинами на примерах конечных дискретных случайных величин

Высказывания Истинность и ложность высказывания

Высказывания Истинность и ложность высказывания

Формулировать и доказывать теоремы, выражающие свойства вертикальных и смежных углов, свойства и признаки параллельных прямых, о единственности пер­пендикуляра к прямой, свойстве перпендикуляра и наклонной, свойствах…

Формулировать и доказывать теоремы, выражающие свойства вертикальных и смежных углов, свойства и признаки параллельных прямых, о единственности пер­пендикуляра к прямой, свойстве перпендикуляра и наклонной, свойствах…

Четырёхугольники Четырехугольники

Четырёхугольники Четырехугольники

Окружность и круг Окружность, круг, и х элементы и свойства; центральные и вписанные углы

Окружность и круг Окружность, круг, и х элементы и свойства; центральные и вписанные углы

Простейшие построения циркулем и линейкой: построение биссектрисы угла, перпендикуляра к прямой, угла, равного данному,

Простейшие построения циркулем и линейкой: построение биссектрисы угла, перпендикуляра к прямой, угла, равного данному,
Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.
21.01.2017