лучшедома
Рабочая программа факультатива по математике 11 класс

Рабочая программа факультатива по математике 11 класс

Разработки курсов
docx
математика
10 кл—11 кл
19.03.2020
Цель курса: • овладение конкретными математическими знаниями, необходимыми для применения в практической деятельности, для продолжения образования; • интеллектуальное развитие учащихся, формирование качеств мышления, характерных для математической деятельности и необходимых для продуктивной жизни в обществе. Задача: развивать потенциальные творческие способности каждого слушателя факультатива, не ограничивая заранее сверху уровень сложности используемого задачного материала, подготовка к ЕГЭ и дальнейшему обучению в других учебных заведениях. Программа элективного курса рассчитана на два года обучения – 10 и 11 классы

150.000₽ призовой фонд • 11 почетных документов • Свидетельство публикации в СМИ

Опубликовать материал

11А Нестандартные задачи 2019-2020 Зайцева.docx

 

 

 

 

 

 

 

 

Рабочая программа факультатива по математике

11А класс

на 2019-2020 учебный год

 

 

Составил:

Зайцева Татьяна Евгеньевна – учитель математики высшей квалификационной категории

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 «Математика в трудных задачах»

( для обучающихся 10-11 классов)

1 час в неделю

10класс 36часов

11 класс 34 часа

 

Пояснительная записка

Основная задача обучения математике в школе – обеспечить прочное и сознательное овладение учащимися системой математических знаний и умений, необходимых в повседневной жизни и трудовой деятельности каждому члену общества, достаточных для изучения смежных дисциплин и продолжения образования.

Наряду с решением основной задачи изучения математики программа элективного курса предусматривает формирование у учащихся устойчивого интереса к предмету, выявление и развитие их математических способностей, ориентацию на профессии, существенным образом связанные с математикой, подготовку к обучению в вузе.

Главное назначение экзаменационной работы в форме ЕГЭ – получение объективной информации о подготовке выпускников школы по математике, необходимой для их итоговой аттестации и отбора для поступления в вуз.

Структура экзаменационной работы требует от учащихся не только знаний на базовом уровне, но и умений выполнять задания повышенной и высокой сложности. В рамках урока не всегда возможно рассмотреть подобные задания, поэтому программа элективного курса позволяет решить эту задачу.

Преподавание курса строится как углубленное изучение вопросов, предусмотренных программой основного курса. Углубление реализуется на базе обучения методам и приемам решения математических задач, требующих применения высокой логической и операционной культуры, развивающих научно-теоретическое и алгоритмическое мышление учащихся. Тематика задач не выходит за рамки основного курса, но уровень их трудности – повышенный, существенно превышающий обязательный. Особое место занимают задачи, требующие применения учащимися знаний в незнакомой (нестандартной) ситуации.

Особая установка курса – целенаправленная подготовка ребят к форме аттестации - ЕГЭ. Поэтому преподавание факультатива обеспечивает систематизацию знаний и усовершенствование умений учащихся на уровне, требуемом при проведении такого экзамена.

Цель курса:

  • овладение конкретными математическими знаниями, необходимыми для применения в практической деятельности, для продолжения образования;
  • интеллектуальное развитие учащихся, формирование качеств мышления, характерных для математической деятельности и необходимых для продуктивной жизни в обществе.

Задача:    развивать потенциальные творческие способности каждого слушателя факультатива, не ограничивая заранее сверху уровень сложности используемого задачного материала, подготовка к ЕГЭ и дальнейшему обучению в других учебных заведениях.

 Программа элективного курса рассчитана на два года обучения – 10 и 11 классы и содержит следующие темы:

Знания и умения

            В результате изучения данного курса учащиеся должны уметь:

  • проводить тождественные преобразования иррациональных, показательных, логарифмических и тригонометрических выражений.
  • решать иррациональные, логарифмические и тригонометрические уравнения и неравенства.
  • решать системы уравнений изученными методами.
  • строить графики элементарных функций и проводить преобразования графиков, используя изученные методы.
  • применять аппарат математического анализа к решению задач.
  • применять основные методы геометрии (проектирования, преобразований, векторный, координатный) к решению геометрических задач.

             Для реализации программы факультатива  «Математика в трудных задачах» используются лекции, семинары, практикумы по решению задач.

Для получения информации об уровне усвоения данного курса слушателям элективного курса предлагается написание рефератов, подготовка сообщений на следующие темы:

  •   «Обобщенный метод интервалов»;
  •   «Использование интеграла в физических задачах»;
  •   «Гармонические колебания»;
  •   «Обратные тригонометрические функции», а также выполнение тестовых заданий (два раза в год), один из которых итоговый по курсу.

Тематическое планирование.

Алгебраические выражения – 6 часов.

Уравнения, неравенства и системы уравнений – 11 часов.

Функции  -  12 часов.

 Числа и числовые последовательности– 10 часов.

Текстовые задачи – 7 часов.

Методы решения планиметрических задач-14 часов.

Стереометрические задачи и методы их решения-9 часов.

 

 

Календарно-тематическое планирование

10 класс

 

Тема занятия

Алгебраические выражения (6 часов)

  1. Некоторые практические рекомендации.
  1. Преобразование числовых и алгебраических выражений.
  1. Преобразование рациональных выражений.
  1. Замена переменных.
  1. Условные равенства.
  1. Освобождение от иррациональности в знаменателе.

Функции и графики функций (12 часов)

  1. Построение графиков функций без помощи производной.
  1. Операции над графиками функций: сложение, умножение.
  1. Линейные преобразования функций и графиков.
  1. Модуль функции и функция от модуля.
  1. Построение графиков сложных функций.
  1. Элементарное исследование функций.
  1. Графические методы решения, оценки числа корней уравнений и неравенств.
  1. Графики уравнений с двумя неизвестными.
  1. Графический анализ систем с двумя неизвестными.
  1. Вычисление  и сравнение значений тригонометрических функций.
  1. Обратные тригонометрические функции и их графики.
  1. Исследование тригонометрических функций.

 

 

Уравнения, неравенства и системы уравнений (11 часов)

  1. Решение уравнений, неравенств, общие положения, замена неизвестного, приемы решения.  
  1. Уравнения, решение которых основано на использовании монотонности и ограниченности входящих в них функций.
  1. Нестандартные по формулировке задачи, связанные с уравнениями.
  1. Решение иррациональных уравнений. Появление лишних корней. 
  1. О понятии допустимых значений неизвестного.
  1. Нахождение рациональных корней многочлена с целыми коэффициентами.
  1. Уравнения и неравенства, содержащие модуль.
  1. Уравнения и неравенства, содержащие модуль.
  1. Уравнения, неравенства  и системы уравнений с параметрами.
  1. Разрешение уравнения относительно параметра.
  1. Уравнения и системы уравнений с параметрами, в которых требуется определить зависимость числа решений от параметра.

Текстовые задачи (7 часов)

  1. Основные типы текстовых задач. Этапы их решения.
  1. Задачи на отыскание оптимальных значений.
  1. Задачи с ограничениями на неизвестные нестандартного вида.
  1. Выбор неизвестных. Составление ограничений.
  2. Решение заданий банка ЕГЭ
  3. Решение заданий банка ЕГЭ
  4. Решение заданий банка ЕГЭ

 

 

Календарно-тематическое планирование

11 класс

Числа и числовые последовательности (10 часов)

  1. Натуральные числа. Разложение на множители. Наибольший делитель и наименьшее общее кратное.
  1. Делимость и деление с остатком. Задачи на делимость.
  1. Рациональные и иррациональные числа. Доказательство иррациональности чисел.
  1.  Сравнение чисел. Приближенные вычисления. Производная в приближенных вычислениях.
  1.  Числовые последовательности. Прогрессии.
  1.  Индукция.
  1.  Рекуррентные последовательности.
  1. Суммирование последовательностей.
  1. Комплексные числа. Комплексная плоскость.
  1. Решение задач на прогрессии.

Методы решения планиметрических задач (14 часов)

  1. Основные этапы решения геометрической задачи.
  1.  Опорные задачи.
  1. Основные геометрические приемы и методы решения задач.
  1.  Разновидности аналитических методов решения задач.
  1. Метод координат.
  1. Векторный метод.
  1.  Задачи на вычисление элементов геометрических фигур.
  1. Задачи на доказательство.
  1. Важнейшие геометрические места точек.
  1. Задачи на геометрические места точек.
  1. Задачи на максимум и минимум, геометрические неравенства.
  1. Методы решения задач на построение.
  1. Построение по формулам.
  1. Построение с ограниченными возможностями.

Стереометрические задачи и методы их решения (9 часов)

  1. Основные принципы построения чертежей пространственных фигур.
  1. Опорные стереометрические задачи.
  1. Построение сечений.
  1. Аналитические методы в стереометрии.
  1.  Специальные методы решения задач.
  1. Векторы в пространстве.
  1. Задачи на комбинацию многогранников.
  1. Задачи на комбинацию многогранников.
  1. Решение заданий банка ЕГЭ
  2. Решение заданий банка ЕГЭ

 


 

скачать по прямой ссылке
Заполните анкету и получите свидетельство финалиста.
Опубликуйте свои методические разработки в официальном издании.
Бесплатные материалы для классных часов и грамота организатора.
Друзья! Добро пожаловать на обновленный сайт «Знанио»!

Если у вас уже есть кабинет, вы можете войти в него, используя обычные данные.

Что-то не получается или не работает? Мы всегда на связи ;)