Рабочая программа по алгебре, 9 класс
Оценка 4.8

Рабочая программа по алгебре, 9 класс

Оценка 4.8
Разработки курсов
docx
математика
13.07.2022
Рабочая программа по алгебре, 9 класс
Рабочая программа по алгебре, 9 класс УМК Мерзляк А.Г.
РП 9 класс АЛГЕБРА.docx

ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ НОВОСИБИРСКОЙ ОБЛАСТИ

«ОБЛАСТНОЙ ЦЕНТР ОБРАЗОВАНИЯ»

(ГБОУ НСО «ОЦО»)

 

 

 

 

 

 

 

 

 

 

 

РАБОЧАЯ ПРОГРАММА

ПО АЛГЕБРЕ

9 класс

 

 

 

 

 

 

 

 

 

Составил: О.Н. Сурдал.,

                                                                     учитель математики

 

 

п.Тулинский

2022г.

Пояснительная записка

Программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта второго поколения основного общего образования по математике:

  • Федерального Государственного Образовательного Стандарта основного общего образования (приказ Министерства образования и науки Российской Федерации от 17 декабря 2014 года №1897);
  • Примерной программы по курсу алгебры (7 – 9 классы). Сборник программ. 5 – 11 классы: Математика/(сост. А.Г. Мерзляк, В.Б. Полонский, М.С. Якир и др.) – М.: Вента – Граф, 2018 к УМК А.Г. Мерзляка, В.Б. Полонского.

Целью изучения курса математике в 7 – 9 классах является развитие вычислительных умений до уровня, позволяющего уверенно использовать их при решении задач математики и смежных предметов, усвоение аппарата уравнений и неравенств как основного средства математического моделирования задач, осуществление функциональной подготовки школьников. Курс характеризуется повышением теоретического уровня обучения, постепенным усилием роли теоретических обобщений и дедуктивных заключений. Прикладная направленность раскрывает возможность изучать и решать практические задачи.

В основе построения данного курса лежит идея гуманизации обучения, соответствующая современным представлениям о целях школьного образования и уделяющая особое внимание личности ученика, его интересам и способностям.

Предлагаемый курс позволяет обеспечить формирование как предметных умений, так и универсальных учебных действий школьников, а также способствует достижению определённых во ФГОС личностных результатов, которые в дальнейшем позволят учащимся применять полученные знания и умения для решения различных жизненных задач.

В курсе алгебры можно выделить следующие основные содержательные линии: арифметика; алгебра; функции; вероятность и статистика. Наряду с этим в содержание включены два дополнительных методологических раздела: логика и множества; математика в историческом развитии, что связано с реализацией целей общеинтеллектуального и общекультурного развития учащихся. Содержание каждого из этих разделов разворачивается в содержательно-методическую линию, пронизывающую все основные содержательные линии. При этом первая линия — «Логика и множества» — служит цели овладения учащимися некоторыми элементами универсального математического языка, вторая — «Математика в историческом развитии» — способствует созданию общекультурного, гуманитарного фона изучения курса.

 В соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования в 7– 9 классах  предмет «Математика» делится на два предмета: «Алгебра» и «Геометрия». Общее количество уроков алгебры в неделю в 7 – 9 класс – по 3 часа; в год 9  класс –  102 часа. 

 

 

 

 

Личностные, метапредметные и предметные результаты освоения учебного предмета «Алгебра»

Взаимосвязь результатов освоения предмета «Математика» можно системно представить в виде схемы. При этом обозначение ЛР указывает, что продвижение учащихся к новым образовательным результатам происходит в соответствии с линиями  развития средствами предмета. 

Личностными результатами изучения предмета «Алгебра» » в виде учебного курса 7 – 9 класс являются следующие качества:

  • независимость и критичность мышления; 
  • воля и настойчивость в достижении цели;
  • сформированность ответственного отношения к учению, готовность и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учётом устойчивых познавательных интересов;
  • сформированность целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;
  • сформированность коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими, в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности;
  • умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
  • представление о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации;
  • критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
  • креативность мышления, инициатива, находчивость, активность при решении алгебраических задач;
  • умение контролировать процесс и результат учебной математической деятельности;
  • способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений.

         Средством достижения этих результатов является:

  • система заданий учебников;
  • представленная в учебниках в явном виде организация материала по принципу минимакса;
  • использование совокупности технологий, ориентированных на развитие самостоятельности и критичности мышления: технология проблемного диалога, технология продуктивного чтения, технология оценивания.

Метапредметными результатами изучения курса «Математика» является формирование универсальных учебных действий (УУД):

Регулятивные УУД:

  • самостоятельно обнаруживать и формулировать учебную проблему в классной и индивидуальной учебной деятельности;
  • выдвигать версии решения проблемы, осознавать конечный результат, выбирать средства достижения цели из предложенных или их  искать самостоятельно;
  • составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);
  • работая по предложенному или самостоятельно составленному плану, использовать наряду с основными и дополнительные средства (справочная литература, сложныек приборы, компьютер);
  • планировать свою индивидуальную образовательную траекторию;
  • работать по самостоятельно составленному плану, сверяясь с ним и с целью деятельности, исправляя ошибки, используя самостоятельно подобранные средства (в том числе и Интернет);
  • свободно пользоваться выработанными критериями оценки и самооценки, исходя из цели и имеющихся критериев, различая результат и способы действий;
  • в ходе представления проекта давать оценку его результатам;
  • самостоятельно осознавать причины своего успеха или неуспеха и находить способывыхода из ситуации неуспеха;
  • уметь оценить степень успешности своей индивидуальной образовательной деятельности;
  • давать оценку своим личным качествам и чертам характера («каков я»), определять напрвления своего развития («каким я хочу стать», «что мне для этого надо сделать»)

Средством формирования регулятивных УУД служат технология системно-деятельностного подхода на этапе изучения нового материала и технология оценивания образовательных достижений (учебных успехов).

Познавательные УУД:

– анализировать, сравнивать, классифицировать и обобщать факты и явления;

– осуществлять сравнение, сериацию и классификацию, самостоятельно выбирая основания и критерии для указанных логических операций; строить классификацию путём дихотомического деления (на основе отрицания);

– строить логически обоснованное рассуждение, включающее установление причинно-следственных связей;

– создавать математические модели;

– составлять тезисы, различные виды планов (простых, сложных и т.п.). Преобразовывать информацию из одного вида в другой (таблицу в текст, диаграмму и пр.);

– вычитывать все уровни текстовой информации. 

– уметь определять возможные источники необходимых сведений, производить поиск информации, анализировать и оценивать её достоверность. 

– понимая позицию другого человека, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории. Для этого самостоятельно использовать различные виды чтения (изучающее, просмотровое, ознакомительное, поисковое), приёмы слушания. 

– самому создавать источники информации разного типа и для разных аудиторий, соблюдать информационную гигиену и правила информационной безопасности;

– уметь использовать компьютерные и коммуникационные технологии как инструмент для достижения своих целей. Уметь выбирать адекватные задаче инструментальные программно-аппаратные средства и сервисы.

Средством формирования познавательных УУД служат учебный материал и прежде всего продуктивные задания учебника, позволяющие продвигаться по всем шести линиям развития.

1-я ЛР – Использование математических знаний для решения различных математических задач и оценки полученных результатов.

2-я ЛР – Совокупность умений по использованию доказательной математической речи.

3-я ЛР – Совокупность умений по работе с информацией, в том числе и с различными математическими текстами.

4-я ЛР – Умения использовать математические средства для изучения и описания реальных процессов и явлений.

5-я ЛР – Независимость и критичность мышления.

6-я ЛР – Воля и настойчивость в достижении цели.

Коммуникативные УУД:

  • самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, договариваться друг с другом и т.д.);
  • отстаивая свою точку зрения, приводить аргументы, подтверждая их фактами; 
  • в дискуссии уметь выдвинуть контраргументы;
  • учиться критично относиться к своему мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;
  • понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;
  • уметь взглянуть на ситуацию с иной позиции и договариваться с людьми иных позиций.

Средством  формирования коммуникативных УУД служат технология проблемного диалога (побуждающий и подводящий диалог) и организация работы в малых группах, также использование на уроках элементов технологии продуктивного чтения.

Предметные результаты:

1) умение работать с математическим текстом (структурирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, использовать различные языки математики (словесный, символический, графический), обосновывать суждения, проводить классификацию, доказывать математические утверждения;

2) владение базовым понятийным аппаратом: иметь представление о числе, владение символьным языком алгебры, знание элементарных функциональных зависимостей, формирование представлений о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;

3) умение выполнять алгебраические преобразования рациональных выражений, применять их для решения учебных математических задач и задач, возникающих в смежных учебных предметах;

4) умение пользоваться математическими формулами и самостоятельно составлять формулы зависимостей между величинами на основе обобщения частных случаев и эксперимента;

5) умение решать линейные и квадратные уравнения и неравенства, а также приводимые к ним уравнения, неравенства, системы; применять графические представления для решения и исследования уравнений, неравенств, систем; применять полученные умения для решения задач из математики, смежных предметов, практики;

6) овладение системой функциональных понятий, функциональным языком и символикой, умение строить графики функций, описывать их свойства, использовать функционально-графические представления для описания и анализа математических задач и реальных зависимостей;

7) овладение основными способами представления и анализа статистических данных; умение решать задачи на нахождение частоты и вероятности случайных событий;

8) умение применять изученные понятия, результаты и методы при решении задач из различных разделов курса, в том числе задач, не сводящихся к непосредственному применению известных алгоритмов.

 

 

 

 

 

 

 

 

 

 

 

Содержание учебного предмета «Алгебра» 9 класс

  • Неравенства.

Числовые неравенства и их свойства. Почленное сложение и умножение числовых неравенств. Линейные неравенства с одной переменной и их системы.

Основная   цель — ознакомить учащихся с применение: неравенств для оценки значений выражений, выработать умение решать линейные неравенства с одной переменной и их системы. Свойства числовых неравенств составляют ту базу, на которой основано решение линейных неравенств с одной переменной. Т ремы о почленном сложении и умножении неравенств находить применение при выполнении простейших упражнений на оценку выражений по методу границ. Вводятся понятия абсолютной погрешности и точности приближения, относительной погрешности. Умения проводить дедуктивные рассуждения получают развитие как при доказательствах указанных теорем, так и при выполнении упражнений на доказательства неравенств.

В связи с решением линейных неравенств с одной переменно: дается понятие о числовых промежутках, вводятся соответствующие названия и обозначения. Рассмотрению систем неравенств одной переменной предшествует ознакомление учащихся с понятиями пересечения и объединения множеств.

При решении неравенств используются свойства равносильных неравенств,  которые разъясняются на конкретных примерах. Особое внимание следует уделить отработке умения решат простейшие неравенства вида ах > b, ах < b, остановившись специально на случае, когда а < 0.

В этой теме рассматривается также решение систем двух линейных неравенств с одной переменной, в частности таких, которые записаны в виде двойных неравенств.

  • Квадратичная функция.

Функция. Свойства функций. Квадратный трехчлен. Разложение квадратного трехчлена на множители. Функция у = ах2 + Ьх + с, ее свойства и график. Степенная функция.

Основная  цель — расширить сведения о свойствах функций, ознакомить учащихся со свойствами и графиком квадратичной функции.

В начале темы систематизируются сведения о функциях. Повторяются основные понятия: функция, аргумент, область определения функции, график. Даются понятия о возрастании и убывании   функции, промежутках знакопостоянства. Тем самым создается база для усвоения свойств квадратичной и степенной функций, а также для дальнейшего углубления функциональных представлений при изучении курса алгебры и начал анализа.

Подготовительным шагом к изучению свойств квадратичной функции  является также рассмотрение вопроса о квадратном трехчлене и его корнях, выделении квадрата двучлена из квадратного трехчлена, разложении квадратного трехчлена на множители.

Изучение квадратичной функции начинается с рассмотрения функции у = ах2, ее свойств и особенностей графика, а также других частных видов квадратичной функции — функций у = ах2 + b, у = а (х – m)2. Эти сведения используются при изучении свойств квадратичной функции общего вида. Важно, чтобы учащиеся поняли, что график функции у = ах2 + bх + с может быть получен из графика функции у = ах2 с помощью двух параллельных переносов. Приемы построения графика функции y = ах2 + bх + с отрабатываются на конкретных примерах. При этом особое внимание следует уделить формированию у учащихся умения указывать координаты вершины параболы, ее ось симметрии, направление ветвей параболы.

При изучении этой темы дальнейшее развитие получает умение находить по графику промежутки возрастания и убывания функции, а также промежутки, в которых функция сохраняет знак.

Учащиеся знакомятся со свойствами степенной функции у = хп при четном и нечетном натуральном показателе п. Вводится понятие корня n-ой степени. Они получают представление о нахождении значений корня с помощью калькулятора, причем выработка соответствующих умений не требуется.

  • Неравенства с одной переменной

Целые уравнения. Дробные рациональные уравнения. Неравенства второй степени с одной переменной. Метод интервалов.

Основная цель — систематизировать и обобщить сведения о решении целых и дробных рациональных уравнений с одной переменной, сформировать умение решать неравенства вида ах2 + bх + с > 0 или ах2 + bх + с < 0, где а ≠ 0.

В этой теме завершается изучение рациональных уравнений с одной переменной. В связи с этим проводится некоторое обобщение и углубление сведений об уравнениях. Вводятся понятия целого рационального уравнения и его степени. Учащиеся знакомятся с решением уравнений третьей степени и четвертой степени с помощью разложения на множители и введения вспомогательной переменной. Метод решения уравнений путем введения вспомогательных переменных будет широко использоваться в дальнейшем при решении тригонометрических, логарифмических и других видов уравнений.

Расширяются сведения о решении дробных рациональных уравнений. Учащиеся знакомятся с некоторыми специальными приемами решения таких уравнений.

Формирование умений решать неравенства вида ах2 + bх + + с > 0 или ах2 + bх + с < О, где а ≠ 0 , осуществляется с опорой на сведения о графике квадратичной функции.

Учащиеся знакомятся с методом интервалов, с помощью которого решаются несложные рациональные неравенства.

  • Неравенства с двумя переменными 

         Уравнение с двумя переменными и его график. Системы уравнений второй степени. Решение задач с помощью систем уравнений второй степени. Неравенства с двумя переменными и их системы.

Основная цель — выработать умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем.

В данной теме завершается изучение систем уравнений с двумя переменными. Основное внимание уделяется системам, в которых одно из уравнений первой степени, а другое второй.

Известный учащимся способ подстановки находит здесь дальнейшее применение и позволяет сводить решение таких систем к решению квадратного уравнения.

Ознакомление учащихся с примерами систем уравнений с двумя переменными, в которых оба уравнения второй степени, должно осуществляться с достаточной осторожностью и ограничиваться простейшими примерами.

Привлечение известных учащимся графиков позволяет привести примеры графического решения систем уравнений. С помощью графических представлений можно наглядно показать учащимся, что системы двух уравнений с двумя переменными: второй степени могут иметь одно, два, три, четыре решения или не иметь решений.

Разработанный математический аппарат позволяет существенно расширить класс содержательных текстовых задач, решаемых с помощью систем уравнений.

Изучение темы завершается введением понятий неравенства двумя переменными и системы неравенств с двумя переменными. Сведения о графиках уравнений с двумя переменными используются при иллюстрации множеств решений некоторых простейших неравенств с двумя переменными и их систем.

  • Элементы прикладной математики.

       Математическое моделирование. Процентные расчеты. Приближенные вычисления. Основные правила комбинаторики. Относительная частота и вероятность случайного события. Классическое определение вероятности. Начальные сведения о статистике.

Основная цель — ознакомить учащихся с понятиями перестановки, размещения, сочетания и соответствующими формулами для подсчета их числа; ввести понятия относительной частоты и вероятности случайного события.

Изучение темы начинается с решения задач, в которых требуется составить те или иные комбинации элементов и подсчитать их число. Разъясняется комбинаторное правило умножения, которое используется в дальнейшем при выводе формул для подсчета числа перестановок, размещений и сочетаний.  При изучении данного материала необходимо обратить внимание учащихся на различие понятий «размещение» и «сочетание», сформировать у них умение определять, о каком виде комбинаций идет речь в задаче.

В данной теме учащиеся знакомятся с начальными сведениями из теории вероятностей. Вводятся понятия «случайное событие», «относительная частота», «вероятность случайного события». Рассматриваются статистический и классический подходы к определению вероятности случайного события. Важно обратить внимание учащихся на то, что классическое определение вероятности можно применять только к таким моделям реальных событий, в которых все исходы являются равновозможными.

  • Числовые последовательности.

Числовые последовательности. Арифметическая и геометрическая прогрессии. Формулы п-го члена и суммы первых n членов прогрессии. Бесконечно убывающая геометрическая прогрессия.

Основная цель — дать понятия об арифметической и геометрической прогрессиях как числовых последовательностях особого вида.

При изучении темы вводится понятие последовательности, разъясняется смысл термина «n-й член последовательности», вырабатывается умение использовать индексное обозначение. Эти сведения носят вспомогательный характер и используются для изучения арифметической и геометрической прогрессий.

Работа с формулами n-го члена и суммы первых га членов прогрессий, помимо своего основного назначения, позволяет неоднократно возвращаться к вычислениям, тождественным преобразованиям, решению уравнений, неравенств, систем.

Рассматриваются  характеристические  свойства арифметической   и геометрической прогрессий,   что позволяет расширить круг предлагаемых задач.

  • Повторение (итоговое)

Основная цель. Повторить, закрепить и обобщить основные знания, полученные в 9 классе. Подготовиться к ОГЭ.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Планируемые результаты изучения учебного предмета «Алгебра»

Использовать при решении математических задач, их обосновании и проверке найденного решения  знание о:

  • свойствах числовых неравенств;
  • методах решения линейных неравенств;
  • свойствах квадратичной функции;
  • методах решения квадратных неравенств;
  • методе интервалов для решения рациональных неравенств;
  • методах решения систем неравенств;
  • свойствах и графике функции при натуральном n;
  • определении и свойствах корней степени n;
  • степенях с рациональными показателями и их свойствах;
  • определении и основных свойствах арифметической прогрессии; формуле для нахождения суммы её нескольких первых членов;
  • определении и основных свойствах геометрической прогрессии; формуле для нахождения суммы её нескольких первых членов;
  • формуле для суммы бесконечной геометрической прогрессии со знаменателем, меньшим по модулю единицы.
  • Использовать свойства числовых неравенств для преобразования неравенств;
  • доказывать простейшие неравенства;
  • решать линейные неравенства;
  • строить график квадратичной функции и использовать его при решении задач;
  • решать квадратные неравенства;
  • решать рациональные неравенства методом интервалов;
  • решать системы неравенств;
  • строить график функции при натуральном и использовать его при решении задач;
  • находить корни степени n
  • использовать свойства корней степени при тождественных преобразованиях;
  • находить значения степеней с рациональными показателями;
  • решать основные задачи на арифметическую и геометрическую прогрессии; 
  • находить сумму бесконечной геометрической прогрессии со знаменателем, меньшим по модулю единицы;
  • находить решения «жизненных» (компетентностных) задач, в которых используются математические средства.

Учебно-тематическое планирование по алгебре

на 2022-2023 учебный год

9 класс

 

№ п/п

Изучаемый материал

Кол-во часов

Контрольные работы

1.

Повторение курса алгебры за 8 класса

4

1

2.

Неравенства 

20

1

3.

Квадратичная функция

31

2

4.

Элементы прикладной математики

17

1

5.

Числовые последовательности

20

1

6.

Повторение и систематизация  учебного материала

10

1

7

Всего

102

7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Тематическое планирование по алгебре для 9-го класса составлено с учетом рабочей программы воспитания. Воспитательный потенциал данного учебного предмета обеспечивает реализацию следующих целевых приоритетов воспитания обучающихся ООО:

ü  к знаниям как интеллектуальному ресурсу, обеспечивающему будущее человека, как результату кропотливого, но увлекательного учебного труда;

ü  к окружающим людям как безусловной и абсолютной ценности, как равноправным социальным партнерам, с которыми необходимо выстраивать доброжелательные и взаимно поддерживающие отношения, дающие человеку радость общения и позволяющие избегать чувства одиночества;

ü  к труду как основному способу достижения жизненного благополучия человека, залогу его успешного профессионального самоопределения и ощущения уверенности в завтрашнем дне.

Тематическое планирование по алгебре

на 2022-2023 учебный год

9 класс

(102 часов 3 часа в неделю)

 

Номер

Содержание учебного
материала

Кол-во часов

Основные виды, формы и способы учебной деятельности обучающихся с учётом программы воспитания

 

 

1

2

3

Повторение курса алгебры за 8 класс

3

4

Вводная контрольная работа

1

 

 

Глава 1

Неравенства  (20часов)

5

6

7

Числовые неравенства

3

Распознавать и приводить примеры числовых неравенств, неравенств с переменными, линейных неравенств с одной переменной, двойных неравенств.

Формулировать:

определения: сравнения двух чисел, решения неравенства с одной переменной, равносильных неравенств, решения системы неравенств с одной переменной, области определения выражения;

свойства числовых неравенств, сложения и умножения числовых неравенств

Доказывать: свойства числовых неравенств, теоремы о сложении и умножении числовых неравенств.

Решать линейные неравенства.

Записывать решения неравенств и их систем в виде числовых промежутков, объединения, пересечения числовых промежутков. Решать систему неравенств с одной переменной. Оценивать значение выражения. Изображать на координатной прямой заданные неравенствами числовые промежутки.

Устный и письменный опрос. Тестирование. Самостоятельная работа. Контрольная работа.

8

9

Основные свойства числовых неравенств

2

10

11

12

Сложение и умножение числовых неравенств. Оценивание значения выражения

3

13

Неравенства с одной переменной

1

14

15

16

17

18

Решение неравенств с одной переменной. Числовые промежутки

5

19

20

21

22

Системы линейных неравенств с одной переменной

4

23

Повторение и систематизация учебного материала

1

24

Контрольная работа № 1

1

Глава 2

Квадратичная функция (31 час)

25

26

27

Повторение и расширение сведений о функции

3

Описывать понятие функции как правила, устанавливающего связь между элементами двух множеств.

Формулировать:

определения: нуля функции; промежутков знакопостоянства функции; функции, возрастающей (убывающей) на множестве; квадратичной функции; квадратного неравенства;
свойства квадратичной функции;
правила построения графиков функций с помощью преобразований вида f(x) →  f(x) + b;
f(x) → f(x + а); f(x) →  kf(x).

Строить графики функций с помощью преобразований вида f(x) → f(x) + b; f(x) → f(x + а); f(x) →  kf(x).

 Строить график квадратичной функции. По графику квадратичной функции описывать её свойства.

Описывать схематичное расположение параболы относительно оси абсцисс в зависимости от знака старшего коэффициента и дискриминанта соответствующего квадратного трёхчлена.

Решать квадратные неравенства, используя схему расположения параболы относительно оси абсцисс.

Описывать графический метод решения системы двух уравнений с двумя переменными, метод подстановки и метод сложения для решения системы двух уравнений с двумя переменными, одно из которых не является линейным.

Решать текстовые задачи, в которых система двух уравнений с двумя переменными является математической моделью реального процесса, и интерпретировать результат решения системы.

Устный и письменный опрос. Тестирование. Самостоятельная работа. Контрольная работа.

28

29

30

Свойства функции

3

31

32

Как построить график функции y = kf(x), если известен график функции y = f(x)

2

33

34

35

36

Как построить графики функций y = f(x) + b

и y = f(x + a), если известен график функции

y = f(x)

4

37

38

39

40

41

Квадратичная функция, её график и свойства

5

42

Контрольная работа № 2

1

43

44

45

46

47

48

Решение квадратных неравенств

6

46

50

51

52

53

Системы уравнений с двумя переменными

5

54

Повторение и систематизация учебного материала

1

55

Контрольная работа № 3

1

Глава 3

Элементы прикладной математики (17 часов)

56

57

58

Математическое моделирование

3

Приводить примеры: математических моделей реальных ситуаций; прикладных задач; приближённых величин; использования комбинаторных правил суммы и произведения; случайных событий, включая достоверные и невозможные события; опытов с равновероятными исходами; представления статистических данных в виде таблиц, диаграмм, графиков; использования
вероятностных свойств окружающих явлений.

Формулировать:

определения: абсолютной погрешности, относительной погрешности, достоверного события, невозможного события; классическое определение вероятности;

правила: комбинаторное правило суммы, комбинаторное правило произведения.

Описывать этапы решения прикладной задачи.

Пояснять и записывать формулу сложных процентов. Проводить процентные расчёты с использованием сложных процентов.

Находить точность приближения по таблице приближённых значений величины. Использовать различные формы записи приближённого значения величины. Оценивать приближённое значение величины.

Проводить опыты со случайными исходами. Пояснять и записывать формулу нахождения частоты случайного события. Описывать статистическую оценку вероятности случайного события. Находить вероятность случайного события
в опытах с равновероятными исходами.

Описывать этапы статистического исследования. Оформлять информацию в виде таблиц и диаграмм. Извлекать информацию из таблиц и диаграмм. Находить и приводить примеры использования статистических характеристик совокупности данных: среднее значение, мода, размах, медиана выборки.

Устный и письменный опрос. Тестирование. Самостоятельная работа. Контрольная работа.

59

60

61

Процентные расчёты

3

62

Абсолютная и относительная погрешности

1

63

64

Основные правила комбинаторики

2

65

66

Частота и вероятность случайного события

2

67

68

Классическое определение вероятности

2

69

70

Начальные сведения о статистике

2

71

Повторение и систематизация учебного материала

1

72

Контрольная работа № 4

1

Глава 4

Числовые последовательности (20 часов)

73

74

Числовые последовательности

2

Приводить примеры: последовательностей; числовых последовательностей, в частности арифметической и геометрической прогрессий; использования последовательностей в реальной жизни; задач, в которых рассматриваются суммы с бесконечным числом слагаемых.

Описывать: понятия последовательности, члена последовательности; способы задания последовательности.

Вычислять члены последовательности, заданной формулой n-го члена или рекуррентно.

Формулировать:
определения:
 арифметической прогрессии, геометрической прогрессии;

свойства членов геометрической и арифметической прогрессий.

Задавать арифметическую и геометрическую прогрессии рекуррентно.

Записывать и пояснять формулы общего члена арифметической и геометрической прогрессий.

Записывать и доказывать: формулы суммы n первых членов арифметической и геометрической прогрессий; формулы, выражающие свойства членов арифметической и геометрической прогрессий.

Вычислять сумму бесконечной геометрической прогрессии, у которой | q | < 1. Представлять бесконечные периодические дроби в виде обыкновенных дробей.

Устный и письменный опрос. Тестирование. Самостоятельная работа. Контрольная работа.

75

76

77

78

Арифметическая прогрессия

4

79

80

81

Сумма n первых членов арифметической прогрессии

3

82

83

84

Геометрическая прогрессия

3

85

86

87

Сумма n первых членов геометрической прогрессии

3

88

89

90

Сумма бесконечной геометрической прогрессии, у которой | q | < 1

3

91

Повторение и систематизация учебного материала

1

92

Контрольная работа № 5

1

Повторение и систематизация учебного материала (10 часов)

93

94

Повторение. Неравенства

2

 

95

96

Повторение. Квадратичная функция

2

97

98

Повторение. Элементы прикладной математики

2

99

100

Повторение. Числовые последовательности

2

101

Годовая контрольная работа

1

102

Обобщение и систематизация учебного материала

1

 

Печатные пособия:

1.      Алгебра – 9 класс: учебник для учащихся общеобразовательных учреждений/ А.Г. Мерзляк, В.Б.Полонский, М.С.Якир. – М.: Вентана – Граф, 2018.

2.      Алгебра – 9 класс: дидактические материалы: пособие для учащихся общеобразовательных учреждений/ А.Г.Мерзляк, В.Б.Полонский, Е.М.Рабинович, М.С.Якир. – М.: Вентана – Граф, 2018.

3.      Алгебра – 9 класс: методическое пособие/ Е.В.Буцко, А.Г. Мерзляк, В.Б.Полонский, М.С.Якир. – М.: Вентана – Граф, 2018.

4.       ОГЭ 3000 Задач по мат. Задания части 1. Ященко И.В. ,-Экзамен, 2022.


 

ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ

ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ

Пояснительная записка Программа составлена в соответствии с требованиями

Пояснительная записка Программа составлена в соответствии с требованиями

Личностные, метапредметные и предметные результаты освоения учебного предмета «Алгебра»

Личностные, метапредметные и предметные результаты освоения учебного предмета «Алгебра»

Метапредметными результатами изучения курса «Математика» является формирование универсальных учебных действий (УУД):

Метапредметными результатами изучения курса «Математика» является формирование универсальных учебных действий (УУД):

Для этого самостоятельно использовать различные виды чтения (изучающее, просмотровое, ознакомительное, поисковое), приёмы слушания

Для этого самостоятельно использовать различные виды чтения (изучающее, просмотровое, ознакомительное, поисковое), приёмы слушания

1) умение работать с математическим текстом (структурирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и…

1) умение работать с математическим текстом (структурирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и…

Содержание учебного предмета «Алгебра» 9 класс

Содержание учебного предмета «Алгебра» 9 класс

При изучении этой темы дальнейшее развитие получает умение находить по графику промежутки возрастания и убывания функции, а также промежутки, в которых функция сохраняет знак

При изучении этой темы дальнейшее развитие получает умение находить по графику промежутки возрастания и убывания функции, а также промежутки, в которых функция сохраняет знак

Ознакомление учащихся с примерами систем уравнений с двумя переменными, в которых оба уравнения второй степени, должно осуществляться с достаточной осторожностью и ограничиваться простейшими примерами

Ознакомление учащихся с примерами систем уравнений с двумя переменными, в которых оба уравнения второй степени, должно осуществляться с достаточной осторожностью и ограничиваться простейшими примерами

Работа с формулами n-го члена и суммы первых га членов прогрессий, помимо своего основного назначения, позволяет неоднократно возвращаться к вычислениям, тождественным преобразованиям, решению уравнений, неравенств,…

Работа с формулами n-го члена и суммы первых га членов прогрессий, помимо своего основного назначения, позволяет неоднократно возвращаться к вычислениям, тождественным преобразованиям, решению уравнений, неравенств,…

Планируемые результаты изучения учебного предмета «Алгебра»

Планируемые результаты изучения учебного предмета «Алгебра»

Учебно-тематическое планирование по алгебре на 2022-2023 учебный год 9 класс № п/п

Учебно-тематическое планирование по алгебре на 2022-2023 учебный год 9 класс № п/п

Тематическое планирование по алгебре для 9-го класса составлено с учетом рабочей программы воспитания

Тематическое планирование по алгебре для 9-го класса составлено с учетом рабочей программы воспитания

Доказывать: свойства числовых неравенств, теоремы о сложении и умножении числовых неравенств

Доказывать: свойства числовых неравенств, теоремы о сложении и умножении числовых неравенств

Описывать схематичное расположение параболы относительно оси абсцисс в зависимости от знака старшего коэффициента и дискриминанта соответствующего квадратного трёхчлена

Описывать схематичное расположение параболы относительно оси абсцисс в зависимости от знака старшего коэффициента и дискриминанта соответствующего квадратного трёхчлена

Находить точность приближения по таблице приближённых значений величины

Находить точность приближения по таблице приближённых значений величины

Числовые последовательности 2

Числовые последовательности 2
Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.
13.07.2022