ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ НОВОСИБИРСКОЙ ОБЛАСТИ
«ОБЛАСТНОЙ ЦЕНТР ОБРАЗОВАНИЯ»
(ГБОУ НСО «ОЦО»)
РАБОЧАЯ ПРОГРАММА
ПО АЛГЕБРЕ
9 класс
Составил: О.Н. Сурдал.,
учитель математики
п.Тулинский
2022г.
Пояснительная записка
Программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта второго поколения основного общего образования по математике:
Целью изучения курса математике в 7 – 9 классах является развитие вычислительных умений до уровня, позволяющего уверенно использовать их при решении задач математики и смежных предметов, усвоение аппарата уравнений и неравенств как основного средства математического моделирования задач, осуществление функциональной подготовки школьников. Курс характеризуется повышением теоретического уровня обучения, постепенным усилием роли теоретических обобщений и дедуктивных заключений. Прикладная направленность раскрывает возможность изучать и решать практические задачи.
В основе построения данного курса лежит идея гуманизации обучения, соответствующая современным представлениям о целях школьного образования и уделяющая особое внимание личности ученика, его интересам и способностям.
Предлагаемый курс позволяет обеспечить формирование как предметных умений, так и универсальных учебных действий школьников, а также способствует достижению определённых во ФГОС личностных результатов, которые в дальнейшем позволят учащимся применять полученные знания и умения для решения различных жизненных задач.
В курсе алгебры можно выделить следующие основные содержательные линии: арифметика; алгебра; функции; вероятность и статистика. Наряду с этим в содержание включены два дополнительных методологических раздела: логика и множества; математика в историческом развитии, что связано с реализацией целей общеинтеллектуального и общекультурного развития учащихся. Содержание каждого из этих разделов разворачивается в содержательно-методическую линию, пронизывающую все основные содержательные линии. При этом первая линия — «Логика и множества» — служит цели овладения учащимися некоторыми элементами универсального математического языка, вторая — «Математика в историческом развитии» — способствует созданию общекультурного, гуманитарного фона изучения курса.
В соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования в 7– 9 классах предмет «Математика» делится на два предмета: «Алгебра» и «Геометрия». Общее количество уроков алгебры в неделю в 7 – 9 класс – по 3 часа; в год 9 класс – 102 часа.
Личностные, метапредметные и предметные результаты освоения учебного предмета «Алгебра»
Взаимосвязь результатов освоения предмета «Математика» можно системно представить в виде схемы. При этом обозначение ЛР указывает, что продвижение учащихся к новым образовательным результатам происходит в соответствии с линиями развития средствами предмета.
Личностными результатами изучения предмета «Алгебра» » в виде учебного курса 7 – 9 класс являются следующие качества:
Средством достижения этих результатов является:
Метапредметными результатами изучения курса «Математика» является формирование универсальных учебных действий (УУД):
Регулятивные УУД:
Средством формирования регулятивных УУД служат технология системно-деятельностного подхода на этапе изучения нового материала и технология оценивания образовательных достижений (учебных успехов).
Познавательные УУД:
– анализировать, сравнивать, классифицировать и обобщать факты и явления;
– осуществлять сравнение, сериацию и классификацию, самостоятельно выбирая основания и критерии для указанных логических операций; строить классификацию путём дихотомического деления (на основе отрицания);
– строить логически обоснованное рассуждение, включающее установление причинно-следственных связей;
– создавать математические модели;
– составлять тезисы, различные виды планов (простых, сложных и т.п.). Преобразовывать информацию из одного вида в другой (таблицу в текст, диаграмму и пр.);
– вычитывать все уровни текстовой информации.
– уметь определять возможные источники необходимых сведений, производить поиск информации, анализировать и оценивать её достоверность.
– понимая позицию другого человека, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории. Для этого самостоятельно использовать различные виды чтения (изучающее, просмотровое, ознакомительное, поисковое), приёмы слушания.
– самому создавать источники информации разного типа и для разных аудиторий, соблюдать информационную гигиену и правила информационной безопасности;
– уметь использовать компьютерные и коммуникационные технологии как инструмент для достижения своих целей. Уметь выбирать адекватные задаче инструментальные программно-аппаратные средства и сервисы.
Средством формирования познавательных УУД служат учебный материал и прежде всего продуктивные задания учебника, позволяющие продвигаться по всем шести линиям развития.
1-я ЛР – Использование математических знаний для решения различных математических задач и оценки полученных результатов.
2-я ЛР – Совокупность умений по использованию доказательной математической речи.
3-я ЛР – Совокупность умений по работе с информацией, в том числе и с различными математическими текстами.
4-я ЛР – Умения использовать математические средства для изучения и описания реальных процессов и явлений.
5-я ЛР – Независимость и критичность мышления.
6-я ЛР – Воля и настойчивость в достижении цели.
Коммуникативные УУД:
Средством формирования коммуникативных УУД служат технология проблемного диалога (побуждающий и подводящий диалог) и организация работы в малых группах, также использование на уроках элементов технологии продуктивного чтения.
Предметные результаты:
1) умение работать с математическим текстом (структурирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, использовать различные языки математики (словесный, символический, графический), обосновывать суждения, проводить классификацию, доказывать математические утверждения;
2) владение базовым понятийным аппаратом: иметь представление о числе, владение символьным языком алгебры, знание элементарных функциональных зависимостей, формирование представлений о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;
3) умение выполнять алгебраические преобразования рациональных выражений, применять их для решения учебных математических задач и задач, возникающих в смежных учебных предметах;
4) умение пользоваться математическими формулами и самостоятельно составлять формулы зависимостей между величинами на основе обобщения частных случаев и эксперимента;
5) умение решать линейные и квадратные уравнения и неравенства, а также приводимые к ним уравнения, неравенства, системы; применять графические представления для решения и исследования уравнений, неравенств, систем; применять полученные умения для решения задач из математики, смежных предметов, практики;
6) овладение системой функциональных понятий, функциональным языком и символикой, умение строить графики функций, описывать их свойства, использовать функционально-графические представления для описания и анализа математических задач и реальных зависимостей;
7) овладение основными способами представления и анализа статистических данных; умение решать задачи на нахождение частоты и вероятности случайных событий;
8) умение применять изученные понятия, результаты и методы при решении задач из различных разделов курса, в том числе задач, не сводящихся к непосредственному применению известных алгоритмов.
Содержание учебного предмета «Алгебра» 9 класс
Числовые неравенства и их свойства. Почленное сложение и умножение числовых неравенств. Линейные неравенства с одной переменной и их системы.
Основная цель — ознакомить учащихся с применение: неравенств для оценки значений выражений, выработать умение решать линейные неравенства с одной переменной и их системы. Свойства числовых неравенств составляют ту базу, на которой основано решение линейных неравенств с одной переменной. Т ремы о почленном сложении и умножении неравенств находить применение при выполнении простейших упражнений на оценку выражений по методу границ. Вводятся понятия абсолютной погрешности и точности приближения, относительной погрешности. Умения проводить дедуктивные рассуждения получают развитие как при доказательствах указанных теорем, так и при выполнении упражнений на доказательства неравенств.
В связи с решением линейных неравенств с одной переменно: дается понятие о числовых промежутках, вводятся соответствующие названия и обозначения. Рассмотрению систем неравенств одной переменной предшествует ознакомление учащихся с понятиями пересечения и объединения множеств.
При решении неравенств используются свойства равносильных неравенств, которые разъясняются на конкретных примерах. Особое внимание следует уделить отработке умения решат простейшие неравенства вида ах > b, ах < b, остановившись специально на случае, когда а < 0.
В этой теме рассматривается также решение систем двух линейных неравенств с одной переменной, в частности таких, которые записаны в виде двойных неравенств.
Функция. Свойства функций. Квадратный трехчлен. Разложение квадратного трехчлена на множители. Функция у = ах2 + Ьх + с, ее свойства и график. Степенная функция.
Основная цель — расширить сведения о свойствах функций, ознакомить учащихся со свойствами и графиком квадратичной функции.
В начале темы систематизируются сведения о функциях. Повторяются основные понятия: функция, аргумент, область определения функции, график. Даются понятия о возрастании и убывании функции, промежутках знакопостоянства. Тем самым создается база для усвоения свойств квадратичной и степенной функций, а также для дальнейшего углубления функциональных представлений при изучении курса алгебры и начал анализа.
Подготовительным шагом к изучению свойств квадратичной функции является также рассмотрение вопроса о квадратном трехчлене и его корнях, выделении квадрата двучлена из квадратного трехчлена, разложении квадратного трехчлена на множители.
Изучение квадратичной функции начинается с рассмотрения функции у = ах2, ее свойств и особенностей графика, а также других частных видов квадратичной функции — функций у = ах2 + b, у = а (х – m)2. Эти сведения используются при изучении свойств квадратичной функции общего вида. Важно, чтобы учащиеся поняли, что график функции у = ах2 + bх + с может быть получен из графика функции у = ах2 с помощью двух параллельных переносов. Приемы построения графика функции y = ах2 + bх + с отрабатываются на конкретных примерах. При этом особое внимание следует уделить формированию у учащихся умения указывать координаты вершины параболы, ее ось симметрии, направление ветвей параболы.
При изучении этой темы дальнейшее развитие получает умение находить по графику промежутки возрастания и убывания функции, а также промежутки, в которых функция сохраняет знак.
Учащиеся знакомятся со свойствами степенной функции у = хп при четном и нечетном натуральном показателе п. Вводится понятие корня n-ой степени. Они получают представление о нахождении значений корня с помощью калькулятора, причем выработка соответствующих умений не требуется.
Целые уравнения. Дробные рациональные уравнения. Неравенства второй степени с одной переменной. Метод интервалов.
Основная цель — систематизировать и обобщить сведения о решении целых и дробных рациональных уравнений с одной переменной, сформировать умение решать неравенства вида ах2 + bх + с > 0 или ах2 + bх + с < 0, где а ≠ 0.
В этой теме завершается изучение рациональных уравнений с одной переменной. В связи с этим проводится некоторое обобщение и углубление сведений об уравнениях. Вводятся понятия целого рационального уравнения и его степени. Учащиеся знакомятся с решением уравнений третьей степени и четвертой степени с помощью разложения на множители и введения вспомогательной переменной. Метод решения уравнений путем введения вспомогательных переменных будет широко использоваться в дальнейшем при решении тригонометрических, логарифмических и других видов уравнений.
Расширяются сведения о решении дробных рациональных уравнений. Учащиеся знакомятся с некоторыми специальными приемами решения таких уравнений.
Формирование умений решать неравенства вида ах2 + bх + + с > 0 или ах2 + bх + с < О, где а ≠ 0 , осуществляется с опорой на сведения о графике квадратичной функции.
Учащиеся знакомятся с методом интервалов, с помощью которого решаются несложные рациональные неравенства.
Уравнение с двумя переменными и его график. Системы уравнений второй степени. Решение задач с помощью систем уравнений второй степени. Неравенства с двумя переменными и их системы.
Основная цель — выработать умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем.
В данной теме завершается изучение систем уравнений с двумя переменными. Основное внимание уделяется системам, в которых одно из уравнений первой степени, а другое второй.
Известный учащимся способ подстановки находит здесь дальнейшее применение и позволяет сводить решение таких систем к решению квадратного уравнения.
Ознакомление учащихся с примерами систем уравнений с двумя переменными, в которых оба уравнения второй степени, должно осуществляться с достаточной осторожностью и ограничиваться простейшими примерами.
Привлечение известных учащимся графиков позволяет привести примеры графического решения систем уравнений. С помощью графических представлений можно наглядно показать учащимся, что системы двух уравнений с двумя переменными: второй степени могут иметь одно, два, три, четыре решения или не иметь решений.
Разработанный математический аппарат позволяет существенно расширить класс содержательных текстовых задач, решаемых с помощью систем уравнений.
Изучение темы завершается введением понятий неравенства двумя переменными и системы неравенств с двумя переменными. Сведения о графиках уравнений с двумя переменными используются при иллюстрации множеств решений некоторых простейших неравенств с двумя переменными и их систем.
Математическое моделирование. Процентные расчеты. Приближенные вычисления. Основные правила комбинаторики. Относительная частота и вероятность случайного события. Классическое определение вероятности. Начальные сведения о статистике.
Основная цель — ознакомить учащихся с понятиями перестановки, размещения, сочетания и соответствующими формулами для подсчета их числа; ввести понятия относительной частоты и вероятности случайного события.
Изучение темы начинается с решения задач, в которых требуется составить те или иные комбинации элементов и подсчитать их число. Разъясняется комбинаторное правило умножения, которое используется в дальнейшем при выводе формул для подсчета числа перестановок, размещений и сочетаний. При изучении данного материала необходимо обратить внимание учащихся на различие понятий «размещение» и «сочетание», сформировать у них умение определять, о каком виде комбинаций идет речь в задаче.
В данной теме учащиеся знакомятся с начальными сведениями из теории вероятностей. Вводятся понятия «случайное событие», «относительная частота», «вероятность случайного события». Рассматриваются статистический и классический подходы к определению вероятности случайного события. Важно обратить внимание учащихся на то, что классическое определение вероятности можно применять только к таким моделям реальных событий, в которых все исходы являются равновозможными.
Числовые последовательности. Арифметическая и геометрическая прогрессии. Формулы п-го члена и суммы первых n членов прогрессии. Бесконечно убывающая геометрическая прогрессия.
Основная цель — дать понятия об арифметической и геометрической прогрессиях как числовых последовательностях особого вида.
При изучении темы вводится понятие последовательности, разъясняется смысл термина «n-й член последовательности», вырабатывается умение использовать индексное обозначение. Эти сведения носят вспомогательный характер и используются для изучения арифметической и геометрической прогрессий.
Работа с формулами n-го члена и суммы первых га членов прогрессий, помимо своего основного назначения, позволяет неоднократно возвращаться к вычислениям, тождественным преобразованиям, решению уравнений, неравенств, систем.
Рассматриваются характеристические свойства арифметической и геометрической прогрессий, что позволяет расширить круг предлагаемых задач.
Основная цель. Повторить, закрепить и обобщить основные знания, полученные в 9 классе. Подготовиться к ОГЭ.
Планируемые результаты изучения учебного предмета «Алгебра»
Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:
Учебно-тематическое планирование по алгебре
на 2022-2023 учебный год
9 класс
№ п/п |
Изучаемый материал |
Кол-во часов |
Контрольные работы |
1. |
Повторение курса алгебры за 8 класса |
4 |
1 |
2. |
Неравенства |
20 |
1 |
3. |
Квадратичная функция |
31 |
2 |
4. |
Элементы прикладной математики |
17 |
1 |
5. |
Числовые последовательности |
20 |
1 |
6. |
Повторение и систематизация учебного материала |
10 |
1 |
7 |
Всего |
102 |
7 |
Тематическое планирование по алгебре для 9-го класса составлено с учетом рабочей программы воспитания. Воспитательный потенциал данного учебного предмета обеспечивает реализацию следующих целевых приоритетов воспитания обучающихся ООО:
ü к знаниям как интеллектуальному ресурсу, обеспечивающему будущее человека, как результату кропотливого, но увлекательного учебного труда;
ü к окружающим людям как безусловной и абсолютной ценности, как равноправным социальным партнерам, с которыми необходимо выстраивать доброжелательные и взаимно поддерживающие отношения, дающие человеку радость общения и позволяющие избегать чувства одиночества;
ü к труду как основному способу достижения жизненного благополучия человека, залогу его успешного профессионального самоопределения и ощущения уверенности в завтрашнем дне.
Тематическое планирование по алгебре
на 2022-2023 учебный год
9 класс
(102 часов 3 часа в неделю)
Номер |
Содержание учебного |
Кол-во часов |
Основные виды, формы и способы учебной деятельности обучающихся с учётом программы воспитания |
1 2 3 |
Повторение курса алгебры за 8 класс |
3 |
|
4 |
Вводная контрольная работа |
1 |
|
Глава 1 Неравенства (20часов) |
|||
5 6 7 |
Числовые неравенства |
3 |
Распознавать и приводить примеры числовых неравенств, неравенств с переменными, линейных неравенств с одной переменной, двойных неравенств. Формулировать: определения: сравнения двух чисел, решения неравенства с одной переменной, равносильных неравенств, решения системы неравенств с одной переменной, области определения выражения; свойства числовых неравенств, сложения и умножения числовых неравенств Доказывать: свойства числовых неравенств, теоремы о сложении и умножении числовых неравенств. Решать линейные неравенства. Записывать решения неравенств и их систем в виде числовых промежутков, объединения, пересечения числовых промежутков. Решать систему неравенств с одной переменной. Оценивать значение выражения. Изображать на координатной прямой заданные неравенствами числовые промежутки. Устный и письменный опрос. Тестирование. Самостоятельная работа. Контрольная работа. |
8 9 |
Основные свойства числовых неравенств |
2 |
|
10 11 12 |
Сложение и умножение числовых неравенств. Оценивание значения выражения |
3 |
|
13 |
Неравенства с одной переменной |
1 |
|
14 15 16 17 18 |
Решение неравенств с одной переменной. Числовые промежутки |
5 |
|
19 20 21 22 |
Системы линейных неравенств с одной переменной |
4 |
|
23 |
Повторение и систематизация учебного материала |
1 |
|
24 |
Контрольная работа № 1 |
1 |
|
Глава 2 Квадратичная функция (31 час) |
|||
25 26 27 |
Повторение и расширение сведений о функции |
3 |
Описывать понятие функции как правила, устанавливающего связь между элементами двух множеств. Формулировать: определения: нуля функции;
промежутков знакопостоянства функции; функции, возрастающей (убывающей) на
множестве; квадратичной функции; квадратного неравенства; Строить графики функций с помощью преобразований вида f(x) → f(x) + b; f(x) → f(x + а); f(x) → kf(x). Строить график квадратичной функции. По графику квадратичной функции описывать её свойства. Описывать схематичное расположение параболы относительно оси абсцисс в зависимости от знака старшего коэффициента и дискриминанта соответствующего квадратного трёхчлена. Решать квадратные неравенства, используя схему расположения параболы относительно оси абсцисс. Описывать графический метод решения системы двух уравнений с двумя переменными, метод подстановки и метод сложения для решения системы двух уравнений с двумя переменными, одно из которых не является линейным. Решать текстовые задачи, в которых система двух уравнений с двумя переменными является математической моделью реального процесса, и интерпретировать результат решения системы. Устный и письменный опрос. Тестирование. Самостоятельная работа. Контрольная работа. |
28 29 30 |
Свойства функции |
3 |
|
31 32 |
Как построить график функции y = kf(x), если известен график функции y = f(x) |
2 |
|
33 34 35 36 |
Как построить графики функций y = f(x) + b и y = f(x + a), если известен график функции y = f(x) |
4 |
|
37 38 39 40 41 |
Квадратичная функция, её график и свойства |
5 |
|
42 |
Контрольная работа № 2 |
1 |
|
43 44 45 46 47 48 |
Решение квадратных неравенств |
6 |
|
46 50 51 52 53 |
Системы уравнений с двумя переменными |
5 |
|
54 |
Повторение и систематизация учебного материала |
1 |
|
55 |
Контрольная работа № 3 |
1 |
|
Глава 3 Элементы прикладной математики (17 часов) |
|||
56 57 58 |
Математическое моделирование |
3 |
Приводить примеры: математических моделей
реальных ситуаций; прикладных задач; приближённых величин; использования
комбинаторных правил суммы и произведения; случайных событий, включая
достоверные и невозможные события; опытов с равновероятными исходами;
представления статистических данных в виде таблиц, диаграмм, графиков;
использования Формулировать: определения: абсолютной погрешности, относительной погрешности, достоверного события, невозможного события; классическое определение вероятности; правила: комбинаторное правило суммы, комбинаторное правило произведения. Описывать этапы решения прикладной задачи. Пояснять и записывать формулу сложных процентов. Проводить процентные расчёты с использованием сложных процентов. Находить точность приближения по таблице приближённых значений величины. Использовать различные формы записи приближённого значения величины. Оценивать приближённое значение величины. Проводить опыты со
случайными исходами. Пояснять и записывать формулу нахождения частоты
случайного события. Описывать статистическую оценку вероятности случайного
события. Находить вероятность случайного события Описывать этапы статистического исследования. Оформлять информацию в виде таблиц и диаграмм. Извлекать информацию из таблиц и диаграмм. Находить и приводить примеры использования статистических характеристик совокупности данных: среднее значение, мода, размах, медиана выборки. Устный и письменный опрос. Тестирование. Самостоятельная работа. Контрольная работа. |
59 60 61 |
Процентные расчёты |
3 |
|
62 |
Абсолютная и относительная погрешности |
1 |
|
63 64 |
Основные правила комбинаторики |
2 |
|
65 66 |
Частота и вероятность случайного события |
2 |
|
67 68 |
Классическое определение вероятности |
2 |
|
69 70 |
Начальные сведения о статистике |
2 |
|
71 |
Повторение и систематизация учебного материала |
1 |
|
72 |
Контрольная работа № 4 |
1 |
|
Глава 4 Числовые последовательности (20 часов) |
|||
73 74 |
Числовые последовательности |
2 |
Приводить примеры: последовательностей; числовых последовательностей, в частности арифметической и геометрической прогрессий; использования последовательностей в реальной жизни; задач, в которых рассматриваются суммы с бесконечным числом слагаемых. Описывать: понятия последовательности, члена последовательности; способы задания последовательности. Вычислять члены последовательности, заданной формулой n-го члена или рекуррентно. Формулировать: свойства членов геометрической и арифметической прогрессий. Задавать арифметическую и геометрическую прогрессии рекуррентно. Записывать и пояснять формулы общего члена арифметической и геометрической прогрессий. Записывать и доказывать: формулы суммы n первых членов арифметической и геометрической прогрессий; формулы, выражающие свойства членов арифметической и геометрической прогрессий. Вычислять сумму бесконечной геометрической прогрессии, у которой | q | < 1. Представлять бесконечные периодические дроби в виде обыкновенных дробей. Устный и письменный опрос. Тестирование. Самостоятельная работа. Контрольная работа. |
75 76 77 78 |
Арифметическая прогрессия |
4 |
|
79 80 81 |
Сумма n первых членов арифметической прогрессии |
3 |
|
82 83 84 |
Геометрическая прогрессия |
3 |
|
85 86 87 |
Сумма n первых членов геометрической прогрессии |
3 |
|
88 89 90 |
Сумма бесконечной геометрической прогрессии, у которой | q | < 1 |
3 |
|
91 |
Повторение и систематизация учебного материала |
1 |
|
92 |
Контрольная работа № 5 |
1 |
|
Повторение и систематизация учебного материала (10 часов) |
|||
93 94 |
Повторение. Неравенства |
2 |
|
95 96 |
Повторение. Квадратичная функция |
2 |
|
97 98 |
Повторение. Элементы прикладной математики |
2 |
|
99 100 |
Повторение. Числовые последовательности |
2 |
|
101 |
Годовая контрольная работа |
1 |
|
102 |
Обобщение и систематизация учебного материала |
1 |
Печатные пособия:
1. Алгебра – 9 класс: учебник для учащихся общеобразовательных учреждений/ А.Г. Мерзляк, В.Б.Полонский, М.С.Якир. – М.: Вентана – Граф, 2018.
2. Алгебра – 9 класс: дидактические материалы: пособие для учащихся общеобразовательных учреждений/ А.Г.Мерзляк, В.Б.Полонский, Е.М.Рабинович, М.С.Якир. – М.: Вентана – Граф, 2018.
3. Алгебра – 9 класс: методическое пособие/ Е.В.Буцко, А.Г. Мерзляк, В.Б.Полонский, М.С.Якир. – М.: Вентана – Граф, 2018.
4. ОГЭ 3000 Задач по мат. Задания части 1. Ященко И.В. ,-Экзамен, 2022.
© ООО «Знанио»
С вами с 2009 года.