Иррациональным уравнением называется уравнение, содержащее неизвестную под знаком радикала, а также под знаком возведения в дробную степень. Например,
Основные методы решения иррациональных уравнений:
возведение в степень обеих частей уравнения;
введение новой переменной;
разложение на множители.
Дополнительные
методы решения иррациональных уравнений:
умножение на сопряженное;
переход к уравнению с модулем;
метод «пристального взгляда»
(метод анализа уравнения);
использование монотонности функции.
Метод возведения в степень
обеих частей уравнения:
Если иррациональное уравнение содержит только один радикал, то нужно записать так, чтобы в одной части знака равенства оказался только этот радикал. Затем обе части уравнения возводят в одну и ту же степень, чтобы получилась рациональное уравнение.
Если в иррациональном уравнении содержится два или более радикала, то сначала изолируется один из радикалов, затем обе части уравнения возводят в одну и ту же степень, и повторяют операцию возведения в степень до тех пор, пока не получится рациональное уравнение.
Материалы на данной страницы взяты из открытых источников либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.