Разработка урока по математике на тему "Теорема Пифагора" (8 класс)
Оценка 4.8

Разработка урока по математике на тему "Теорема Пифагора" (8 класс)

Оценка 4.8
Разработки уроков
docx
математика
8 кл
17.02.2017
Разработка урока по математике на тему "Теорема Пифагора" (8 класс)
конспект теорема Пифагора1 .docx
Муниципальное бюджетное общеобразовательное учреждение «Грибинская ООШ» Теорема Пифагора. Орлова Елена Прокопьевна 2016 г Теорема Пифагора. Конспект  урока Цели урока:   Изучение теоремы Пифагора, биографии Пифагора, использование теоремы в  решении задач.   Развитие логического мышления, познавательного интереса,  навыков  самостоятельной работы на компьютере.  Воспитание   у   учащихся   ответственного   отношения   к   учению,   культуры математической   речи,  уважительного   отношения   к   результатам   своих одноклассников. Оборудование:   Компьютер, мультимедийный проектор, экран,  программа MS Office 2007  Power Point, ноутбуки у учеников с  установленными программами: «Живая  геометрия», «Математические этюды», карточки с задачами.  Ход урока. 1. Организационный момент: Приветствие учеников.  (на доске плакат) «Измеряй свои желания, взвешивай свои мысли, исчисляй  свои слова». Учитель – Это одна из заповедей.  Кто автор этих слов?  В конце урока вы сможете ответить на этот вопрос. 2. Повторение: Форма организации: индивидуальная самостоятельная работа. (слайд 1, 2, 3) ученикам предлагается решить самостоятельно  7 задач на нахождение площади многоугольников (эти задачи у учащихся на листочках). Из них 5 задач простые на повторение формул площадей треугольника, ромба, трапеции,  параллелограмма.  Задачи № 6 и № 7 вызывают у учащихся проблему.  ( проверка решения задач  производится в парах) 3.Актуализации знаний  Учитель ­ какие задачи вызвали у вас затруднение и в чём они заключается? Возникает проблемная ситуация ­ необходимость ответить на следующие вопросы: 1. Есть ли какая­нибудь зависимость между сторонами треугольника?  2. Для всех ли треугольников она существует? 3. Кто эту зависимость открыл? 4. Можно ли эту зависимость применить к задачам № 6 и № 7?  4.Открытия новых знаний Учитель – чтобы ответить на первые два вопроса, я предлагаю вам провести  небольшую практическую работу. Форма организации: индивидуальная  самостоятельная  практическая работа на  компьютерах.  Для этого предлагается модель, сделанная в программе «Живая геометрия». (слайд 4) Задание: с помощью этой модели сравнить квадрат большей  стороны с суммой  квадратов других сторон. Рассмотрите любые виды треугольников. Для этого с помощью мыши  передвигайте точку С.  Сделайте вывод в тетради            После выполнения работы, заслушиваются ответы учеников, которые практически  дают формулировку теоремы Пифагора. Учитель ­     Если дан нам треугольник И притом с прямым углом, То квадрат гипотенузы Мы всегда легко найдём: Катеты в квадрат возводим, Сумму степеней находим –  И таким простым путём К результату мы придём. (слайд 5 ) Учитель – как вы думаете, кто сформулировал и доказал эту теорему? Вы  узнаете,  посмотрев фильм «Мысли великих людей». Смотрят документальный фильм про Пифагора (с точки зрения воспитания в этом  фильме формулируются очень хорошие заповеди)  https://www.youtube.com/watch?v=HyHVe7tQbsg Учитель – О ком шла речь в фильме? (слайд 6 )  (на доску вывешивается портрет Пифагора). Записывается тема урока .  (слайд 7 ) Учитель ­ существует три формулировки теоремы.  Учитель –почему во 2 и 3 формулировках рассматриваются именно  квадраты,  построенные на сторонах треугольника, а не прямоугольники, например? Учитель ­ как вы поняли третью формулировку теоремы? (слайд8)  Попробуйте доказать теорему Пифагора с помощью  программы  «Математические этюды», используя третью формулировку.  Форма организации: индивидуальная  самостоятельная  практическая работа на  компьютерах. http://www.etudes.ru/ru/etudes/pifagor/# (слайд9)   Смотрят доказательство теоремы (в зависимости от времени можно  предложить самостоятельно рассмотреть доказательство дома и этот слайд показать  на следующем уроке) file:///F:/теорема%20Пифагора1/теорема%20пифагора.swf 5.  Закрепление  (слайд 10, 11, 12)  Отрабатывают составление записи равенства для каждой задачи. (Задачи на карточках)   6.  Контроль знаний (слайд 13, 14) Учитель возвращает учеников к задачам, которые вызвали  затруднение в начале урока  (решают самостоятельно). Дополнительно (слайд 15)  задача про лотос file:///F:/теорема%20Пифагора1/цветок%20лотоса.swf Учитель задаёт вопросы: 1)  кому принадлежат слова  «Измеряй свои желания, взвешивай свои мысли,  исчисляй свои слова». 2) Какие ещё заповеди вы запомнили из фильма «Мысли великих людей»? 3) сформулируйте теорему Пифагора. 7.Домашнее задание Учитель подводит итоги, оценивает работу учащихся. п.54, № 487, № 495 (б, в). Ссылки: https://www.youtube.com/watch?v=HyHVe7tQbsg http://www.etudes.ru/ru/etudes/pifagor/# file:///F:/теорема%20Пифагора1/цветок%20лотоса.swf file:///F:/теорема%20Пифагора1/теорема%20пифагора.swf

Разработка урока по математике на тему "Теорема Пифагора" (8 класс)

Разработка урока по математике на тему "Теорема Пифагора" (8 класс)

Разработка урока по математике на тему "Теорема Пифагора" (8 класс)

Разработка урока по математике на тему "Теорема Пифагора" (8 класс)

Разработка урока по математике на тему "Теорема Пифагора" (8 класс)

Разработка урока по математике на тему "Теорема Пифагора" (8 класс)

Разработка урока по математике на тему "Теорема Пифагора" (8 класс)

Разработка урока по математике на тему "Теорема Пифагора" (8 класс)

Разработка урока по математике на тему "Теорема Пифагора" (8 класс)

Разработка урока по математике на тему "Теорема Пифагора" (8 класс)

Разработка урока по математике на тему "Теорема Пифагора" (8 класс)

Разработка урока по математике на тему "Теорема Пифагора" (8 класс)
Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.
17.02.2017