Развитие коммуникативных навыков на уроках математики
Оценка 4.9

Развитие коммуникативных навыков на уроках математики

Оценка 4.9
doc
10.11.2021
Развитие коммуникативных навыков на уроках математики
Доклад Развитие коммуникативных навыков.doc

 

 

РАЗВИТИЕ КОММУНИКАТИВНЫХ НАВЫКОВ КАК НЕОБХОДИМОЕ УСЛОВИЕ ФОРМИРОВАНИЯ МАТЕМАТИЧЕСКОЙ КОМПЕТЕНТНОСТИ

 

Проект образовательного стандарта второго поколения предполагает формирование в школе образовательных компетенций. Знания, умения и навыки (ЗУНы) не являются основной целью, а становятся лишь средством и базой для развития личности, формирования и развития образовательной компетентности, которую можно условно разделить на три группы: учебную, коммуникативную и индивидуально-личностную.

Кроме того, от школы требуется создать условия для развития творческой личности.  Востребованной становится такая компетенция, как креативность, для  которой характерна непредубежденность, преодоление стереотипов мышления и широта взглядов. Креативные люди создают окружающую среду, которая поощряет создание более эффективных способов деятельности, они  осознают  важность непрерывного обучения как залога для успешного творчества. В современных образовательных концепциях декларируется развитие творческой личности, но недостаточно разработаны пути практической реализации этой цели.

Творческое мышление - «один из видов мышления, характеризующийся созданием субъективно нового продукта и новообразованиями в самой познавательной деятельности по его созданию. Эти новообразования касаются мотивации, целей, оценок, смыслов» [1]. Таким образом, понятие "творческое мышление" охватывает мыслительные процессы, приводящие к получению решений, созданию необычных и оригинальных идей, обобщений, теорий, а также образных форм.

В практической деятельности даже сильные ученики, обладающие хорошим математическим мышлением и большим запасом знаний, оказываются не готовы работать в новых для себя ситуациях, далеко не всегда способны применить имеющиеся знания и навыки при решении нестандартных задач как на уроках, так и в жизни. Это происходит потому, что у учащихся не сформирована математическая компетентность, так как традиционное изучение математики самоцелью видит освоение ЗУНов (знаний, умений, навыков) и не предполагает выход «за его пределы» - качественного развития интеллектуально-творческого мышления,  являющегося составной частью математической компетентности. На научном семинаре Института психологии и педагогики развития (г.Красноярск) было представлено два подхода к определению математической компетентности: «1. Математическая компетентность – это способность использовать математические знания как ресурс для эффективного разрешения проблемы. 2. Математическая компетентность - наиболее общие математические знания и умения». Мы будем оперировать первым значением.

Мы живем в мире информации. Чтобы быть успешным, необходимо уметь работать с информацией, воспринимать ее, обрабатывать и уметь передавать. Кроме того, школа должна учить ребенка общению, умению дискутировать. Поэтому параллельно с формированием ЗУНов и способов учебных действий  (СУД) в школьном курсе изучения математики должна идти работа над формированием и развитием коммуникативной компетентности. Сформированность этих блоков (ЗУН и СУД, коммуникативная компетентность) позволит говорить о наличии математической компетентности.

Таким образом, развитие и формирование коммуникативной компетентности является необходимым условием формирования математической компетентности.  Поэтому в 5-6 классах на уроках математики необходимо большое количество времени уделять становлению коммуникативных навыков.

Для реализации этой цели можно использовать представленные ниже методические приемы по формированию и развитию коммуникативной компетентности.

 

1. Развитие письменной речи.

1.1. Индивидуальный пакет заданий.

Для каждого ученика готовится пакет заданий, которые выполняются только письменно. После проверки учитель возвращает пакет ученику со своими письменными комментариями по решениям. Устные комментарии, как со стороны ребенка, так и со стороны педагога не допускаются. Если необходимо, то решение переделывается и дорабатывается учеником. Каждый учащийся работает в наиболее комфортном для себя режиме.

При такой работе развиваются навыки работы с различными источниками информации, формируется умения передавать и воспринимать письменную информацию. Таким образом, можно говорить, что учащиеся овладевают письменными видами речевой деятельности, выступают в позиции авторов и комментаторов. Вырабатывается такое личностное качество, как способность отстаивать собственную точку зрения письменно.

 1.2. Создание художественных текстов на математические темы.

Вместо традиционного домашнего задания, выдается творческое задание (как правило, на каникулы). Необходимо создать сказку (можно в стихотворной форме), которая будет служить иллюстрацией некоторого математического правила.

Кроме формирования письменного коммуникативного навыка – рассказать читателю в интересной форме о математическом правиле - этот прием способствует представлению  математической картины мира в образах. Вырабатываются умения преобразовывать информацию, сохранять и передавать ее. Учащийся выступает в позиции автора, учится творческому подходу к любому процессу.

         1.3. Обязательное обоснование.

При проверке любой письменной работы (домашних, самостоятельных, контрольных) не принимаются необоснованные ответы, даже правильные. Для того, чтобы правильно письменно обосновать свое решение, необходимо уметь систематизировать, извлекать, отбирать нужную информацию и передать ее. В этом случае ученик выступает в роли письменного докладчика, комментатора.

 

2. Устная речь

2.1. Устные доклады.

Решения задач излагаются у доски в режиме «оппонент» - «докладчик» по правилам «математических боев». При этом общение у доски идет на «Вы», не допускается критиковать оппонента, критиковать можно только его решение. По просьбе докладчика оппонент повторяет или уточняет свои вопросы. Докладчик должен доказать каждое сформулированное им промежуточное утверждение либо сослаться на него, если оно общеизвестно. Докладчик обязан стремиться к ясности изложения, в частности, повторять по просьбе оппонента любую  часть своего решения.

Для успешного выступления и докладчик, и оппонент должны знать основы риторики, уметь устно вести диалог, уметь осознанно воспринимать и обрабатывать информацию. Необходимо обладать способностью слышать и слушать, уметь искать и находить компромиссы, уважать мнение другого.

2.2. Деловая игра «Ученик» - «учитель»

Работа в малых группах кроме индивидуализации процесса образования решает еще вопросы формирования коммуникативной компетентности. Группы могут быть составлены учителем, могут быть сформированы учениками в зависимости от преследуемых целей. Один из возможных приемов – отработка нового материала в малых группах. Группа получает задания, решения сдаются  устно. Если группа считает, что готова сдать задание, то к ним подходит учитель или консультант, который называет представителя группы, который будет устно презентовать решение группы. То есть, решение задач докладывает не тот, кто его получил, а тот, на кого укажет учитель. Если решение кем-нибудь получено, он должен суметь объяснить его всем членам своей группы.

В такой коллективной работе отрабатываются следующие способности: отбирать нужную для передачи информацию,  воспринимать ее, выделять главное и необходимое, владеть  способами совместной деятельности в группе. Каждый учащийся может выступить как в роли ученика, так и в роли учителя.

2.3.  Поток вопросов

Суть приема заключается в поощрении заданных вопросов по теме. На хороших вопросах акцентируется внимание других учащихся. После решения задачи обязательно нужно остановиться для того, чтобы дать возможность школьников сформулировать интересующий его вопрос. Если вопросов от учащихся не последовало, то учитель сам задает вопросы, стимулируя учащихся к обобщению полученного результата или, напротив, актуализируя интересный частный случай.

Одно из возможных заданий: придумать как можно больше вопросов по заданной теме. В процессе такой работы вырабатываются умения задавать вопросы, корректно вести учебный диалог. Учащийся может выступать в позициях слушателя, оппонента, ученика.

2.4. Публичные выступления

В работе с учащимися у доски важно не ставить плохие оценки, чтобы не формировался страх перед публичными выступлениями, а поощрять инициативу выхода к доске. В процессе публичного представления результатов своей работы учащиеся овладевают основами риторики, учатся выступать с устным сообщением, овладевают видами речевой деятельности. При этом они могут выступить в роли докладчика, учителя, оратора.

2.5. «Эксперт»

Система работы над развитием коммуникативных способностей предполагает привлечение старшеклассников для контрольно-оценочной деятельности. Чтобы принять зачет у школьника младшего возраста, важно владеть способами взаимодействия с окружающими, разными видами речевой деятельности. Каждый участник зачета учится как передавать, так и воспринимать информацию, обучается приемам действий в ситуациях общения. Учащиеся могут выступать в роли  эксперта, слушателя, оппонента.

 

Описанные методические приемы формирования и развития коммуникативной компетентности представляют систему, которая обеспечивает качественный прорыв учащихся в области развития интеллектуального мышления.

          Хорошо развитая устная и письменная речь учеников качественно отличает их от сверстников: они любопытны, пытливы, педантичны к прочитанному и услышанному. Коммуникативная компетентность современных подростков также проявляется и в свободном владении ими информационными технологиями. Ребята могут участвовать в мероприятиях дистанционного характера, которые проводятся с помощью информационных технологий. Таким образом, процесс формирования интеллектуально-творческого мышления становится более интенсивным и качественным.

          Если параллельно с формированием и развитием коммуникативных навыков идет работа над становлением устойчивой мотивации к предмету, способов учебных действий, то можно говорить об эффективном процессе формирования  математической компетентности.

 

Список литературы

1.       Епишева О.Б. Технология обучения математике на основе деятельностного подхода: Кн. для учителя / О.Б. Епишева. – М.: Просвещение, 2003

2.       Краткий психологический словарь / Под общей ред. А. В. Петровского и М. Г. Ярошевского - 2-е изд., расширенное, испр. и доп.— Ростов-на-Дону: «ФЕНИКС», 1998.

3.       Хуторской А.В. Методика личностно-ориентированного обучения. Как обучать всех по-разному?: пособие для учителя / А.В.Хуторской.  – М.: Изд-во Владос-Пресс, 2005

4.       Якиманская И.С. Личностно-ориентированное обучение в современной школе / И.С. Якиманская. - М.: Сентябрь, 1996


Скачано с www.znanio.ru

РАЗВИТИЕ КОММУНИКАТИВНЫХ НАВЫКОВ

РАЗВИТИЕ КОММУНИКАТИВНЫХ НАВЫКОВ

Мы живем в мире информации. Чтобы быть успешным, необходимо уметь работать с информацией, воспринимать ее, обрабатывать и уметь передавать

Мы живем в мире информации. Чтобы быть успешным, необходимо уметь работать с информацией, воспринимать ее, обрабатывать и уметь передавать

При проверке любой письменной работы (домашних, самостоятельных, контрольных) не принимаются необоснованные ответы, даже правильные

При проверке любой письменной работы (домашних, самостоятельных, контрольных) не принимаются необоснованные ответы, даже правильные

Одно из возможных заданий: придумать как можно больше вопросов по заданной теме

Одно из возможных заданий: придумать как можно больше вопросов по заданной теме

Хуторской А.В. Методика личностно-ориентированного обучения

Хуторской А.В. Методика личностно-ориентированного обучения
Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.
10.11.2021