Сборник практических и лабораторных работ по материаловедению
Оценка 4.7

Сборник практических и лабораторных работ по материаловедению

Оценка 4.7
Лабораторные работы
docx
химия
Взрослым
05.02.2018
Сборник практических и лабораторных работ по материаловедению
Методические рекомендации по выполнению лабораторных и практических работ по учебной дисциплине «Материаловедения» предназначены для студентов среднего профессионального образования по специальности 26.02.06 «Эксплуатация судового электрооборудования и средств автоматики» В данном методическом пособии приведены указания по выполнению практических и лабораторных работ по темам дисциплины, указаны темы и содержание лабораторных и практических работ, формы контроля по каждой теме и рекомендуемая литература.
практтические по материаловедению.docx
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ  «ВОЛЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ВОДНОГО ТРАНСПОРТА» ПЕРМСКИЙ ФИЛИАЛ Е.А. Сазонова  МАТЕРИАЛОВЕДЕНИЕ СБОРНИК ПРАКТИЧЕСКИХ И ЛАБОРАТОРНЫХ РАБОТ методические рекомендации по выполнению лабораторных и практических работ для студентов среднего профессионального образования специальности   26.02.06  «Эксплуатация судового электрооборудования и средств автоматики» 23.02.01 «Организация перевозок и управление на транспорте» (по видам) ПЕРМЬ 2016 Введение Методические  рекомендации  по  выполнению  лабораторных  и практических  работ по   учебной   дисциплине   «Материаловедения» предназначены   для   студентов       среднего профессионального   образования   по   специальности   26.02.06     «Эксплуатация   судового электрооборудования и средств автоматики» В     данном     методическом     пособии     приведены     указания     по     выполнению практических   и   лабораторных   работ   по   темам   дисциплины,   указаны   темы   и   содержание лабораторных   и   практических   работ,   формы   контроля   по   каждой   теме   и   рекомендуемая литература. Данные     рекомендации     способствуют     развитию         общих     и   профессиональных компетенций,  постепенному  и  целенаправленному развитию  познавательных  способностей. В  результате  освоения  данной  учебной  дисциплины  студент  должен уметь: ˗   выполнять механические испытания образцов материалов; ˗   использовать физико­химические методы исследования металлов; ˗   пользоваться  справочными  таблицами  для  определения  свойств материалов; ˗   выбирать  материалы  для  осуществления  профессиональной деятельности. В  результате  освоения  данной  учебной  дисциплины  студент  должен знать: ˗   основные   свойства   и   классификацию   материалов,   использующихся   в   профессиональной деятельности; ˗   наименование, маркировку, свойства обрабатываемого материала; ˗   правила применения смазывающих и охлаждающих материалов; ˗   основные сведения о металлах и сплавах; ˗   основные  сведения  о  неметаллических,  прокладочных,  ­ уплотнительных  и  электротехнических  материалах,  стали,  их классификацию. Лабораторные  и  практические  работы  позволят  сформировать практические навыки работы,   профессиональные   компетенции.     Они   входят   в   структуру     изучения     учебной дисциплины   «Материаловедения», после   изучения   темы:   1.1.   «Основные   сведения   о металлах  и  сплавах»,  1.2 «Железоуглеродистые сплавы», 1.3 «Цветные металлы и сплавы».  Лабораторные     и     практические     работы     представляют     собой     элемент   учебной дисциплины и оцениваются по критериям, представленным ниже: Оценка «5» выставляется студенту, если: ˗   тематика  работы  соответствует  заданной,  студент  показывает системные и полные знания и умения по данному вопросу; ˗   работа оформлена в соответствии с рекомендациями преподавателя; ˗   объем работы соответствует заданному; ˗   работа выполнена точно в сроки, указанные преподавателем. Оценка «4» выставляется студенту, если: ˗     тематика     работы     соответствует     заданной,     студент     допускает   небольшие неточности или некоторые ошибки в данном вопросе; ˗   работа оформлена с неточностями в оформлении; ˗   объем работы соответствует заданному или чуть меньше; ˗   работа сдана в сроки, указанные преподавателем, или позже, но не более, чем на 1­2 дня. Оценка «3» выставляется студенту, если: 2 тематика работы  соответствует заданной, но  в работе  отсутствуют значительные элементы по содержанию работы или тематика изложена нелогично, не четко представлено основное содержание вопроса; ˗   работа оформлена с ошибками в оформлении; ˗   объем работы значительно меньше заданного; ˗   работа сдана с опозданием в сроках на 5­6 дней. Оценка «2» выставляется студенту, если: ˗   не раскрыта основная тема работы; ˗   работа оформлена не в соответствии с требованиями преподавателя; ˗   объем работы не соответствует заданному; ˗   работа сдана с опозданием в сроках больше 7 дней. Лабораторные  и  практические  работы  по  своему  содержанию  имеют определенную структуру, предлагаем рассмотреть ее: ход работы приведен в начале  каждой  практической и  лабораторной  работы;  при  выполнении практических  работ  студентами  выполняется задание,   которое   указано   в конце   работы   (пункт   «Задание   для   студентов»);   при выполнении лабораторных работ   составляется отчет по ее выполнению, содержание отчета указано в конце лабораторной работы (пункт «Содержание отчета»). ˗ При   выполнении   лабораторных   и   практических   работ   студентами выполняются определенные     правила,   рассмотрите   их   ниже:   лабораторные   и   практические     работы выполняются     во     время     учебных     занятий;     допускается   окончательное   оформление лабораторных   и   практических   работ   в   домашних   условиях;     разрешается     использование дополнительной  литературы  при выполнении  лабораторных  и  практических  работ;  перед выполнением   лабораторной     и     практической     работы     необходимо     изучить     основные теоретические положения по рассматриваемому вопросу. 3 Практическая работа № 1 «Физические свойства металлов и методы их изучения» Цель  работы:  изучить  физические  свойства  металлов,  методы  их определения. Ход работы: 1.Ознакомьтесь с теоретическими положениями. 2.Выполните задание преподавателя. 3.Составьте отчет в соответствии с заданием. Теоретическая часть К физическим свойствам относятся: плотность,   плавление (температура плавления), теплопроводность, тепловое расширение. Плотность  ­  количество  вещества,  содержащееся  в  единице  объема. Это  одна  из важнейших     характеристик     металлов     и     сплавов.     По     плотности   металлы   делятся   на следующие группы: легкие (плотность не более 5 г/см3) ­ магний,  алюминий,  титан  и  др; тяжелые  ­  (плотность  от  5  до  10  г/см3)  ­ железо,  никель,  медь,  цинк,  олово  и  др.  (это наиболее  обширная  группа);  очень  тяжелые   (плотность  более  10  г/см3)   ­   молибден, вольфрам,  золото, свинец и др. В таблице 1 приведены значения плотности металлов. Таблица 1 металл Магний Алюминий Титан Цинк Олово плотность  г/см3 Плотность металлов металл 1,74 2,70 4,50 7,14 7,29 Железо Медь Серебро Свинец Золото плотность г/см3 7,87 8,94 10,50 11,34 19,32 Температура   плавления   ­   это   температура,   при   которой   металл переходит   из кристаллического  (твердого)  состояния  в  жидкое  с поглощением теплоты.  Температура плавления металлов лежат в диапазоне от −39 °C (ртуть) до 3410   °C (вольфрам).   Температура   плавления   большинства   металлов   (за исключением щелочных) высока,   однако   некоторые   «нормальные»   металлы,   например     олово     и     свинец,   можно расплавить на обычной  электрической  или газовой плите. В   зависимости   от   температуры   плавления   металл   подразделяют   на следующие группы:  легкоплавкие    (температура   плавления   не   превышает   600  oС)   ­   цинк, олово, свинец,   висмут   и   др.;  среднеплавкие    (от   600  oС   до   1600  oС)   ­   к   ним   относятся   почти 4 половина   металлов,   в   том   числе   магний,   алюминий,   железо,   никель,   медь,   золото; тугоплавкие  (более 1600  oС) ­ вольфрам, молибден, титан, хром и др. При   введении   в металл  добавок  температура  плавления,  как  правило, понижается. Таблица 2 металл Олово Железо Медь Золото Титан Температура плавления и кипения металлов Температура oС плавления кипения 232 1539 1083 1063 1680 2600 2900 2580   2660 3300 металл Серебро Магний Цинк Свинец Алюминий Температура oС плавления кипения 960   650   420 327 660 2180   1100 907 1750 2400 Теплопроводность  ­  способность  металла  с  той  или  иной  скоростью проводить теплоту при нагревании. нагревании. Электропроводность  ­  способность металла проводить электрический ток. Тепловое     расширение     ­     способность     металла     увеличивать     свой     объем   при Гладкая   поверхность   металлов   отражает   большой   процент     света     ­     это   явление называется  металлическим  блеском.  Однако  в  порошкообразном состоянии  большинство металлов  теряют  свой  блеск;  алюминий  и  магний, тем  не  менее,  сохраняют  свой  блеск и  в  порошке.  Наиболее  хорошо отражают  свет  алюминий,  серебро  и  палладий  ­  из  этих металлов   изготовляют     зеркала.   Для   изготовления   зеркал   иногда   применяется   и     родий, несмотря  на  его  исключительно  высокую  цену:  благодаря  значительно большей,  чем  у серебра   или  даже   палладия,   твёрдости   и   химической стойкости, родиевый слой может быть значительно тоньше, чем серебряный. Методы исследований в  материаловедении Основными     методами     исследования     в     металловедении     и   материаловедении   микроструктура,   электронная   микроскопия, являются:   рентгеновские методы исследования. Рассмотри их особенности более подробно.   излом,     макроструктура,   1.   Излом   ­   самый   простой   и   доступный   способ   оценки   внутреннего строения металлов.   Метод   оценки   изломов,   несмотря   на   свою   кажущуюся грубость   оценки качества  материала,  применяется  довольно  широко  в различных  отраслях  производства  и научных  исследований.  Оценка  излома во многих случаях может характеризовать качество материала. Излом  может  быть  кристаллическим  или  аморфным.  Аморфный  излом характерен для   материалов,   не   имеющего   кристаллического   строения,   таких   как   стекло,   канифоль, стекловидные шлаки. Металлические     сплавы,     в    том     числе     сталь,     чугун,     алюминиевые,   магниевые сплавы,  цинк  и  его  сплавы  дают  зернистый,  кристаллический излом. Каждая     грань     кристаллического     излома     является     плоскостью   скалывания отдельного зерна. Поэтому излом показывает нам размеры зерна металла.   Изучая   излом стали,  можно  видеть,  что  размер  зерна  может колебаться  в очень широких  пределах: от нескольких     сантиметров   в   литой,   медленно     остывшей,     стали     до     тысячных     долей миллиметра   в   правильно откованной   и   закаленной   стали.   В   зависимости   от   размера зерна,   излом может   быть   крупнокристаллический   и   мелкокристаллический.   Обычно мелкокристаллический   излом   соответствует   более   высокому   качеству металлического сплава. 5 В   случае   если   разрушение   исследуемого   образца   проходит   с предшествующей пластической  деформацией,  зерна  в  плоскости  излома деформируются,  и  излом  уже  не отражает     внутреннего     кристаллического   строения     металла;     в     этом     случае     излом называется     волокнистым.     Часто     в   одном     образце     в     зависимости     от     уровня     его пластичности,  в  изломе  могут быть  волокнистые  и  кристаллические  участки.  Часто  по соотношению площади   излома,   занятого   и   кристаллическими   участками   при   данных условиях испытания оценивают качество металла. Хрупкий кристаллический излом может получаться при разрушении по границам  зерен или  по  плоскостям  скольжения,  пересекающим  зерна.  В первом  случае  излом  называется межкристаллитным,  во  втором транскристаллитным.  Иногда,  особенно  при  очень  мелком зерне,  трудно определить природу излома. В этом случае излом изучают с помощью лупы или бинокулярного микроскопа. В  последнее  время  развивается  отрасль  металловедения  по фрактографическому изучению    изломов     на    металлографических   и  электронных     микроскопах.     При    этом находят     новые     достоинства     старого   метода     исследований     в     металловедении     ­ исследований     к   таким   исследованиям   понятия   фрактальных размерностей.   применяя     излома,   2.     Макроструктура     ­     является     следующим     методом     исследования   металлов. Макроструктурное  исследование  заключается  в  изучении плоскости  сечения  изделия  или образца   в   продольном,   поперечном   или любых иных направлениях после травления, без применения   увеличительных   приборов     Достоинством макроструктурного исследования   является   то   обстоятельство,   что   с   помощью   этого метода можно  изучить  структуру  непосредственно  целой  отливки  или  слитка, поковки, штамповки  и  т.д.  С  помощью  этого  метода  исследования  можно обнаружить  внутренние пороки     металла:     пузыри,     пустоты,     трещины,   шлаковые     включения,     исследовать кристаллическое  строение  отливки, изучать  неоднородность  кристаллизации  слитка  и  его химическую неоднородность (ликвацию).   помощи     лупы.     при     или   С помощью серных отпечатков макрошлифов на фотобумаге по Бауману определяется неравномерность  распределения  серы  по  сечению  слитков. Большое значение этот метод исследования   имеет   при   исследовании   кованых   или     штампованных     заготовок     для определения  правильности  направления волокон в металле. 3.   Микроструктура     ­     один   из   основных   методов   в   металловедении     ­     это исследование     микроструктуры     металла     на     металлографических     и   электронных микроскопах. Этот метод позволяет изучать микроструктуру металлических объектов с  большими увеличениями:  от  50  до  2000  раз  на  оптическом металлографическом  микроскопе  и  от 2     до     200     тыс.     раз     на     электронном   микроскопе.     Исследование     микроструктуры производится   на   полированных шлифах.   На   нетравленых   шлифах   изучается   наличие неметаллических включений,  таких  как  оксиды,  сульфиды,  мелкие  шлаковые  включения и другие включения, резко отличающиеся от природы основного металла. Микроструктура  металлов  и  сплавов  изучается  на  травленых  шлифах. Травление обычно производится слабыми кислотами, щелочами или другими растворами, в зависимости от природы металла шлифа. Действие травления заключается   в   том,   что   он   по­разному растворяет   различные   структурные составляющие,   окрашивая   их   в   разные   тона   или цвета.  Границы  зерен, отличающиеся  от  основного  раствора  имеют  травимость  обычно отличающуюся от основы и выделяется на шлифе в виде темных или светлых линий. Видимые   под   микроскопом   полиэдры   зерен   представляют   собой   сечения   зерен поверхностью шлифа. Так как это сечение является случайным и может проходить  на  разных расстояниях  от  центра  каждого  отдельного  зерна,  то различие в размерах полиэдров не соответствует действительным различиям в  размерах  зерен. Наиболее  близкой  величиной  к 6 действительному  размеру зерна являются наиболее крупные зерна. При     травлении     образца,     состоящего     из     однородных     кристаллических   зерен, например   чистого   металла,   однородного   твердого   раствора   и   др. наблюдается часто различно протравленные поверхности разных зерен. Это явление объясняется тем, что на поверхности шлифа выходят зерна, имеющие различные   кристаллографическую   ориентировку,   вследствие   чего степень   воздействия кислоты на   эти   зерна оказываются разной. Одни   зерна выглядят   блестящими,   другие сильно   протравливаются,   темнеют.   Это потемнение связано с   образованием различных фигур травления, по­разному отражающих  световые  лучи.  В  случае  сплавов,  отдельные структурные составляющие   образуют   микрорельеф   на   поверхности   шлифа,   имеющий участки с различным наклоном отдельных поверхностей . Нормально   расположенные   участки   отражают   наибольшее   количество света   и оказываются   наиболее   светлыми.   Другие   участки   ­   более   темные. Часто контраст в изображении   зернистой   структуры   связан   не   со   структурой   поверхности     зерен,     а     с рельефом   у   границ   зерен.   Кроме   того,   различные оттенки структурных составляющих могут   являться   результатом   образования   пленок,     образованных     при     взаимодействии травителя  со  структурными составляющими. С  помощью  металлографического  исследования  можно  осуществлять качественное выявление  структурных  составляющих  сплавов  и количественное  изучение  микроструктур металлов     изученными микросоставляющими     структур   и,   во­вторых,   специальными   методами   количественной металлографии.   во­первых,   путем   сравнения     с   известными     сплавов,     и   Величина зерна определяется. Методом  визуальной  оценки,  состоящей  в  том,  что рассматриваемая микроструктура,  приближенно  оценивается  баллами  стандартных  шкал по   ГОСТ   5639­68,   ГОСТ   5640­68.   По   соответствующим   таблицам,   для   каждого   балла определяется площадь одного зерна и количество зерен на  1 мм2 и в 1 мм3. Методом   подсчета   количества   зерен   на   единице   поверхности   шлифа   по соответствующим формулам. Если S   ­   площадь, на которой подсчитывается количество зерен n, а М ­   увеличение микроскопа, то средняя величина зерна в сечении поверхности шлифа Определение фазового состава. Фазовый  состав  сплава  чаще  оценивают  на  глаз  или путем  сравнения структуры со стандартными шкалами. Приближенный  метод  количественного  определения  фазового  состава может  быть проведен   методом   секущей   с   подсчетом   протяженности отрезков,   занятых   разными структурными   составляющими.   Соотношение этих   отрезков   соответствует   объемному содержанию  отдельных составляющих.  Точечный   метод   А.А.   Глаголева.   Этот   метод   осуществляется    путем оценки количества   точек   (точек   пересечения   окулярной   сетки   микроскопа), попадающих   на поверхности  каждой  структурной  составляющей.  Кроме того,  методом  количественной металлографии   производят:   определение величины   поверхности   раздела   фаз   и   зерен; определение  числа  частиц  в объеме; определение ориентации зерен в поликристаллических образцах. 4.   Электронная     микроскопия.   Большое     в   металлографических исследованиях   находит   в   последнее   время   электронный   микроскоп. Несомненно,   ему принадлежит  большое  будущее.  Если  разрешающая способность оптического микроскопа достигает   значений   0,00015   мм   =   1500   А,   то   разрешающая   способность   электронных микроскопов достигает 5­10 А, т.е. в несколько сот раз больше, чем у оптического.   значение   На   электронном   микроскопе   осуществляют   исследование   тонких   пленок   (реплик), снятых   с   поверхности   шлифа   или   непосредственное   изучение тонких металлических пленок, полученных утонением массивного образца. 7 В     наибольшей     степени     нуждаются     в     применении     электронной   микроскопии исследования   процессов,   связанные   с   выделением   избыточных   фаз,     например,     распад пересыщенных  твердых  растворов  при  термическом или деформационном старении. 5.   Рентгеновские   методы   исследования.   Одним   из   наиболее   важных методов   в установлении  кристаллографического  строения  различных металлов  и  сплавов  является рентгеноструктурный   анализ.   Этот   метод исследования   дает   возможность   определения характера  взаимного расположения  атомов  в  кристаллических  телах,  т.е.  решить  задачу, не доступную ни обычному, ни электронному микроскопу. В     основе     рентгеноструктурного     анализа     лежит     взаимодействие     между рентгеновскими   лучами   и   лежащими   на   их   пути   атомами     исследуемого   тела,   благодаря которому   последние     становятся    как     бы   новыми     источниками  рентгеновских  лучей, являясь центрами их рассеяния. Рассеяние  лучей  атомами  можно  уподобить  отражению  этих  лучей  от атомных плоскостей  кристалла  по  законам  геометрической  оптики.  Рентгеновские     лучи     отражаются     не     только     от     плоскостей,     лежащих     на поверхности,  но  и  от  глубинных.  Отражаясь  от  нескольких  одинаково ориентированных плоскостей,  отраженный  луч  усиливается.  Каждая плоскость  кристаллической  решетки дает   свой   пучок   отраженных   волн. Получив   определенное   чередование   отраженных пучков  рентгеновских лучей  под  определенными  углами,  рассчитывают  межплоскостное расстояние,  кристаллографические  индексы  отражающих  плоскостей,  в конечном счете, форму и размеры кристаллической решетки. Практическая часть Содержание отчета. 1.  В отчете необходимо указать название, цель работы. 2.  Перечислите  основные  физические  свойства  металлов  (с определениями). 3.  Зафиксируйте в тетради таблицы 1­2. Сделайте выводы по таблицам. 4.  Заполните  таблицу:  «Основные  методы  исследования  в материаловедении». Название метода     Что изучается Суть метода   Приборы, для исследования   необходимые Излом      Макроструктура      Микроструктура        Электронная микроскопия Ренгеновские  методы исследования 8 Практическая работа № 2 Тема: «Изучение диаграмм состояния» Цель  работы:  ознакомление  студентов  с  основными  видами  диаграмм состояния, их основными линиями, точками, их значением. Ход работы: 1.Изучите теоретическую часть. 2.Выполните задания практической части. Теоретическая часть Диаграмма   состояния   представляет   собой   графическое   изображение состояния любого  сплава  изучаемой  системы  в  зависимости  от концентрации и температуры (см.рис. 1) 9 Рис.1 Диаграмма состояния Диаграммы  состояния  показывают  устойчивые  состояния,  т.е. состояния, которые при   данных     условиях     обладают     минимумом     свободной   энергии,   и   поэтому   ее   также называют   диаграммой   равновесия,   так   как   она   показывает,   какие   при   данных   условиях существуют равновесные фазы. Построение   диаграмм   состояния   наиболее   часто   осуществляется   при помощи термического анализа. В  результате  получают  серию  кривых  охлаждения,  на  которых  при температурах     фазовых    превращений    наблюдаются     точки     перегиба     и  температурные остановки. Температуры,   соответствующие   фазовым   превращениям,   называют критическими точками.  Некоторые  критические  точки  имеют  названия, например,  точки  отвечающие началу   кристаллизации   называют   точками ликвидус, а концу кристаллизации ­ точками солидус. По  кривым  охлаждения  строят  диаграмму  состава  в  координатах:  по оси абсцисс ­ концентрация компонентов, по оси ординат ­ температура. Шкала  концентраций  показывает содержание  компонента  В. Основными  линиями  являются  линии  ликвидус  (1)  и  солидус (2),  а  также  линии соответствующие фазовым превращениям в твердом состоянии (3, 4). По  диаграмме  состояния  можно  определить  температуры  фазовых превращений, изменение  фазового  состава,  приблизительно,   свойства сплава, виды обработки, которые можно применять для сплава. Ниже представлены различные типы диаграмм состояния: 10 Рис.2. Диаграмма состояния сплавов с неограниченной растворимостью  компонентов в твердом состоянии (а); кривые охлаждения типичных  сплавов (б) Анализ полученной диаграммы (рис.2). 1. Количество компонентов: К = 2 (компоненты А и В). 2. Число фаз: f = 2 (жидкая фаза L, кристаллы твердого раствора  3. Основные линии диаграммы:   acb – линия ликвидус, выше этой линии сплавы находятся в жидком состоянии; adb – линия солидус, ниже этой линии сплавы находятся в твердом состоянии. ) Рис.3. Диаграмма состояния сплавов с отсутствием растворимости компонентов в твердом состоянии (а) и кривые охлаждения сплавов (б) Анализ диаграммы состояния (рис. 3). 1. Количество компонентов: К = 2 (компоненты А и В); 2. Число фаз: f = 3 (кристаллы компонента А, кристаллы компонента В, жидкая фаза). 3. Основные линии диаграммы: линия ликвидус acb, состоит из двух ветвей, сходящихся в одной точке;  11  линия солидус ecf, параллельна оси концентраций стремится к осям компонентов, но не достигает их; Рис. 4. Диаграмма состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии (а) и кривые охлаждения типичных сплавов (б) Анализ диаграммы состояния (рис. 4). 1. Количество компонентов: К = 2 (компоненты А и В); 2. Число фаз: f = 3 (жидкая фаза и кристаллы твердых растворов  В в компоненте А) и  ( раствор компонента А в компоненте В)); (раствор компонента 3. Основные линии диаграммы:     линия ликвидус acb, состоит из двух ветвей, сходящихся в одной точке; линия солидус аdcfb, состоит из трех участков; dm – линия предельной концентрации компонента В в компоненте А; fn – линия предельной концентрации компонента А в компоненте В. Практическая часть Задание для студентов: 1.  Запишите название работы и ее цель. 2.  Запишите что такое диаграмма состояния. Ответьте на вопросы: 1.  Как строится диаграмма состояния? 2.  Что можно определить по диаграмме состояния? 3.  Какие названия имеют основные точки диаграммы? 4.  Что указывается на диаграмме по оси абсцисс? Оси ординат? 5.  Как называются основные линии диаграммы? Задание по вариантам: Студенты   отвечают   на   одни   и   те   же   вопросы,   различными   являются   рисунки,   по которым необходимо отвечать. 1 вариант дает ответы по рисунку 2, 2 вариант дает ответы по рисунку 3, вариант 3 дает ответы по рисунку 4. Рисунок необходимо зафиксировать в тетрадь. 1.  Как называется диаграмма? 2.  Назовите сколько компонентов участвуют в образовании сплава? 12 3.  Какими буквами обозначены основные линии диаграммы? Практическая работа № 3 Тема: «Изучение чугунов» Цель  работы:   ознакомление   студентов   с   маркировкой   и   областью применения чугунов; формирование умения расшифровки марок чугунов. Ход работы: 1.Ознакомьтесь с теоретической частью. 2.Выполните задание практической части. Теоретическая часть Чугун  отличается  от  стали:  по  составу  ­  более  высокое  содержание углерода  и примесей;   по   технологическим   свойствам   ­   более   высокие литейные   свойства,   малая способность  к  пластической  деформации,  почти не используется в сварных конструкциях. В       зависимости   от   состояния   углерода   в   чугуне   различают:   белый чугун   – углерод   в   связанном   состоянии   в   виде   цементита,   в   изломе   имеет белый цвет и металлический   блеск;     серый   чугун     –     весь   углерод   или   большая   часть     находится     в свободном  состоянии  в  виде  графита,  а  в  связанном состоянии  находится  не  более  0,8 %     углерода.     Из­за     большого     количества   графита     его     излом     имеет     серый     цвет; половинчатый  –  часть  углерода находится  в  свободном  состоянии  в  форме  графита,  но не  менее  2  % углерода находится в форме цементита. Мало используется в технике. В зависимости от формы графита и условий его образования различают следующие группы  чугунов:  серый  ­  с  пластинчатым  графитом; высокопрочный  ­  с  шаровидным графитом;  ковкий  ­  с  хлопьевидным графитом. Графитовые  включения  можно  рассматривать  как  соответствующей формы пустоты в структуре чугуна. Около таких дефектов при нагружении концентрируются   напряжения, значение   которых   тем   больше,   чем   острее дефект. Отсюда следует, что графитовые включения   пластинчатой   формы   в   максимальной   мере   разупрочняют   металл.   Более благоприятна хлопьевидная форма,  а  оптимальной  является  шаровидная  форма  графита. Пластичность зависит  от  формы  таким  же  образом.  Наличие  графита  наиболее  резко снижает  сопротивление  при  жестких  способах  нагружения:  удар;  разрыв. Сопротивление сжатию снижается мало. Серые чугуны Серый     чугун     широко     применяется     в     машиностроении,     так     как     легко обрабатывается и обладает хорошими свойствами. В   зависимости   от   прочности   серый чугун  подразделяют  на  10  марок (ГОСТ 1412).  Серые  чугуны  при  малом  сопротивлении  растяжению  имеют достаточно  высокое сопротивление  сжатию.  Структура  металлической основы зависит от количества углерода и кремния. Учитывая    малое   сопротивление   отливок   из   серого   чугуна растягивающим   и ударным     нагрузкам,     следует     использовать     этот     материал   для     деталей,     которые подвергаются  сжимающим  или  изгибающим нагрузкам. В станкостроении это  ­  базовые, корпусные детали, кронштейны, зубчатые  колеса,  направляющие;  в  автостроении  ­  блоки цилиндров,   поршневые   кольца,   распределительные   валы,   диски   сцепления.   Отливки       из серого  чугуна  также  используются  в  электромашиностроении,  для изготовления товаров народного потребления. Маркировка  серых  чугунов:  обозначаются  индексом  СЧ  (серый чугун)  и  числом, которое  показывает  значение  предела  прочности, умноженное на 10­1. 13 Например:  СЧ  10  –  серый  чугун,  предел  прочности  при  растяжении  100 Мпа. Ковкий чугун Хорошие  свойства  у  отливок  обеспечиваются,  если  в  процессе кристаллизации  и охлаждения     отливок     в     форме     не     происходит     процесс   графитизации.     Чтобы предотвратить   графитизацию,   чугуны   должны   иметь пониженное содержание углерода и кремния. Различают  7  марок  ковкого  чугуна:  три  с  ферритной  (КЧ  30  ­  6)  и четыре с перлитной (КЧ 65 ­ 3) основой (ГОСТ 1215). По   механическим   и   технологическим   свойствам   ковкий   чугун   занимает промежуточное  положение  между  серым  чугуном  и  сталью.  Недостатком ковкого  чугуна по   сравнению   с   высокопрочным   является   ограничение толщины стенок для отливки и необходимость отжига. Отливки  из  ковкого  чугуна  применяют  для  деталей,  работающих  при ударных и вибрационных нагрузках. Из  ферритных  чугунов  изготавливают  картеры  редукторов,  ступицы, крюки, скобы, хомутики, муфты, фланцы. Из    перлитных    чугунов,     характеризующихся    высокой    прочностью,  достаточной пластичностью,   изготавливают   вилки   карданных   валов,   звенья   и   ролики   цепей   конвейера, тормозные колодки. Маркировка     ковкого     чугуна:     обозначаются     индексом     КЧ     (ковкий   чугун)     и числами.  Первое  число  соответствует  пределу  прочности  на растяжение, умноженное на 10­1, второе число – относительное удлинение. Например:  КЧ  30­6  –  ковкий  чугун,  предел  прочности  при  растяжении 300Мпа, относительное удлинение 6 %. Высокопрочный чугун Получают   эти   чугуны   из   серых,   в   результате   модифицирования магнием   или церием.   По   сравнению   с   серыми   чугунами,   механические свойства   повышаются,   это вызвано     отсутствием     неравномерности     в   распределении   напряжений   из­за   шаровидной формы графита. Эти  чугуны  обладают  высокой  жидкотекучестью,  линейная  усадка  ­ около  1%. Литейные   напряжения   в   отливках   несколько   выше,   чем   для серого   чугуна.   Из­за высокого  модуля  упругости  достаточно  высокая обрабатываемость  резанием.  Обладают удовлетворительной свариваемостью. Из  высокопрочного  чугуна  изготовляют  тонкостенные  отливки (поршневые кольца), шаботы   ковочных   молотов,   станины   и   рамы   прессов   и   прокатных   станов,   изложницы, резцедержатели, планшайбы. Отливки  коленчатых  валов  массой   до   2..3   т,   взамен   кованых  валов  из стали, обладают   более   высокой   циклической   вязкостью,   малочувствительны   к     внешним концентраторам     напряжения,     обладают     лучшими   антифрикционными   свойствами   и значительно дешевле. Маркировка  высокопрочного  чугуна:  обозначаются  индексом  ВЧ (высокопрочный чугун)  и  числом,  которое  показывает  значение  предела прочности, умноженное на 10­1. Например:  ВЧ  50  –  высокопрочный  чугун  с  пределом  прочности  на растяжение 500 Мпа. Задание для студентов: 1.Запишите название работы, ее цель. Практическая часть 14 2. Опишите производство чугуна. 3.Заполните таблицу: Свойства чугуна   Маркировка чугуна   Применение чугуна Название чугуна   1.Серые чугуны      2.Ковкие чугуны      3.Высокопрочные  чугуны Тема: «Изучение углеродистых и легированных конструкционных сталей» Практическая работа № 4 Цель  работы:   ознакомление   студентов   с   маркировкой   и   областью применения   расшифровки   маркировки   формирование     умения     сталей;   конструкционных   конструкционных сталей. Ход работы: 1.Ознакомьтесь с теоретической частью. 2.Выполните задания практической части. Теоретическая часть Сталь –  это сплав железа с углеродом, в котором углерода содержится в количестве 0 ­2,14%. Стали  являются  наиболее  распространенными  материалами.  Обладают хорошими технологическими   свойствами.   Изделия   получают   в   результате обработки давлением и резанием. Достоинством  является  возможность,  получать  нужный  комплекс свойств, изменяя состав и вид обработки. В   зависимости   от   назначения   стали   делятся   на   3   группы: конструкционные, инструментальные и стали специального назначения. Качество  в  зависимости  от  содержания  вредных  примесей:  серы  и фосфора стали подразделяют на стали:  ˗   Обыкновенного качества, содержание до 0.06% серы и до 0,07% фосфора.  ˗   Качественные ­ до 0,035% серы и фосфора каждого отдельно.  ˗   Высококачественные ­ до 0.025% серы и фосфора.  ˗   Особовысококачественные, до 0,025% фосфора и до 0,015% серы.  Раскисление   –     это   процесс   удаления   кислорода   из   стали,   т.   е.   по   степени   её раскисления,  существуют:  спокойные  стали,  т.  е.,  полностью раскисленные; такие стали обозначаются буквами "сп" в конце марки (иногда буквы  опускаются);   кипящие  стали   – слабо     раскисленные;     маркируются   буквами   "кп";   полуспокойные   стали,   занимающие промежуточное положение между двумя предыдущими; обозначаются буквами "пс".  Сталь обыкновенного качества подразделяется еще и по поставкам на 3 группы:  сталь группы  А  поставляется  потребителям  по  механическим свойствам  (такая  сталь  может иметь  повышенное  содержание  серы  или фосфора);  сталь  группы  Б  –  по  химическому составу;  сталь  группы  В  –  с гарантированными механическими свойствами и химическим составом.  Конструкционные стали предназначены для изготовления конструкций, деталей машин и приборов. Наличие  широкого  сортамента  выпускаемых  сталей  и  сплавов, изготавливаемых  в различных  странах,  обусловило  необходимость  их идентификации,  однако  до  настоящего времени     не     существует     единой   системы   маркировки   сталей   и   сплавов,   что   создает определенные трудности для металлоторговли. Так  в  России  и  в  странах  СНГ  (Украина,  Казахстан,  Белоруссия  и  др.) принята разработанная   раннее   в   СССР   буквенно­цифровая   система обозначения марок сталей и 15 ˗ номер.   ˗ стали.  ˗ стали не ставится.  ˗ ˗ ˗ ˗ ˗ ˗ ˗ сплавов, где согласно ГОСТу, буквами условно обозначаются названия элементов и способов выплавки   стали,   а   цифрами     —   содержание   элементов.   До   настоящего   времени международные организации по стандартизации не выработали единую систему маркировки сталей. Маркировка конструкционных углеродистых сталей обыкновенного качества   Обозначают по ГОСТ 380­94 буквами "Ст" и условным номером марки (от 0 до 6) в зависимости от химического состава и механических свойств.    Чем  выше  содержание  углерода  и  прочностные  свойства  стали,  тем больше её   Буква  "Г"  после  номера  марки  указывает  на  повышенное  содержание марганца в   Перед  маркой  указывают  группу  стали,  причем  группа  "А"  в обозначении марки     Для   указания   категории   стали   к   обозначению   марки   добавляют   номер   в   конце соответствующий категории, первую категорию обычно не указывают.  Например: ˗   Ст1кп2  ­  углеродистая  сталь  обыкновенного  качества,  кипящая,  № марки  1, второй  категории,  поставляется  потребителям  по  механическим свойствам (группа А);     ВСт5Г     ­     углеродистая     сталь     обыкновенного     качества     с     повышенным содержанием  марганца,  спокойная,  №  марки  5,  первой  категории  с гарантированными механическими  свойствами  и  химическим  составом (группа В);    ВСт0  ­  углеродистая  сталь  обыкновенного  качества,  номер  марки  0, группы Б, первой категории (стали марок Ст0 и Бст0 по степени раскисления не разделяют). Маркировка конструкционных углеродистых качественных сталей    В соответствии с ГОСТ 1050­88 эти стали маркируются двухзначными числами, показывающими  среднее  содержание  углерода  в  сотых  долях процента: 05 ; 08 ; 10 ; 25 ; 40, 45 и т.д. ˗   Для  спокойных  сталей  буквы  в  конце  их  наименований  не добавляются.  Например, 08кп, 10пс, 15, 18кп, 20 и т.д.  ˗   Буква Г в марке стали указывает на повышенное содержание марганца.  Например: 14Г, 18Г и т.д.  ˗    Самая   распространенная   группа   для   изготовления   деталей   машин (валы, оси, втулки, зубчатые колеса и т.д) Например: ˗    10 –   конструкционная углеродистая качественная сталь, с содержанием углерода около 0,1 %, спокойная около 0,45%, спокойная    45 – конструкционная углеродистая качественная сталь, с содержанием углерода    18   кп   –   конструкционная   углеродистая   качественная   сталь   с содержанием углерода около 0.18%, кипящая ˗   14Г  –  конструкционная  углеродистая  качественная  сталь  с содержанием углерода около 0,14%, спокойная, с повышенным содержанием марганца. Маркировка легированных конструкционных сталей ˗   В соответствии с ГОСТ 4543­71 наименования таких сталей состоят из цифр и букв.  ˗    Первые цифры марки обозначают среднее содержание углерода в стали в сотых долях процента.  ˗   Буквы  указывают  на  основные  легирующие  элементы,  включенные  в сталь.  ˗    Цифры   после   каждой   буквы   обозначают   примерное   процентное содержание соответствующего  элемента,  округленное  до  целого  числа,  при содержании  легирующего 16 ˗ ˗ ˗ ˗ ˗ ˗ Маркировка других групп конструкционных сталей Рессорно­пружинные стали. ˗   Основной отличительный признак этих сталей – содержание углерода в них  должно быть  около  0.8%  (в  этом  случае  в  сталях  появляются  упругие свойства)   Пружины  и  рессоры  изготовляют  из  углеродистых  (65,70,75,80)  и легированных (65С2, 50ХГС, 60С2ХФА, 55ХГР) конструкционных сталей   Эти стали легируют элементами которые повышают предел упругости – кремнием, марганцем, хромом, вольфрамом, ванадием, бором Например:   60С2   –   сталь   конструкционная   углеродистая   рессорно­пружинная с содержанием углерода около 0,65%, кремния около 2%.   ГОСТ  801­78  маркируют  буквами  "ШХ",  после  которых  указывают содержание Шарикоподшипниковые стали ˗ хрома в десятых долях процента.    Для  сталей,  подвергнутых  электрошлаковому  переплаву,  буква  Ш добавляется также и в конце их наименований через тире.  Например: ШХ15, ШХ20СГ, ШХ4­Ш.  ˗   Из них изготовляют детали для подшипников, также их используют для изготовления деталей, работающих в условиях высоких нагрузок. Например:  ШХ15  –  сталь  конструкционная  шарикоподшипниковая  с содержанием углерода 1%, хрома 1,5% ˗   ГОСТ 1414­75 начинаются с буквы А (автоматная). ˗    Если  сталь  при  этом  легирована  свинцом,  то  ее  наименование начинается с букв Автоматные стали АС.  элемента  до  1.5%  цифра  за  соответствующей буквой не указывается.      Буква   А   в   конце   марки   указывает   на   то,   что   сталь   высококачественная   (с пониженным содержанием серы и фосфора) ˗   Н –  никель, Х –    хром, К –    кобальт, М –    молибден, В –    вольфрам, Т – титан, Д –  медь, Г –  марганец, С –  кремний.  Например: ˗     12Х2Н4А     –     конструкционная   легированная   сталь,   высококачественная,   с содержанием углерода около 0,12%, хрома около 2%, никеля около 4%   40ХН  –  конструкционная легированная сталь, с содержанием углерода около 0,4%, хрома и никеля до 1,5%   Для  отражения  содержания  в  сталях  остальных  элементов используются  те  же правила,  что  и  для  легированных  конструкционных сталей. Например: А20, А40Г, АС14, АС38ХГМ  Например:  АС40  –  сталь  конструкционная  автоматная,  с  содержанием углерода 0,4%, свинца 0,15­0,3% (в марке не указывается) Практическая часть Задание для студентов: 1.  Запишите название работы, ее цель. 2.  Запишите  основные  признаки  маркировки  всех  групп конструкционных  сталей (обыкновенного   качества,   качественных   сталей, легированных   конструкционных   сталей, рессорно­пружинных     сталей,   шарикоподшипниковых   сталей,   автоматных   сталей),   с примерами. Задание по вариантам: 1. Расшифруйте   марки   сталей   и   запишите   область   применения конкретной марки (т.е. для изготовления чего она предназначена)  17 № Задание для 1 варианта   Ст0 1 БСт3Гпс   2 08   3 40   4 18Х2Н4МА   5 30ХГСА   6 70   7 55С2А   8 9 50ХФА   10 ШХ4­Ш   11 А40   Задание для 2 варианта Ст3 ВСт3пс 10 45 12ХН3А 38ХМЮА 85 60С2Х2 55С2 ШХ20 А11 Практическая работа № 5 Тема: «Изучение углеродистых и легированных инструментальных сталей»  Цель  работы:   ознакомление   студентов   с   маркировкой   и   областью применения   расшифровки   маркировки   формирование     умения   конструкционных   конструкционных сталей.   сталей;   Ход работы:  1.Ознакомьтесь с теоретической частью. 2.Выполните задание практической части. Сталь –  это сплав железа с углеродом, в котором углерода содержится в количестве 0­ Теоретическая часть 2,14%. Стали  являются  наиболее  распространенными  материалами.  Обладают хорошими технологическими   свойствами.   Изделия   получают   в   результате обработки давлением и резанием. Достоинством  является  возможность,  получать  нужный  комплекс свойств, изменяя состав и вид обработки. В   зависимости   от   назначения   стали   делятся   на   3   группы:   конструкционные, инструментальные и стали специального назначения. Качество  в  зависимости  от  содержания  вредных  примесей:  серы  и фосфора  стали подразделяют на:  стали обыкновенного качества, содержание до  0.06%  серы  и  до  0,07% фосфора;     качественные     ­     до     0,035%     серы     и   фосфора     каждого     отдельно; высококачественные  ­  до  0.025%  серы  и фосфора; особовысококачественные, до 0,025% фосфора и до 0,015% серы.  Инструментальные  стали  предназначены  для  изготовления  различного инструмента, как для ручной обработки, так и для механической. Наличие  широкого  сортамента  выпускаемых  сталей  и  сплавов, изготавливаемых  в различных  странах,  обусловило  необходимость  их идентификации,  однако  до  настоящего времени     не     существует     единой   системы   маркировки   сталей   и   сплавов,   что   создает определенные трудности для металлоторговли. Маркировка углеродистых инструментальных сталей ˗     Данные   стали   в   соответствии   с   ГОСТ   1435­90   делятся   на   качественные   и высококачественные.  18 Качественные стали обозначаются буквой У (углеродистая) и цифрой, указывающей среднее  содержание  углерода  в  стали,  в  десятых  долях процента.  Например:   У7,   У8,   У9,   У10.   У7   –   углеродистая   инструментальная   сталь   с содержанием углерода около 0.7%    В обозначения высококачественных сталей добавляется буква А (У8А, У12А   и т.д.).     Кроме     того,     в     обозначениях     как     качественных,     так     и   высококачественных углеродистых  инструментальных  сталей  может присутствовать  буква  Г,  указывающая  на повышенное  содержание  в  стали марганца.  Например:     У8Г,     У8ГА.     У8А     –     углеродистая     инструментальная     сталь     с содержанием углерода около 0,8%, высококачественная.     Изготовляют   инструмент   для   ручной   работы   (зубило,   кернер,   чертилка   и   т.д.), механической работы на невысоких скоростях (сверла). Маркировка легированных инструментальных сталей   Правила  обозначения  инструментальных  легированных  сталей  по ГОСТ 5950­73 в основном те же, что и для конструкционных легированных.  Различие  заключается  лишь  в  цифрах,  указывающих  на  массовую  долю углерода в стали. ˗ ˗ ˗ ˗ ˗ ˗      Процентное   содержание   углерода   также   указывается   в   начале наименования стали,  в  десятых  долях  процента,  а  не  в  сотых,  как  для конструкционных легированных сталей.  ˗    Если же в инструментальной легированной стали содержание углерода составляет около  1.0%,  то  соответствующую  цифру  в  начале  ее наименования обычно не указывают.  Приведем примеры: сталь 4Х2В5МФ, ХВГ, ХВЧ.  ˗   9Х5ВФ  –  легированная  инструментальная  сталь,  с  содержанием углерода около 0,9%, хрома около 5%, ванадия и вольфрама до 1% Маркировка высоколегированных (быстрорежущих) инструментальных сталей    Обозначают   буквой   "Р",   следующая   за   ней   цифра   указывает   на процентное содержание   в   ней   вольфрама:   В   отличие   от   легированных   сталей   в     наименованиях быстрорежущих  сталей  не  указывается  процентное содержание хрома, т.к. оно составляет около 4% во всех сталях,  и углерода (оно пропорционально содержанию ванадия).  ˗   Буква  Ф,  показывающая  наличие  ванадия,  указывается  только  в  том случае, если содержание ванадия составляет более 2.5%.  Например: Р6М5, Р18, Р6 М5Ф3.  ˗   Обычно  из  этих  сталей  изготовляют  высокопроизводительный инструмент: сверла, фрезы и т.д. (для удешевления только рабочую часть) Например:   Р6М5К2   –   быстрорежущая сталь, с содержанием углерода около 1%, вольфрама  около  6%,  хрома  около  4%,  ванадия  до  2,5%,  молибдена около 5%, кобальта около 2%. Практическая часть Задание для студентов: 1.  Запишите название работы, ее цель. 2.  Запишите  основные  принципы  маркировки  всех  групп инструментальных  сталей (углеродистых,  легированных, высоколегированных) Задание по вариантам:  1.  Расшифруйте  марки  сталей  и  запишите  область  применения конкретной марки (т.е. для изготовления чего она предназначена). 19 № Задание для 1 варианта   1 2 3 4 5 6 У8   У13А Х   ХВСГ Р18 Р6М5 Задание для 2 варианта У9 У8А 9ХС ХВГ Р6 Р6М5Ф3 Практическая работа № 6 Тема: «Изучение сплавов на основе меди: латуни, бронзы» Цель  работы:   ознакомление   студентов   с   маркировкой   и   областью применения цветных   металлов   –   меди   и   сплавов   на   ее   основе:   латуней   и бронз; формирование умения расшифровки маркировки латуней и бронз. Рекомендации для студентов:  прежде чем приступить к выполнению практической части задания, внимательно ознакомьтесь с теоретическими положениями, а также лекциями в вашей рабочей тетради по данной теме. Ход работы: 1.Ознакомьтесь с теоретической частью. 2.Выполните задание практической части. Теоретическая часть Латуни Латуни  могут  иметь  в  своем  составе  до  45  %  цинка.  Повышение содержания цинка  до  45  %  приводит  к  увеличению  предела  прочности  до 450  МПа. Максимальная пластичность  имеет место  при  содержании  цинка около 37 %. По способу изготовления изделий различают латуни деформируемые и литейные.  Деформируемые   латуни     маркируются   буквой     Л,   за   которой   следует  число, показывающее содержание меди в процентах, например в латуни Л62 содержится  62  %  меди и  38  %  цинка.  Если  кроме  меди  и  цинка,  имеются другие  элементы,  то ставятся их начальные буквы (О ­ олово, С ­ свинец, Ж  ­  железо,  Ф  ­  фосфор,  Мц  ­  марганец,  А  ­ алюминий,  Ц  ­  цинк).  Количество  этих  элементов  обозначается  соответствующими  цифрами  после  числа, показывающего  содержание  меди,  например,  сплав  ЛАЖ60­1­1 содержит 60 % меди, 1 % алюминия, 1 % железа и 38 % цинка. Латуни     имеют     хорошую     коррозионную     стойкость,     которую     можно   повысить дополнительно  присадкой  олова.  Латунь  ЛО70 ­1  стойка  против коррозии в морской воде 20 и называется “морской латунью“. Добавка   никеля   и   железа   повышает   механическую прочность  до  550 МПа. Литейные  латуни  также  маркируются  буквой  Л,  После  буквенного обозначения основного     легирующего     элемента     (цинк)     и     каждого   последующего   ставится   цифра, указывающая его усредненное содержание в сплаве.   Например,   латунь   ЛЦ23А6Ж3Мц2 содержит   23   %   цинка,   6   % алюминия,   3   %   железа,   2   %   марганца.   Наилучшей жидкотекучестью обладает латунь марки ЛЦ16К4. К литейным латуням относятся латуни типа ЛС,  ЛК,  ЛА,  ЛАЖ,  ЛАЖМц.  Литейные  латуни  не  склонны  к  ликвации, имеют сосредоточенную  усадку,  отливки  получаются  с  высокой плотностью. Латуни     являются     хорошим     материалом     для     конструкций,     работающих   при отрицательных температурах. Сплавы   меди   с   другими   элементами   кроме   цинка   называются     бронзами.   Бронзы Бронзы подразделяются на деформируемые и литейные. При маркировке деформируемых бронз на первом месте ставятся буквы Бр, затем буквы, указывающие, какие элементы, кроме меди, входят в состав сплава. После букв идут цифры,   показывающие   содержание   компонентов   всплаве.     Например,     марка     БрОФ10­1 означает,  что  в  бронзу  входит  10  % олова, 1 % ф осфора, остальное ­ медь. Маркировка   литейных   бронз   также   начинается   с   букв   Бр,   затем указываются буквенные   обозначения   легирующих   элементов   и   ставится цифра,   указывающая   его усредненное  содержание  в  сплаве.  Например, бронза  БрО3Ц12С5  содержит 3 % олова, 12 % цинка, 5 % свинца, остальное ­ медь. Оловянные бронзы  При сплавлении меди с оловом образуются твердые растворы.  Эти сплавы     очень     склонны     к     ликвации     из­за     большого   температурного     интервала кристаллизации.  Благодаря  ликвации  сплавы  с содержанием  олова  выше  5  %  является благоприятным  для  деталей  типа подшипников  скольжения:  мягкая  фаза  обеспечивает хорошую   прирабатываемость,     твердые     частицы     создают     износостойкость.     Поэтому оловянные бронзы являются хорошими антифрикционными материалами. Оловянные   бронзы   имеют   низкую   объемную   усадку   (около   0,8   %), поэтому используются   в   художественном   литье.   Наличие   фосфора   обеспечивает   хорошую жидкотекучесть. Оловянные бронзы подразделяются на деформируемые и литейные. В   деформируемых   бронзах   содержание   олова   не   должно   превышать   6%,   для обеспечения   необходимой   пластичности,   БрОФ6,5­0,15.   В     зависимости     от     состава деформируемые     бронзы     отличаются   высокими     механическими,     антикоррозионными, антифрикционными   и упругими   свойствами,   и   используются   в   различных   отраслях промышленности.  Из  этих  сплавов  изготавливают  прутки,  трубы,  ленту, проволоку. Практическая часть Задание для студентов:  1.Запишите название и цель работы. 2.Заполните таблицу: Название сплава, его определение Основные свойства сплава Пример маркировки Расшифровка марки Область применения 21 Практическая работа № 7 Тема: «Изучение алюминиевых сплавов» Цель  работы:    ознакомление   студентов   с   маркировкой   и   областью применения цветных металлов – алюминия и сплавов на его основе; изучение особенностей  применения алюминиевых  сплавов  в  зависимости  от  их состава. Рекомендации     для     студентов:    прежде     чем     приступить     к     выполнению практической  части  задания,  внимательно  ознакомьтесь  с  теоретическими положениями, а также лекциями в вашей рабочей тетради по данной теме. Ход работы: 1.Ознакомьтесь с теоретической частью. 2.Выполните задание практической части. Теоретическая часть Принцип маркировки  алюминиевых  сплавов.   В начале  указывается  тип сплава:  Д  ­ сплавы   типа   дюралюминов;   А   ­   технический   алюминий;   АК   ­ковкие   алюминиевые сплавы;  В  ­  высокопрочные  сплавы;  АЛ  ­  литейные сплавы. Далее     указывается     условный     номер     сплава.     За     условным     номером   следует обозначение,     характеризующее    состояние     сплава:     М    ­    мягкий  (отожженный);    Т     ­ термически     обработанный     (закалка     плюс     старение);     Н     ­нагартованный;   П   – полунагартованный. По технологическим свойствам сплавы подразделяются на три группы:деформируемые сплавы,  не  упрочняемые  термической  обработкой ; деформируемые  сплавы,  упрочняемые термической     обработкой;     литейные   сплавы.     Методами     порошковой     металлургии изготовляют  спеченные алюминиевые сплавы (САС) и  спеченные алюминиевые порошковые сплавы (САП). Деформируемые литейные сплавы, не упрочняемые термической обработкой. Прочность  алюминия  можно  повысить  легированием.  В  сплавы,  не упрочняемые термической обработкой, вводят марганец или магний. Атомы этих  элементов  существенно повышают  его  прочность,  снижая пластичность. Обозначаются сплавы: с марганцем  ­  АМц, с магнием  ­  АМг; после обозначения элемента указывается его содержание (АМг3). Магний   действует   только   как   упрочнитель,   марганец   упрочняет   и повышает коррозионную стойкость. Прочность  сплавов  повышается  только  в  результате  деформации в холодном   состоянии.   Чем   больше   степень   деформации,   тем   значительнее  растет 22 прочность  и  снижается  пластичность.  В  зависимости  от  степени упрочнения  различают сплавы  нагартованные  и  полунагартованные (АМг3П). Эти сплавы применяют для изготовления различных сварных емкостей для  горючего, азотной   и   других   кислот,   мало­   и   средненагруженных конструкций. Деформируемые сплавы, упрочняемые термической обработкой. К  таким  сплавам  относятся  дюралюмины  (сложные  сплавы  систем алюминий  ­ медь   ­   магний   или   алюминий   ­   медь   ­   магний   ­   цинк).   Они имеют   пониженную коррозионную   стойкость,   для   повышения   которой вводится   марганец.   Дюралюмины обычно  подвергаются  закалке  стемпературы  500оС  и  естественному  старению,  которому предшествует   двух­,   трехчасовой     инкубационный     период.     Максимальная     прочность достигается  через  4.5  суток.  Широкое  применение  дюралюмины  находят  в авиастроении, автомобилестроении, строительстве. Высокопрочными  стареющими  сплавами  являются  сплавы,  которые кроме  меди  и магния   содержат   цинк.   Сплавы   В95,   В96   имеют   предел прочности около 650 МПа. Основной потребитель  ­  авиастроение (обшивка, стрингеры, лонжероны).   при   Ковочные  алюминиевые  сплавы  АК,  АК8  применяются  для изготовления  поковок.   температуре   380­450оС,   подвергаются   закалке   от Поковки   температуры 500­560оС и старению при 150­165оС в течение 6   часов.   изготавливаются   В состав алюминиевых сплавов дополнительно вводят никель, железо, титан, которые повышают температуру рекристаллизации и  жаропрочность до 300оС.  Изготавливают  поршни,  лопатки  и  диски  осевых  компрессоров, турбореактивных двигателей. Литейные сплавы К  литейным  сплавам  относятся  сплавы  системы  алюминий  ­  кремний (силумины), содержащие 10­13 % кремния. Присадка к силуминам магния, меди содействует эффекту упрочнения литейных   сплавов   при   старении.   Титан   и   цирконий   измельчают   зерно. Марганец     повышает     антикоррозионные     свойства.     Никель     и     железо   повышают жаропрочность. Литейные  сплавы  маркируются  от  АЛ2  до  АЛ20.  Силумины  широко применяют для   изготовления   литых   деталей   приборов   и   других   средне ­   и малонагруженных деталей,  в  том  числе  тонкостенных  отливок  сложной формы. Практическая часть Задание для студентов: 1.  Запишите название и цель работы. 2.  Заполните таблицу: Название сплава, его определение Основные свойства сплава Пример маркировки Расшифровка марки Область применения 23 Лабораторная работа № 1 Тема: «Механические свойства металлов и методы их изучения (твердость)» Цель  работы:  изучить  механические  свойства  металлов,  методы  их изучения. Ход работы: 1.Ознакомьтесь с теоретическими положениями. 2.Выполните задание преподавателя. 3.Составьте отчет в соответствии с заданием. Теоретическая часть   называют     материала   Твердостью     способность     оказывать   сопротивление проникновению в него другого тела. При   испытаниях   на   твердость   тело,   внедряемое   в материал   и называемое индентором,   должно   быть более твердым,   иметь   определенные размеры и  форму,  не должно получать остаточной  деформации. Испытания на  твердость могут   быть   статическими   и   динамическими.     К   первому   виду относятся испытания методом   вдавливания,   ко   второму     ­     методом   ударного   вдавливания.     Кроме     того, существует  метод  определения  твердости царапанием ­ склерометрия.  По  значению  твердости  металла  можно  составить  представление  об уровне  его свойств.   Например,   чем   выше   твердость,   определенная давливанием наконечника, тем меньше пластичность металла, и наоборот.  Испытания  на  твердость по  методу вдавливания  состоят в том, что  в образец  под действием   нагрузки   вдавливают   индентор   (алмазный,   из закаленной   стали,   твердого сплава),   имеющий   форму   шарика,   конуса   или пирамиды.   После   снятия   нагрузки   на образце     остается     отпечаток,     измерив   величину     которого     (диаметр,     глубину     или диагональ)  и  сопоставив  ее  с размерами  индентора  и  величиной  нагрузки,  можно  судить о  твердости металла. Твердость  определяется  на  специальных  приборах  ­  твердомерах. Наиболее часто твердость определяют методами Бринелля (ГОСТ 9012­59) и Роквелла (ГОСТ 9013­59). Существуют  общие  требования  к  подготовке  образцов  и  проведению испытаний этими методами: 1. Поверхность образца должна быть чистой, без дефектов. 2.  Образцы  должны  быть  определенной  толщины.  После  получения отпечатка на обратной стороне образца не должно быть следов деформации. 3. Образец должен лежать на столике жестко и устойчиво. 4. Нагрузка должна действовать перпендикулярно поверхности образца. Определение твердости по Бринеллю Твердость  металла  по  Бринеллю  определяют  вдавливанием  в  образец закаленного 24 стального  шарика  (рис.  1)  диаметром  10;  5  или  2,5  мм  и выражают  числом  твердости НВ,  полученным  делением  приложенной нагрузки  Р  в   Н  или  кгс  (1Н  =  0,1  кгс)  на площадь  поверхности образовавшегося  на  образце  отпечатка  F  в мм Число твердости по Бринеллю HB выражается отношением приложенной нагрузки F  к площади S сферической поверхности отпечатка (лунки) на измеряемой поверхности. HB =   ,  (Мпа), D−√D2−d2 πD¿ F S=2F ¿ где  F – нагрузка, Н;  S – площадь сферической поверхности отпечатка, мм2 (выражена через D и d ); D – диаметр шарика, мм;  d – диаметр отпечатка, мм; Величину   нагрузки  F  ,   диаметр   шарика  D  и   продолжительность   выдержки   под нагрузкой  τ , выбирают по таблице 1. Рисунок 1. Схема измерения твердости по методу Бринелля. а) Схема вдавливания шарика в испытуемый металл F­ нагрузка, D – диаметр шарика, dотп – диаметр отпечатка; б) Измерение лупой диаметра отпечатка (на рисунке d=4,2 мм). Таблица 1.  Выбор диаметра шарика, нагрузки и выдержки под нагрузкой в зависимости  от твердости и толщины образца Диаметр  шарика D,  мм Толщина  испытуемого  образца, мм Материал Черные металлы Интервал  твердости в единицах  Бринелля,  МПа 1400­4500 более 6 6…3 менее 3 более 6 6…3 10 5 2,5 10 5 Менее 1400 Выдержка  под  нагрузкой  с  , τ 10 Нагрузка  F, Н (кгс) 29430  (3000) 7355 (750) 1840  (187,5) 9800  (1000) 25 Цветные металлы  и сплавы (медь,  латунь, бронза,  магниевые сплавы  и др.) 350­1300 Цветные металлы   (алюминий,  подшипниковые  сплавы и др.) 80­350 менее 3 более 6 6…3 менее 3 более 6 6…3 менее 3 2,5 10 5 2,5 10 5 2,5 2450 (750) 613 (62,5) 9800  (1000) 2450 (750) 613 (62,5) 2450 (250) 613 (62,5) 153,2  (15,6) 30 60 На   рисунке   2   приведена   схема   рычажного   прибора.   Образец   устанавливают   на предметный столик 4. Вращая маховик 3, винтом 2 поднимают образец до соприкосновения его с шариком 5 и далее до полного сжатия пружины 7, надетой на шпиндель 6. Пружина создает   предварительную   нагрузку   на   шарик,   равную   1   кН   (100   кгс),   что   обеспечивает устойчивое   положение   образца   во   время   нагружения.   После   этого   включают электродвигатель 13 и через червячную передачу редуктора 12, шатун 11 и систему рычагов 8,9, расположенных в корпусе 1 твердомера с грузами 10 создает заданную полную нагрузку на шарик. На испытуемом образце получается шаровой отпечаток. После разгрузки прибора образец снимают и определяют диаметр отпечатка специальной лупой. За расчетный диаметр отпечатка   принимают   среднее   арифметическое   значение   измерений   в   двух   взаимно перпендикулярных направлениях. Рисунок 2. Схема прибора Бринелля По   выше   приведенной   формуле,   используя   измеренный   диаметр   отпечатка, вычисляется число твердости HB. Число твердости в зависимости от диаметра полученного отпечатка можно также найти по таблицам (см. таблицу чисел твердости). При измерении твердости шариком диаметром D = 10,0 мм под нагрузкой F = 29430 Н HB 2335 Мпа или по   = 10 с – число твердости записывается так:  τ (3000 кгс), с выдержкой  старому обозначению НВ 238         (в кгс/мм2) При измерении твердости по Бринеллю необходимо помнить следующее: 1. Можно испытывать материалы с твердостью не более НВ 4500 Мпа, так как при большей твердости образца происходит недопустимая деформация самого шарика; 2. Во  избежание  продавливания  минимальная  толщина  образца должна  быть не менее десятикратной глубины отпечатка; 26 3. 4. четырех диаметров отпечатка; не менее 2,5 d. Расстояние между центрами двух соседних отпечатков должно быть не менее Расстояние от центра отпечатка до боковой  поверхности образца должно быть Определение  твердости  по Роквеллу По   методу   Роквелла   твердость металлов определяют вдавливанием в испытуемый образец  шарика  из закаленной  стали  диаметром  1,588 мм или алмазного конуса с углом при вершине     нагрузок: предварительной   Р0   =   10   кгс   и общей   Р ,   равной   сумме   предварительной     Р0   и основной  Р1нагрузок  (рис. 3).   двух   последовательно     прилагаемых     действием     120о  под   Число твердости по Роквеллу  HR  измеряется в условных безразмерных единицах и HRc =  100− определяется по формулам: h−h0 0,002  – при вдавливании алмазного конуса h−h0 0,002  – при вдавливании стального шарика, HRв =  130− где 100  –  число делений черной шкалы С, 130 –  число делений красной шкалы В циферблата индикатора, измеряющего глубину вдавливания; h0  –   глубина   вдавливания   алмазного   конуса   или   шарика   под   действием предварительной нагрузки. Мм h – глубина вдавливания алмазного конуса или шарика под действием общей нагрузки, мм 0,002 – цена деления шкалы циферблата индикатора (перемещение алмазного конуса при измерении твердости на 0,002 мм соответствует перемещению стрелки индикатора на одно деление), мм Вид   наконечника   и   величина   нагрузки   выбирается   по   таблице   2,  в   зависимости   от твердости и толщины испытуемого образца. . Число твердости по Роквеллу (HR) является мерой глубины вдавливания индентора и выражается   в   условных   единицах.   За   единицу   твердости   принята   безразмерная   величина, соответствующая   осевому   перемещению   на   0,002   мм.   Число   твердости   по   Роквеллу указывается непосредственно стрелкой на шкале С или В индикатора после автоматического снятия основной нагрузки. Твердость одного и того же металла, определенная различными методами выражается различными единицами твердости.  Например, HB 2070, HRc 18 или HRв 95. Рисунок 3. Схема измерения твердости по Роквеллу 27 Вид  наконечн ика Общая  нагрузка F,  Н (кгс) Минимальная  толщина  образца Обозначение  твердости по  Роквеллу шкала Число  твердо сти В С А HRВ Стальной шарик 981 (100) HRС Алмазны й конус 1471 (150) HRА Алмазны й конус 588 (60) 0,7 0,7 0,4 Таблица 2 Пределы  измерения  в единицах  Роквелла 25…100 по шкале В 20…67 по шкале С 70…85 по шкале В Пределы  измерения  твердости  образца в  единицах  Бринелля, НВ От 500 до 2300  (незакаленные  стали, цветные  металлы и их  сплавы от 2000 до 7000 (закаленные  стали) От 4000 до  9000 (детали  подвергшиеся  цементации или азотированию,  твердые сплавы и др.) Метод Роквелла отличается простотой и высокой производительностью, обеспечивает сохранение  качественной  поверхности   после   испытания,   позволяет  испытывать  металлы   и сплавы, как низкой, так и высокой твердости. Этот метод не рекомендуется применять для сплавов   с   неоднородной   структурой   (чугуны   серые,   ковкие   и   высокопрочные, антифрикционные подшипниковые сплавы и др.). Практическая часть Содержание отчета. 1. Укажите название работы, ее цель. Ответьте на вопросы: 1.  Что называется твердостью? 2.  В чем сущность определения твердости? 3.  Какие 2 метода определения твердости вы знаете? В чем их отличие? 4.  Как необходимо подготовить образец к испытанию? 5.  Чем  объяснить  отсутствие  универсального  метода  определения твердости? 6.   Почему   из   многих   механических   характеристик   материалов   наиболее часто определяют твердость? 7.  Зафиксируйте в тетради схему определения твердость по Бриннелю и по Роквеллу. 28 Лабораторная работа № 2 Тема: «Механические свойства металлов и методы их изучения (прочность, упругость)» Цель  работы:  изучить  механические  свойства  металлов,  методы  их изучения. Ход работы: 1.Ознакомьтесь с теоретическими положениями. 2.Выполните задание преподавателя. 3.Составьте отчет в соответствии с заданием. Теоретическая часть Основными   механическими   свойствами   являются   прочность,   упругость,   вязкость,   конструктор   обоснованно   выбирает твердость. соответствующий  материал,  обеспечивающий  надежность  и долговечность конструкций при их минимальной массе.   Зная   механические   свойства, Механические     свойства     определяют     поведение     материала     при   деформации   и разрушении   от   действия   внешних   нагрузок.   В     зависимости     от     условий     нагружения механические  свойства  могут определяться при:  1.  Статическом  нагружении  ­  нагрузка  на  образец  возрастает медленно  и плавно. 29 2.   Динамическом нагружении   ­   нагрузка возрастает с большой скоростью, имеет ударный характер. 3.   Повторно­переменном   или   циклическим   нагружении   ­   нагрузка   в процессе испытания многократно изменяется по величине или по величине и направлению. Для     получения     сопоставимых     результатов     образцы     и     методика   проведения механических   испытаний   регламентированы   ГОСТами.   При     статическом     испытании     на растяжение:  ГОСТ  1497  получают характеристики прочности и пластичности. Прочность  –  способность  материала  сопротивляться  деформациям  и разрушению. Пластичность  –  это  способность  материала  изменять  свои  размеры  и форму  под воздействием  внешних  сил;  мера  пластичности  –  величина остаточной деформации. Устройство,   определяющее   прочность   и   пластичность     –     это   разрывная   машина, которая  записывает  диаграмму  растяжения  (см.  рис. 4), выражающую  зависимость  между удлинением  образца  и  действующей нагрузкой. Рис. 4. Диаграмма растяжения: а – абсолютная, б – относительная. Участок  оа  на  диаграмме   соответствует  упругой  деформации   материала, когда соблюдается  закон  Гука.  Напряжение,  соответствующее  упругой предельной  деформации в  точке  а,  называется  пределом пропорциональности. Предел     пропорциональности     –     это     наибольшее     напряжение,     до     достижения которого справедлив закон Гука. При   напряжениях   выше   предела   пропорциональности   происходит равномерная пластическая деформация (удлинение или сужение сечения). Точка  b  –  предел упругости  –  наибольшее напряжение, до достижения которого в образце не возникает остаточной деформации. Площадка  сd  –  площадка  текучести,  она  соответствует  пределу текучести  –  это напряжение,   при   котором   в   образце   происходит   увеличение   деформации   без   увеличения нагрузки (материал «течет»). Многие   марки   стали,   цветных   металлов   не   имеют   ярко   выраженной площадки текучести,   поэтому   для   них   устанавливают   условный   предел текучести.   Условный предел   текучести   –   это   напряжение,   которое соответствует   остаточной   деформации равной  0,2%  от  первоначальной длины образца (сталь легированная, бронза, дюралюминий и др. материалы).  Точка     В     соответствует     пределу     прочность     (на     образце     появляется   местное утоньшение  –  шейка,  образование  утоньшения  характерно  для пластичных материалов). 30 Предел  прочности  –  это  максимальное  напряжение,  которое выдерживает образец до разрешения (временное сопротивление разрыву). За   точкой     В    нагрузка     падает   (вследствие   удлинения    шейки)   и  разрушение происходит в точке К. Практическая часть. Содержание отчета.  1. Укажите название работы, ее цель. 2.     Какие     механические   свойства   вы   знаете?   Какими   методами   определяются механические свойства материалов? 3.  Запишите  определение  понятий  прочность  и  пластичность.  Какими методами они   определяются?   Как   называется   устройство,   которое   определяет   эти   свойства?   С помощью чего определяются свойства? 4. Зафиксируйте абсолютную диаграмму растяжения пластичного материала. 5. После диаграммы укажите названия всех точек и участков диаграммы. 6.  Какой  предел  является  основной  характеристикой  при  выборе  материала для изготовления какого­либо изделия? Ответ обоснуйте. 7.     Какие   материалы   более   надежны   в   работе   хрупкие   или   пластичные?   Ответ обоснуйте. Список литературы Основная: 1. Адаскин  А.М., Зуев  В.М.  Материаловедение  (металлообработка).  –  М.: ОИЦ «Академия», 2009 – 240 с. ФОРУМ, 2010 – 336 с. 2. 3. Адаскин  А.М., Зуев  В.М.  Материаловедение и технология материалов.  –  М.: Чумаченко  Ю.Т.  Материаловедение  и  слесарное  дело  (НПО  и  СПО).  – Ростов н/Д.: Феникс, 2013 – 395 с.    Дополнительная: 1. Жуковец   И.И. Механические   испытания   металлов. – М.: Высш.шк., 1986. – 199 с. 2. 3. Лахтин Ю.М. Основы материаловедения. – М.: Металлургия, 1988. Лахтин Ю.М., Леонтьева В.П. Материаловедение. – М.: Машиностроение, 1990. 31 Электронные ресурсы:  1.     Журнал     «Материаловедение».     (Электронный     ресурс)     –     форма     доступа http://www.nait.ru/journals/index.php?p_journal_id=2. 2.       Материаловедение:     образовательный     ресурс,     форма     доступа     http://   сталей.     (Электронный     ресурс)     –     форма     доступа www.supermetalloved/narod.ru. 3.     Марочник   www.splav.kharkov.com. 4.   Федеральный   центр   информационно­образовательных   ресурсов. (Электронный ресурс) – форма доступа www.fcior.ru. 32

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению

Сборник практических и лабораторных работ по материаловедению
Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.
05.02.2018