Треугольник Рело
Оценка 4.7

Треугольник Рело

Оценка 4.7
Исследовательские работы
docx
математика
Взрослым
21.04.2017
Треугольник Рело
Публикация является частью публикации:
треугольник Рело.docx
Содержание. Введение………………………………………………………..……………….…....2 1. Основные геометрические характеристики.…………........................................4 1.1.Треугольник   Рёло   –   также   как   и   круг   ­ кривая   постоянной   ширины.   Рело………………………………………….. Периметр треугольника …….....4 1.2.Площадь.   Симметричность.   Замечательные   точки   треугольника. …………………………………………………………………………..….5 1.3.Треугольник   Рело   можно   вписать   в   квадрат,   он   может   вращаться   в квадрате со стороной а, всё время касаясь каждой из сторон ……………. …...7 2. История изобретения и применение треугольника Рело…………………...…10 2.1. История изобретения треугольника Рело…………………………….…..10 2.2. Применение треугольника Рело……………………………………….….11 2.3.  Крышки   для   люков.  Треугольник   Рёло   в   искусстве,     архитектуре и литературе……………………………………………………………………...…13 2.4. Изобретение велосипеда с треугольными колесами……………...…..…14 3. Заключение. ……………….…………………………………….……………….15 4. Приложение……………………………………………………………………..16 5. Список литературы……………………………………………………………..22 1 Введение. «Изобретением велосипеда»   называют   бессмысленное   повторение   и переоткрытие   давно   пройденного   и   известного,   и   совершенно   напрасно. Современные инженеры, можно сказать, постоянно изобретают велосипед, внося все новые усовершенствования в его конструкцию и отдельные детали. Однажды     интернете удивительном в изобретении китайского пенсионера   –   велосипеде   с   треугольными   колесами одном   я   прочитал   об   (Приложение 1. Рис. 1). Меня   заинтересовало   не   только   само   по   себе   данное   изобретение,   но   и необычная   геометрическая   фигура   –   круглый   треугольник.   Я   узнал,   что   он называется треугольником Рело и посвятили свою работу изучению его свойств и областей применения. А заодно поставили задачу выяснить, как геометрия позволяет этому чуду катиться и иметь удивительно плавный ход. Цель работы ­ изучить основные свойства треугольника Рело, историю его изобретения,   рассмотреть   области   применения,   выявить   задачи,   связанные   с треугольником Рело. Для этого поставлены следующие задачи:  Познакомиться с историей изобретения;  Рассмотреть и изучить свойства треугольника Рело;  Выяснить области применения треугольника Рело.  Найти   объяснение   плавности   хода   велосипеда   с   «треугольными колесами» 2 Гипотеза: Треугольнику   Рело   присущи   свойства   обеих   геометрических фигур, используемых в его построении, кроме того он обладает собственными свойствами, которые используются в технике. Теоретическая   значимость  исследования   состоит   в   описании, всестороннем   анализе,   сопоставлении   свойств   геометрических   фигур, опережающем изучении формул площадей фигур, обобщении и систематизации материала по теме проекта. Практическая значимость  состоит в том, что результаты работы могут найти применение в курсах по выбору, программах факультативов, основой для разработки   внеклассных   занятий   по   математике   и   интегрированных   уроков математики и физики. Работа над темой существенно расширит представления о «круглом» треугольнике, семействе фигур постоянной ширины. Определение:  Треугольник   Рело  представляет   собой   область пересечения трёх равных кругов с центрами в вершинах правильного треугольника   и   радиусами,   равными   его   стороне.   Негладкая замкнутая   кривая,   ограничивающая   эту   фигуру,   также   называется треугольником Рёло. Построение треугольника Рело циркулем: Рисунок 2. Построение треугольника Рело. 3 Треугольник Рёло можно построить с помощью одного только циркуля, не прибегая к линейке. Это построение сводится к последовательному проведению трёх   равных   окружностей.   Центр   первой   выбирается   произвольно,   центром второй   может   быть   любая   точка   первой   окружности,   а   центром   третьей — любая из двух точек пересечения первых двух окружностей. 1. Основные геометрические характеристики. 1.1.  Треугольник   Рело   –   также   как   и   круг   ­ кривая   постоянной ширины. Данные   утверждения   проверены   опытным   путем,   вращением   трех геометрических фигур между двумя опорными прямыми: Рисунок 3. Доказательство постоянства ширины   Периметр треугольника Рело.    P=πa и   совпадает   с   периметром   круга.   Формула   доказана   опытным путем  4 Рисунок 4. Определение периметра круга и треугольника Рело 1.2.  Площадь. Также как и обычный треугольник, круг, треугольник Рёло является   плоской   выпуклой   геометрической   фигурой,   которая   имеет определенную   площадь,   которая   может   быть   вычислена   по   формуле  π−√3 1 2 SРело a2¿ ).  Формула   выведена   аналитическим   методом,   используя соотношение: и методом разрезания и сложения площадей (рис. 5)   S=S∆+3Sсег    ,   S∆= 1 4 а2√3     cегм=Sсект ­ S = SРело= ­  = ( . Следовательно, площадь треугольника Рело равна π−√3 1 SРело 2 a2¿ ) Площадь треугольника Рело меньше площади круга. 5 Рисунок 5. Определение площади треугольника Рело Среди всех фигур постоянной ширины   у треугольника Рёло наименьшая площадь.   Это   утверждение   носит   название   теоремы   Бляшке —   Лебега   (по фамилиям немецкого геометра Вильгельма Бляшке, опубликовавшего теорему в 1915 году, и французского математика Анри Лебега, который сформулировал её в 1914 году   SРело 1 2 a2(π−√3)=а2∙0,70477 . Фигура, обладающая противоположным экстремальным свойством — круг. Среди всех фигур данной постоянной ширины его площадь Sкруга =  1 4 а2π=а2∙0,78539  максимальна Площадь соответствующего треугольника Рёло меньше на  10,27 ≈  %. В этих пределах лежат площади всех остальных фигур данной постоянной ширины.  Симметричность: Треугольник Рёло обладает осевой и центральной симметрией 6 Замечательные точки треугольника. Центры   вписанной,   описанной   окружностей,   ортоцентр   и   центр   тяжести совпадают. Сумма радиусов вписанной и описанной окружностей равна ширине треугольника Рело.    ) (Приложение 2. рис. 6 ) 1.3.  Треугольник Рело можно вписать в квадрат, он может вращаться квадрате со стороной а, всё время касаясь каждой из сторон. В   работе   рассмотрена   траектория   движения   вершины   треугольника   при вращении в квадрате и при движении треугольника по прямой. Показано, что так же как и у круга, траектория движения по прямой – циклоида. Каждая вершина треугольника при его вращении в квадрате «проходит» почти весь периметр квадрата, отклоняясь от этой траектории лишь в углах — там вершина описывает дугу эллипса. Центр треугольника Рёло при вращении движется по траектории, составленной из четырёх одинаковых дуг эллипсов. Центры этих эллипсов расположены в вершинах квадрата, а оси повёрнуты на угол в 45° относительно сторон квадрата и равны  а∙(1± 1 √3 ) Траектория центра треугольника Рёло при вращении в квадрате. Выделены точки сопряжения четырёх дуг эллипсов. Для сравнения показана окружность (синим цветом), проходящая через эти же четыре точки 7 Рисунок 7. Траектории движения треугольника в квадрате На   фигурах   2,   6,   10   треугольник   катится   по   поверхности окружности, на фигурах 4, 8, 12 треугольник переваливается через вершину, на остальных   фигурах   происходит   смена   характера   движения   треугольника   с качения   на   переваливание   и   наоборот.   Рассмотрим   движение   вершины треугольника. На фигурах 1, 2, 3 помеченная вершина движется линейно, по прямой (Рис. 10). Фактически помеченная вершина является центром вращения окружности, элементом которой является поверхность стороны треугольника Рело.   На   фигуре   3   помеченная   вершина   меняет   траекторию   движения   с прямолинейной на траекторию движения по окружности с радиусом, равным длине стороны, по которой он движется на фигурах 3, 4, 5. На фигуре 5 происходит смена траектории движения вершины. На фигурах 5,   6,   7   вершина   движется   по   трохоиде   точки,   находящейся   на   поверхности окружности с радиусом, равным длине стороны треугольника. На фигурах 7, 8, 9 меченная вершина является точкой перевала треугольника, она жестко лежит на поверхности. Фигуры 9, 10, 11 –  опять трохоида и 11, 12, 1 –  движение по окружности.   По   аналогии   эти   фигуры   описаны   выше.   Меченая   вершина возвращается в исходную точку. Треугольник Рело совершил полный оборот.  8 Рис 8. Движение вершины треугольника Рис 9. Движение центра треугольника. Фигура постоянной ширины   может вращаться в квадрате со стороной    всё время касаясь каждой из сторон.   Любую   плоскую   фигуру диаметра а можно   накрыть   фигурой постоянной ширины а. Вывод: первоначально выдвинутая  гипотеза  о том, что треугольник Рело будет сочетать в себе свойства круга и равностороннего треугольника, а также характеризуется   только   ему   присущими   свойствами,   подтверждена   в   ходе исследования. 9 2.  История изобретения и применение треугольника Рело 2.1. История изобретения треугольника Рело Треугольник   Рело   назван   по   имени   Франца   Рело   –   немецкого   учёного­ дал исследовавшего подробно Рело инженера,       его.     определение кинематической пары,   кинематической   цепи   и   механизма   как кинематической   цепи   принуждённого   движения;   предложил   способ преобразования   механизмов   путём   изменения   стойки   и   путём   изменения конструкций   кинематических   пар.   Связал теорию   механизмов и   машин   с проблемами конструирования, например, впервые поставил и пытался решить проблему эстетичности технических объектов. Однако, впервые эта фигура встречается XV веке в трудах Леонардо да Винчи, созданная им карта мира имеет вид четырех сферических треугольников, которые были показаны на плоскости карты треугольниками Рело, собранными по четыре вокруг полюсов. Позднее, в XVIII веке встречается идея построения треугольника в трудах Леонардо Эйлера. 10 Рис 10.Mappamundi. Леонардо да Винчи, примерно 1514 год. 2.2.  Применение треугольника Рело Применение треугольника Рело основано на его свойствах. Основные сферы (сверление   квадратных   сверло   Уаттса   применения   в   технике: отверстий), роторно­поршневой   двигатель   Ванкеля   (внутри   примерно цилиндрической камеры по сложной траектории движется трёхгранный ротор­ поршень   –   треугольник   Рело),грейферный   механизм   в   кинопроекторах (используется свойство вращения треугольника Рело в квадрате со стороной   ), кулачковые   механизмы   паровых   двигателей, швейных   машин и   часовых механизмов, катки для транспортировки  тяжелых грузов, крышки для люков (свойство постоянной ширины), в качестве медиатора. Кроме того, еще с XIII века   используется   свойство   симметричности   и   гармонии   в   архитектурных сооружениях на основе стрельчатых арок и элементов орнамента. Применение в автомобильных двигателях Треугольник   Рело   используется   и   в   автомобильных   двигателях (   Приложение   3.   рис10).   В   1957   году   немецкий   инженер,   изобретатель   Ф. Ванкель,   сконструировал   роторно­поршневой   двигатель.   Внутри   примерно цилиндрической камеры по сложной траектории движется трёхгранный ротор­ поршень – треугольник Рело. Он вращается так, что три его вершины находятся в постоянном контакте с внутренней стенкой корпуса, образуя три замкнутых объёма, или камеры сгорания. Фактически каждая из трёх боковых поверхностей ротора действует как поршень.   При   всех   достоинствах   РПД   ­   компактности,   приемистости, отсутствии кривошипно­шатунного и газораспределительного механизмов, а так же   значительно   меньших   габаритов   и   массе   при   одинаковой   с   поршневыми двигателями   внутреннего   сгорания   мощности,   он   имеет   и   ряд   серьезных 11 недостатков:   часто   выходящие   из   строя   уплотнительные   элементы,   плохая приспосабливаемость   к   изменениям   внешней   нагрузки,   повышенный   расход топлива и неудовлетворительные показатели по выбросам в отработавших газах. Тем не менне в серийном производстве находятся автомобили MazdaRX­8. Применение в некоторых механических устройствах В   1914   году   английский   инженер   Гарри   Джеймс   Уаттс изобрёл инструмент для сверления квадратных отверстий (Приложение 3. рис 10),  с 1916  года   сверла   находятся   в  серийном   производстве.   Сверло   Уаттса представляет собой треугольник Рело, в котором заточены ржущие кромки и прорезаны углубления для отвода стружки. Поиски   альтернативных   видов   топлива   для   автомобилей   заставил   вновь обратить   внимание   на   роторно­поршневой   двигатель   Ванкеля.   Разработчики Mazda уверяют, что по природе своей роторно­поршневой агрегат гораздо лучше приспособлен для работы на водороде, нежели традиционные моторы. Впрочем, по прогнозам специалистов, уже к 2025 году более четверти мирового автопарка будет использовать в качестве топлива водород. Так что возможно, будущее за РПД Применение   треугольника   Рело   в   грейферном   механизме   в кинопроекторах Устройство   грейферного   механизма   основано   на   треугольнике   Рело, вписанном в квадрат и двойном параллелограмме, который не дает квадрату наклоняться в стороны. Действительно, т. к. длины противоположных сторон равны, то среднее звено при всех движениях остается параллельным основанию, а   сторона   квадрата   всегда   параллельной   среднему   звену.   Чем   ближе   ось крепления к вершине треугольника Рело, тем более близкую к квадрату фигуру описывает   зубчик   грейфера.   Такой   механизм   обеспечивает   равномерное 12 вращение   оси,   чтобы   на   экране   было   четкое   изображение,   пленку   мимо объектива надо протянуть на один кадр, дать ей постоять, потом опять резко протянуть и так 18 раз в секунду. 2.3.   Крышки для люков В  форме треугольника Рёло  можно  изготавливать  крышки для  люков — опытным   путем   доказано,   что   благодаря   постоянной   ширине   они   не   могут провалиться   в   люк.   В   Сан­Франциско,   для   системы   рекуперирования   воды корпуса   люков   имеют   форму   треугольника   Рёло.   За   счет   того,   что   у треугольника Рело площадь меньше, чем у круга, себестоимость люков в форме треугольников  Рело  была  бы  ниже,  чем у  традиционно  круглых. Перейдя на серийное производство люк в форме треугольника Рело, на мой взгляд, можно было бы быстрее решить проблему открытых колодцев и избежать травматизма и смертей людей. (Приложение 4. Крышки для люков) Треугольник Рело в искусстве, архитектуре и литературе. Форма треугольника Рёло, его свойство симметричности, используется и в архитектурных целях. Конструкция из двух его дуг образует характерную для готического   стиля   стрельчатую   арку,   однако   целиком   он   встречается   в готических   сооружениях   довольно   редко.   Окна   в   форме   треугольника   Рёло использовали еще в VIII векев церкви Богоматери в Брюгге (Приложение 5.), а также   в   шотландской   церкви   в   Аделаиде   (Приложение   6.).   Как   элемент орнамента он встречается на оконных решётках цистерцианского аббатства в швейцарской коммуне. Треугольник   Рёло   используют   и   в   архитектуре,   не   принадлежащей   к готическому стилю. Например, построенная в 2006 году в Кёльне 103­метровая башня под названием «Кёльнский треугольник» в сечении представляет собой именно эту фигуру.(Приложение 7.) 13 В научно­фантастическом рассказе Пола Андерсона «Треугольное колесо» экипаж землян совершил аварийную посадку на планете, население которой не использовало   колёса,   так   как   всё   круглое   находилось   под   религиозным запретом.   В   сотнях   километров   от   места   посадки   предыдущая   земная экспедиция   оставила   склад   с   запасными   частями,   но   перенести   оттуда необходимый   для   корабля   двухтонный   атомный   генератор   без   каких­либо механизмов   было   невозможно.   В   итоге   землянам   удалось   соблюсти   табу   и перевезти генератор, используя катки с сечением в виде треугольника Рёло. 2.4. Изобретение велосипеда с треугольными колесами Колесо, изобретенное несколько тысяч лет назад, произвело переворот в жизни   человека.   Постоянство   ширины   явилось   для   колеса   определяющим свойством, следствием которого явилось техническое завоевание мира. Изобретением   колес   велосипеда   занимается китайский рационализатор ГуаньБайхуа (GuanBaihua), 50­летний офицер из города Циндао. Больше того, он   изобретает   заново   самую   консервативную   деталь   велосипеда   –   колеса. Вместо  понятных  всем  круглых он предложил  кататься на колесах  пяти ­ и треугольной формы (спереди и сзади, соответственно). Для китайцев велосипед –   главный   вид   транспорта,   популярностью   затмевающий   автомобили.   Но велосипед   с   угловатыми   колесами   средством   передвижения   не   станет.   По словам изобретателя, поездка на нем требует больше усилий, чем на обычном велосипеде,   и   скорее   всего,   он   найдет   свою   нишу   в   качестве экзотической игрушки и   более   эффективного   тренажера.   Впрочем,   все,   кто пробовал   прокатиться   на   нем,   удивляются   вовсе   не   трудности   кручения педалей, хода.  Действительно, казалось бы, угловатые колеса неизбежно должны создавать при неожиданной плавности     а     качении существенную тряску – но ее Гуаню Байхуа удалось снизить благодаря прекрасному знанию геометрии и настоящей китайской хитрости. . 14 Таким   же   образом   можно   устроить   подвеску   некруглого   колеса   и   взяв четыре таких подвески, можно соорудить повозку. При этом она будет ехать совершенно   без   покачиваний!   Чтобы   убедиться,   что   тряски   нет,   можно поставить, как учат автомобилистские традиции, на тележку стакан с водой. (Приложение 8.) 3.     Заключение Несколько   тысяч   лет   назад   было   изобретено   колесо,   которое   произвело переворот в жизни человека. Определяющим свойством, следствием которого стало техническое завоевание мира, стало свойство постоянства ширины. Но, как   оказалось,   круг   –   не   единственная   фигура,   которая   обладает   этим свойством.   Вызвавший   мой   интерес,   треугольник   Рело,   также   принадлежит этому семейству. В   своей   работе   мы   не   только   изучили   его   свойства,   геометрические характеристики,   историю   изобретения,   но   и   рассмотрели   сферы   применения этой выпуклой, симметричной фигуры постоянной ширины. Выдвинутая нами гипотеза о свойствах этой фигуры нашла свое подтверждение. Кроме того, мы ответили   для   себя   на   ряд   вопросов   познавательного   характера:   какие геометрические   свойства   обеспечивают   плавность   хода   велосипеда   с «треугольными» колесами, почему канализационные люки делают круглыми или в форме треугольника Рело? Не   менее   познавательной   оказалась   информация   о   сферах   применения «круглого» треугольника не только в технике, но и в архитектуре, литературе. Таким образом, поставленные мною задачи, реализованы в полном объеме. Перспективы дальнейшей работы в этом направлении: 15 1.   Лежащую   в   основе   треугольника   Рело,   идею   построения   можно обобщить   для   построения   многоугольников   Рело,   используя   для   создания  кривых   постоянной   ширины,   не равносторонний   треугольник,   а звёздчатый многоугольник, образованный отрезками прямых равной длины. 2.  Изучение свойств тел постоянной ширины. Актуальность: В современном мире, при быстро развивающихся  технологиях нельзя обойти  стороной фигуру постоянной ширины ­ треугольник  Рело, позволяющий сократить затраты при производстве, к примеру, при  конструировании деталей. 16 Рисунок. 1 . Велосипед с треугольными колесами. Приложение 1.  17 Рисунок. 6. Замечательные точки Приложение 2  . 18 Рисунок. 10 Сверло Уаттса и двигатель Ванкеля. Приложение 3.  19 Приложение 4.  Крышки для люков. 20 Приложение 5. 21 Приложение 6. 22 Приложение 7. 23 24 Рисунок 11. Повозка с «треугольными» колесами. Приложение 8.  25 Список литературы 1. http://news/velosiped­s­treugolnyim­kolesom.  2. http://ru. wikipedia. org/wiki/  3. Интернет­ресурс http://aurahome.ru 4. Интернет­ресурс http://funnymath.ru 5. Бронштейн,   И.   Н.,   Семендяев,   К.   А.,   Справочник   по   математике   для инженеров и учащихся вузов.// – М.:Просвещение,1992. 6. Коксетер, С. М., Грейтцер, С. Л., Новые встречи с геометрией. //– М., Наука, 1978.­223с. 7. Конфорович,   А.   Г.,   Некоторые   математические   задачи//.   –   Киев,   Родная школа, 1981.­189с. 8. Радемахер Г., Тёплиц О. Числа и фигуры ­ М., Физматгиз, 19с. 9. Яглом   И.  М.,  Болтянский   В.   Г.  Фигуры   постоянной   ширины  //   Выпуклые фигуры. — М.—Л.: ГТТИ, 1951. — С. 90—105. — 343 с. 26 10.Дорофеев,   Г.В.,   Шарыгин,   И.Ф.,   Суворова,   С.Б.   Математика.   – М.:Просвещение,1987. 11.В. Г. Болтянский, И. М. Яглом. Выпуклые фигуры. М.—Л.: ГТТИ, 1951. 12.http://yandex.ru/images 13.http   ://   www   .  etudes    .  ru   /  ru   /  etudes  /  koleso    /    14. Кушнир. И. А., Треугольник в задачах. – Киев, Лебедь, 1994. 27

Треугольник Рело

Треугольник Рело

Треугольник Рело

Треугольник Рело

Треугольник Рело

Треугольник Рело

Треугольник Рело

Треугольник Рело

Треугольник Рело

Треугольник Рело

Треугольник Рело

Треугольник Рело

Треугольник Рело

Треугольник Рело

Треугольник Рело

Треугольник Рело

Треугольник Рело

Треугольник Рело

Треугольник Рело

Треугольник Рело

Треугольник Рело

Треугольник Рело

Треугольник Рело

Треугольник Рело

Треугольник Рело

Треугольник Рело

Треугольник Рело

Треугольник Рело

Треугольник Рело

Треугольник Рело

Треугольник Рело

Треугольник Рело

Треугольник Рело

Треугольник Рело

Треугольник Рело

Треугольник Рело

Треугольник Рело

Треугольник Рело

Треугольник Рело

Треугольник Рело

Треугольник Рело

Треугольник Рело

Треугольник Рело

Треугольник Рело

Треугольник Рело

Треугольник Рело

Треугольник Рело

Треугольник Рело

Треугольник Рело

Треугольник Рело

Треугольник Рело

Треугольник Рело

Треугольник Рело

Треугольник Рело
Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.
21.04.2017