1.Альтернативные источники энергии
2. Основные виды альтернативных источников
2.2 Солнечная энергия
3.Достоинства и недостатки альтернативных источников энергии
4.Развитие альтернативных источников энергии в Ставропольском крае
Человек, который почувствовал ветер перемен,
должен строить не щит от ветра, а ветряную мельницу.
Стивен Кинг
|
Альтернативные источники энергии — это ветер, солнце, приливы и отливы, биомасса, геотермальная энергия Земли. |
Неуклонное увеличение численности населения нашей планеты, быстрое развитие производства в период НТР, нарастающее истощение запасов привычных источников, наконец, требования к сохранению окружающей среды заставляют людей искать новые источники энергии, прежде всего, располагающие возобновимыми или малоисчерпываемыми запасами. Человечество еще плохо использует возможности получения энергии из природных, практически неисчерпаемых источников: тепла земных недр и океана, энергии океанских и речных течений, приливов и волн, ветра.
Энергетика служит основой любых процессов во всех отраслях народного хозяйства, главным условием создания материальных благ, повышения уровня жизни людей. К традиционным источникам энергии относятся ТЭС, АЭС, ГЭС.
Энергия – это не только очень важный помощник в повседневной жизни, но ещё и самый необходимый элемент выживания, поэтому мы должны к ней очень бережно относиться.
Человечество потребляет огромное количество энергии. За год мы сжигаем от 9 до 20 млрд. тонн топлива. 75% всей потребляемой энергии составляют полезные ископаемые (34% - нефть, 25% - уголь, 19% - природный газ); 5% остальной потребляемой энергии – атомные ЭС; 6% - ГЭС; 11% - от других источников энергии.
Рост потребления электроэнергии увеличивает нагрузку на природу, истощаются природные ресурсы, к экологическим проблемам добавляется угроза «энергетического голода».
Кроме того, все мы привыкли использовать в качестве источников энергии органическое топливо – уголь, газ, нефть. Однако их запасы в природе, как известно, ограничены. И рано или поздно наступит день, когда они иссякнут. На вопрос «что делать в преддверии энергетического кризиса?» уже давно найден ответ: надо искать другие источники энергии – альтернативные, нетрадиционные, возобновляемые, неисчерпаемые, не наносящие вред окружающей среде. К ним относят ветровую, солнечную, геотермальную энергию, энергию приливов и отливов, о которых и пойдет наша речь.
Россия, несмотря на продолжительные трудности, осталась «энергетической сверхдержавой» - обладателем одним из самых больших в мире потенциалов топливно-энергетических ресурсов. На ее территории, составляющей примерно 10% суши Земли с населением всего 2,6% от мирового, сосредоточено свыше 32% разведанных запасов газа, 13% нефти и 25% угля. Но даже при таком изобилии, проблема ресурсосбережения – одна из ключевых для России.
Проблема ресурсосбережения имеет свой специфический российский аспект – это расточительное расходование энергоресурсов и энергоносителей ввиду чрезвычайной энергоемкости средств производства топливно-энергетического и промышленного комплексов.
В России энергетическая проблема актуальна особенно. Указом Президента Российской Федерации от 4 июня 2008 г. № 889 «О некоторых мерах по повышению энергетической и экологической эффективности российской экономики» установлена задача по снижению к 2020 году энергоемкости валового внутреннего продукта не менее чем на 40 процентов по отношению к уровню 2007 года и обеспечению рационального и экологически ответственного использования энергии и энергетических ресурсов. 27 декабря 2010 г. принята Государственная программа Российской Федерации «Энергосбережение и повышение энергетической эффективности на период до 2020 года», основной задачей которой признана задача снижения энергопотребления и модернизация систем энергоснабжения. Именно решению этих двух проблем и посвящено мое исследование.
В своей работе я обратил внимание на те 17%, которые приходятся на возобновляемые источники энергии.
Если рассматривать перспективы традиционной энергетики, то угля хватит на 600 лет, нефти на 90 лет, газа на 50 лет, урана по разным прогнозам на 27-80 лет. Поэтому я обратился к теме нетрадиционных источников энергии, к ним относятся ветроэнергетика, гидроэнергетика, солнечная энергетика.
Классический подход к проблеме альтернативной энергетики - это подход замещения, т.е. использования альтернативного источника, как единственного и основного. Именно с этой точки зрения отвергается большинство проектов, так как альтернативные источники не гарантируют равномерного поступления энергии. Но такой подход абсолютно не оправдан.
Принципиальное новшество моего исследования – рассмотреть преимущества именно совместной работы альтернативных источников энергии и классической схемы электроснабжения с точки зрения энергосбережения, выявить положительные стороны и недостатки подобного взаимодействия.
Несмотря на огромный потенциал возобновимых источников энергии их использование было осложнено техническими сложностями, а именно:
1. Крайне высокая, недоступная для подавляющего большинства граждан, цена.
2. Только зарубежное производство.
3. Как следствие. Отсутствие грамотного сервиса, документации, расходных материалов, запасных частей.
Однако, это абсолютно не актуально на современном этапе развития науки и техники в России.
Сейчас в РФ за счет нетрадиционных источников получают около 1% электроэнергии, что конечно очень мало. Я хочу своей работой обратить внимание на эту проблему.
Цель моей работы – исследовать возможности возобновляемых источников энергии в Ставропольском крае.
Задача – выяснить, насколько возможно, использовать
альтернативные источники энергии, обеспечить в необходимом количестве растущие потребности в электроэнергии.
МЕТОДЫ
1.Анализ современного состояния источников электроэнергии.
2.Изучение возможностей строительства альтернативных источников энергии на Ставрополье.
3.Конструирование простейших ветроэлектростанций.
4.Анализ научной литературы.
1.АЛЬТЕРНАТИВНЫЕ ИСТОЧНИКИ ЭНЕРГИИ
Альтернативная энергетика — совокупность перспективных способов получения энергии, которые распространены не так широко, как традиционные, однако представляют интерес из-за выгодности их использования при низком риске причинения вреда экологии района
Альтернативный источник энергии — способ, устройство или сооружение, позволяющее получать электрическую энергию (или другой требуемый вид энергии) и заменяющий собой традиционные источники энергии, функционирующие на нефти, добываемом природном газе и угле. Цель поиска альтернативных источников энергии — потребность получать её из энергии возобновляемых или практически неисчерпаемых природных ресурсов и явлений. Во внимание может браться также экологичность и экономичность.
Классификация источников
Тип источников |
Преобразуют в энергию |
Ветряные |
движение воздушных масс |
Геотермальные |
тепло планеты |
Солнечные |
электромагнитное излучение солнца |
Гидроэнергетические |
движение воды в реках или морях |
Биотопливные |
теплоту сгорания возобновляемого топлива (например, спирта) |
На возобновляемые (альтернативные) источники энергии приходится всего около 1 % мировой выработки электроэнергии.
2. Основные виды альтернативных источников
2.1. Ветроэнергетика — отрасль энергетики, специализирующаяся на преобразовании кинетической энергии воздушных масс в атмосфере в электрическую, механическую, тепловую или в любую другую форму энергии, удобную для использования в народном хозяйстве. Такое преобразование может осуществляться такими агрегатами, как ветрогенератор (для получения электрической энергии), ветряная мельница (для преобразования в механическую энергию), парус (для использования в транспорте) и другими.
Энергию ветра относят к возобновляемым видам энергии, так как она является следствием деятельности солнца.
Ветроэнергетика является бурно развивающейся отраслью, так в конце 2009 года общая установленная мощность всех ветрогенераторов составила 159,2 гигаватт. Некоторые страны особенно интенсивно развивают ветроэнергетику, в частности, на 2009 год в Дании с помощью ветрогенераторов производится 20 % всего электричества, в Ирландии — 14 %, в Португалии — 14 %, в Испании — 13 % и в Германии — 8 %.[5] В мае 2009 года 80 стран мира использовали ветроэнергетику на коммерческой основе.
Ветряные мельницы давно используются человеком в качестве источника энергии. Однако они эффективны и пригодны только для мелкого пользователя. К сожалению, ветер пока еще не в состоянии давать электроэнергию в достаточных количествах.
Первые ветряные электрогенераторы были разработаны еще в 90-х гг. XIX в. в Дании, а уже к 1910 г. в этой стране было построено несколько сот мелких установок. Еще через несколько лет датская промышленность получала от ветряных генераторов четверть необходимой ей электроэнергии. Их общая мощность составила 150-200 МВт.
В 1982 г. на китайском рынке было продано 1280 ветряных турбин, а в 1986 г. — 11 000, что позволило обеспечить электричеством те районы Китая, в которых раньше его никогда не было.
В начале XX в. в России насчитывалось 250 тыс. крестьянских ветряных мельниц мощностью до 1 млн кВт. Они перемалывали 2,5 млрд пудов зерна на месте, без дальних перевозок. К сожалению, в результате бездумного отношения к природным ресурсам в 40-х гг. прошлого века на территории бывшего СССР была разрушена основная часть ветряных и водяных двигателей, а к 50-м гг. они почти совсем исчезли как «отсталая техника».
По оценкам, стоимость электричества, генерируемого ветровыми системами, варьируется от 4,2 центов за кВт-час на острове Валаам и 4,52 цента за кВт-час в Калмыкии до 8,9 центов за кВт-час на Сахалине. Две 250-киловатные ветровые турбины, установленные в поселке Никольский (остров Беринга, Дальний Восток), эффективно дополнили существующий 800-киловатный дизельный генератор. В 2000 году эти турбины выработали 40 % электроэнергии и снизили стоимость электроэнергии втрое.
Крупные ветряные электростанции включаются в общую сеть, более мелкие используются для снабжения электричеством удалённых районов. В отличие от ископаемого топлива, энергия ветра практически неисчерпаема, повсеместно доступна и более экологична. Однако, сооружение ветряных электростанций сопряжено с некоторыми трудностями технического и экономического характера, замедляющими распространение ветроэнергетики. В частности, непостоянство ветровых потоков не создаёт проблем при небольшой пропорции ветроэнергетики в общем производстве электроэнергии, однако при росте этой пропорции, возрастают также и проблемы надёжности производства электроэнергии. Интеллектуальное управление распределением электроэнергии может помочь в решении подобных проблем.
Ветроэнергетика в России.
Россия обладает колоссальным суммарным потенциалом энергии ветра. Вдоль берегов Северного Ледовитого океана на протяжении 12 тыс. км господствуют ветры со среднегодовой скоростью свыше 5-7 м/с. (Считается, что ветроустановки эффективны при среднегодовых скоростях ветра выше 4-5 м/с.) Суммарная мощность ветра на Севере достигает 45 млрд. кВт, Успешно работают ветроэлектростанции на Новой Земле, в Амдерме, на мысе Уэлен, на островах Врангеля, Шмидта, Командорах (остров Беринга). Ветроустановки успешно заменяют на Севере малые дизельные электростанции, для работы которых необходимо завозить дорогостоящее (иногда импортное) топливо. Только доставка топлива к дизельным электростанциям, расположенным на Севере Канады, обходится вдвое дороже его самого.
Технический потенциал ветровой энергии России оценивается свыше 50 000 миллиардов кВт·ч/год. Экономический потенциал составляет примерно 260 млрд кВт·ч/год, то есть около 30 процентов производства электроэнергии всеми электростанциями России.
Энергетические ветровые зоны в нашей стране расположены, в основном, на побережье и островах Северного Ледовитого океана от Кольского полуострова до Камчатки, в районах Нижней и Средней Волги и Каспийского моря, на побережье Охотского, Баренцева, Балтийского, Черного и Азовского морей. Отдельные ветровые зоны расположены в Карелии, на Алтае, в Туве, на Байкале.
Максимальная средняя скорость ветра в этих районах приходится на осенне-зимний период - период наибольшей потребности в электроэнергии и тепле. Около 30% экономического потенциала ветроэнергетики сосредоточено на Дальнем Востоке, 14% - в Северном экономическом районе, около 16% - в Западной и Восточной Сибири.
Суммарная установленная мощность ветровых электростанций в стране на 2009 год составляет 17-18 МВт.
Одна из самых крупных ветроэлектростанций России (5,1 МВт) расположена в районе посёлка Куликово Зеленоградского района Калининградской области. Куликовская ВЭС состоит из 21 ВЭУ датской компании SЕАS Energi Service A.S. мощностью 225 кВт каждая. Её среднегодовая выработка составляет около 6 млн кВт·ч.
На Чукотке действует Анадырская ВЭС мощностью 2,5 МВт (10 ветроагрегатов по 250 кВт) среднегодовой выработкой более 3 млн кВт·ч, параллельно станции установлен ДВС, вырабатывающий 30 % энергии установки.
Действует ветростанция в Башкирии, около деревни Тюпкильды Туймазинского района мощностью 2,2 МВт. Cреднегодовая выработка электроэнергии составляет около 2 млн кВт·ч.
В Калмыкии в 20 км от Элисты размещена площадка Калмыцкой ВЭС планировавшейся мощностью в 22 МВт и годовой выработкой 53 млн кВт·ч, на 2006 год на площадке установлена одна установка «Радуга» мощностью 1 МВт и выработкой от 3 до 5 млн кВт·ч.
В республике Коми вблизи Воркуты недостроена Заполярнаяя ВДЭС мощностью 3 МВт. На 2006 действуют 6 установок по 250 кВт общей мощностью 1,5 МВт.
На острове Беринга Командорских островов действует ВЭС мощностью 1,2 МВт.
Успешным примером реализации возможностей ветряных установок в сложных климатических условиях является ветродизельная электростанция на мысе Сеть-Наволок Кольского полуострова мощностью до 0,1 МВт. В 17 километрах от неё в 2009 году начато обследование параметров будущей ВЭС работающей в комплексе с Кислогубской ПЭС.
Как пример реализации потенциала территорий Азовского моря можно указать Новоазовскую ВЭС, действующей на 2011 год мощностью в 21,8 МВт, установленную на украинском побережье Таганрогского залива.
В 2003—2005 годах в рамках РАО ЕЭС проведены эксперименты по созданию комплексов на базе ветрогенераторов и двигателей внутреннего сгорания, по программе в посёлке Тикси установлен один агрегат. Все проекты начатые в РАО, связанные с ветроэнергетикой переданы компании РусГидро. В конце 2008 года РусГидро начала поиск перспективных площадок для строительства ветряных электростанций.
Предпринимались попытки серийного выпуска ветроэнергетических установок для индивидуальных потребителей, например водоподъёмный агрегат «Ромашка».
В последние годы увеличение мощностей происходит в основном за счет маломощных индивидуальных энергосистем, объем реализации которых составляет 250 ветроэнергетических установок (мощностью от 1 кВт до 5 кВт).
2.2 Солнечная энергия
В настоящее время солнечную энергию используют в некоторых странах в основном для отопления, а для производства энергии — в очень незначительных масштабах. Между тем мощность солнечного излучения, достигающего Земли, составляет 2 х 1017 Вт, что более чем в 30 тыс. раз превышает сегодняшний уровень энергопотребления человечества.
Солнечная энергетика — направление нетрадиционной энергетики, основанное на непосредственном использовании солнечного излучения для получения энергии в каком-либо виде. Солнечная энергетика использует возобновляемый источник энергии и является экологически чистой, то есть не производящей вредных отходов. Производство энергии с помощью солнечных электростанций хорошо согласовывается с концепцией распределённого производства энергии.
Способы получения электричества и тепла из солнечного излучения:
-Получение электроэнергии с помощью фотоэлементов.
-Преобразование солнечной энергии в электричество с помощью тепловых машин:
паровые машины (поршневые или турбинные), использующие водяной пар, углекислый
газ, пропан-бутан, фреоны;
- двигатель Стирлинга и т. д.
-гелиотермальная энергетика — нагревание поверхности, поглощающей солнечные лучи, и последующее распределение и использование тепла (фокусирование солнечного излучения на сосуде с водой для последующего использования нагретой воды в отоплении или в паровых электрогенераторах).
-Термовоздушные электростанции (преобразование солнечной энергии в энергию воздушного потока, направляемого на турбогенератор).
- Солнечные аэростатные электростанции (генерация водяного пара внутри баллона аэростата за счет нагрева солнечным излучением поверхности аэростата, покрытой селективно-поглощающим покрытием). Преимущество — запаса пара в баллоне достаточно для работы электростанции в темное время суток и в ненастную погоду.
Достоинства:
§ Общедоступность и неисчерпаемость источника.
§ Теоретически, полная безопасность для окружающей среды.
Сгенерированная на основе солнечного излучения энергия сможет к 2050 году обеспечить 20-
25 % потребностей человечества в электричестве и сократит выбросы углекислоты. Как полагают эксперты Международного энергетического агентства (IEA), солнечная энергетика уже через 40 лет при соответствующем уровне распространения передовых технологий будет вырабатывать около 9 тысяч тераватт-часов — или 20-25 % всего необходимого электричества, и это обеспечит сокращение выбросов углекислого газа на 6 млрд тонн ежегодно [7].
Проблема использования нетрадиционных источников энергии в последнее время особенно актуальна. Это, несомненно, выгодно, хотя подобные технологии требуют значительных затрат. Сооружение солнечной электростанции, способной обеспечить электроэнергией около 10 тыс. бытовых потребителей (мощность — около 10 мМВт), обойдется в 190 млн. дол. Это в четыре раза больше, нежели расходы на сооружение ТЭС, работающей на твердом топливе, и соответственно в три раза больше, чем строительство гидроэлектростанции и АЭС. Тем не менее специалисты по изучению солнечной энергии уверены, что с развитием технологии использования энергии Солнца цены на нее значительно снизятся.
Из чего еще можно получать энергию, не загрязняя окружающую среду?
Геотермальная энергетика — направление энергетики, основанное на производстве электрической и тепловой энергии за счёт тепловой энергии, содержащейся в недрах земли, на геотермальных станциях. Обычно относится к альтернативным источникам энергии, использующим возобновляемые энергетические ресурсы.
Тепловую или электрическую энергию можно добывать за счет тепла земных глубин. Геотермальная энергетика экономически эффективна там, где горячие воды приближены к поверхности земной коры, — в районах активной вулканический деятельности с многочисленными гейзерами (Камчатка, Курильские острова, острова Японского архипелага). В отличие от других первичных источников энергии, носители геотермальной энергии невозможно транспортировать на расстояние, превышающее несколько километров. Поэтому земное тепло — типично локальный источник энергии, и работы, связанные с его эксплуатацией (разведка, подготовка буровых площадок, бурение, испытание скважин, забор жидкости, получение и передача энергии, подпитка, создание инфраструктур и т.д.), ведутся, как правило, на относительно небольшом участке с учетом местных условий.
В вулканических районах циркулирующая вода перегревается выше температуры кипения на относительно небольших глубинах и по трещинам поднимается к поверхности, иногда проявляя себя в виде гейзеров. Доступ к подземным тёплым водам возможен при помощи глубинного бурения скважин. Более чем такие паротермы распространены сухие высокотемпературные породы, энергия которых доступна при помощи закачки и последующего отбора из них перегретой воды. Высокие горизонты пород с температурой менее 100 °C распространены и на множестве геологически малоактивных территорий, потому наиболее перспективным считается использование геотерм в качестве источника тепла.
Перспективными источниками перегретых вод обладают множественные вулканические зоны планеты в том числе Камчатка, Курильские, Японские острова, обширные территории Кордильер и Анд.
Геотермальная энергетика в России.
На 2006 г. в России разведано 56 месторождений термальных вод с дебитом, превышающим 300 тыс. м³/сутки. На 20 месторождениях ведется промышленная эксплуатация, среди них: Паратунское (Камчатка), Казьминское и Черкесское (Ставропольский край и Карачаево-Черкесия), Кизлярское и Махачкалинское (Дагестан), Мостовское и Вознесенское (Краснодарский край).
Все российские геотермальные электростанции расположены на Камчатке и Курилах, суммарный электропотенциал пароводных терм одной Камчатки оценивается в 1 ГВт рабочей электрической мощности. Российский потенциал реализован только в размере не многим более 80 МВт установленной мощности (2009) и около 450 млн. кВт·ч годовой выработки (2009):
Главным достоинством геотермальной энергии является её практическая неиссякаемость и полная независимость от условий окружающей среды, времени суток и года.
Существуют следующие принципиальные возможности использования тепла земных глубин. Воду или смесь воды и пара в зависимости от их температуры можно направлять для горячего водоснабжения и теплоснабжения, для выработки электроэнергии либо одновременно для всех этих целей. Высокотемпературное тепло около вулканического района и сухих горных пород предпочтительно использовать для выработки электроэнергии и теплоснабжения. От того, какой источник геотермальной энергии используется, зависит устройство станции.
Главная из проблем, которые возникают при использовании подземных термальных вод, заключается в необходимости возобновляемого цикла поступления (закачки) воды (обычно отработанной) в подземный водоносный горизонт. В термальных водах содержится большое количество солей различных токсичных металлов (например, бора, свинца, цинка, кадмия, мышьяка) и химических соединений (аммиака, фенолов), что исключает сброс этих вод в природные водные системы, расположенные на поверхности.
Наибольший интерес представляют высокотемпературные термальные воды или выходы пара, которые можно использовать для производства электроэнергии и теплоснабжения.
Потенциальная суммарная рабочая мощность геотермальных электростанций в мире уступает большинству станций на иных возобновимых источниках энергии. Однако направление получило развитие в силу высокой энергетической плотности в отдельных заселённых географических районах, в которых отсутствуют или относительно дороги горючие полезные ископаемые, а также благодаря правительственным программам.
Установленная мощность геотермальных электростанций в мире на начало 1990-х составляла около 5 тысяч МВт, на начало 2000-х — около 6 тысяч МВт. В конце 2008 года суммарная мощность геотермальных электростанций во всём мире выросла до 10,5 тысяч МВт.
В 1997 году Европейский банк реконструкции и развития выделил кредит в размере 99,9 миллионов долларов на строительство Мутновской геотермальной электростанции мощностью 50 МВт. Полная стоимость проекта составляла 150 млн. долларов, остаток был профинансирован российскими инвесторами. Первый блок мощностью 25 МВт был пущен в 2001 году, а второй -- в октябре 2002. На Камчатке сегодня есть 73 МВт генерирующих мощностей, работающих на геотермальной энергии. Эти мощности производят четверть региональной электроэнергии и значительно уменьшают зависимость региона от дорогого привозного то плива. В конце 2002 года АО Камчатэнерго платило 5750 рублей (182 доллара) за тонну мазута, что было самой высокой ценой среди всех станций РАО ЕЭС.81 Обычно Камчатэнерго завозило для производства электроэнергии 480 000 тонн топлива в год. Пуск Мутновской геотермальной станции позволил в 2002 году сократить это количество до 390 000 тонн. Есть планы дальнейшего расширения геотермальных мощностей на Камчатке. Потенциальная мощность только одного Мутновского месторождения, расположенного в 120 км от Петропавловска-Камчатского, оценивается в 300 МВт.
Впервые в мире неводяные пары как тепловой носитель применены на Паратунской ГеоТЭС в 1967 году.
По данным института вулканологии Дальневосточного Отделения Российской Академии наук, геотермальные ресурсы Камчатки оцениваются в 5000 МВт. Российский потенциал реализован только в размере немногим более 80 МВт установленной мощности (2009) и около 450 млн. кВт·ч годовой выработки (2009):
Мутновское месторождение:
· Верхне-Мутновская ГеоЭС установленной мощностью 12 МВт·э (2011) и выработкой 69,5 млн кВт·ч/год (2010) (81,4 в 2004),
· Мутновская ГеоЭС установленной мощностью 50 МВт·э (2011) и выработкой 360,5 млн кВт·ч/год (2010) (на 2006 год ведётся строительство, увеличивающее мощность до 80 МВт·э и выработку до 577 млн кВт·ч)
· Паужетское месторождение возле вулканов Кошелева и Камбального — Паужетская ГеоТЭС мощностью 14,5 МВт·э (2011) и выработкой 43,1 млн кВт·ч (на 2010 год проводится реконструкция с увеличением мощности до 18 МВт·э).
Мутновская ГеоЭС — геотермальная электростанция, использующая природное тепло Земли для производства электричества.
Расположена к северо-востоку от вулкана Мутновский в юго-восточной части полуострова Камчатка на отметке 780 метров от уровня моря в 116 км от Петропавловска-Камчатского.
На том же Мутновском месторождении термальных вод 29 декабря 1999 года запущена в эксплуатацию Верхне-Мутновская ГеоЭС, установленная мощность которой на 2004 год составляет 12 МВт.
Первая очередь Мутновской ГеоЭС запущена в эксплуатацию 10 апреля 2003 года, установленная мощность на конец 2010 года — 50 МВт, планируемая мощность станции составляет 80 МВт. Станция полностью автоматизирована.
Геотермальные электростанции обеспечивают до 30 % энергопотребления центрального Камчатского энергоузла. Это позволяет значительно ослабить зависимость полуострова от дорогостоящего привозного топлива. Ведением дел на Мутновской ГеоЭС занимается ОАО «Геотерм».
Показатель |
2003 |
2004 |
2005 |
2006 |
Установленная мощность на конец года, МВт |
50 |
|||
Выработка электроэнергии, млн кВт·ч |
205,3 |
276,8 |
287,3 |
343,5 |
Полезный отпуск электроэнергии, млн кВт·ч |
184,5 |
252,2 |
329,6 |
376,6 |
Паужетская геотермальная электростанция — геотермальная электростанция, располагающаяся на Паужетском геотермальном месторождении в юго-западной части Камчатского полуострова в поселке Паужетка около вулканов Кошелева и Камбального. Старейшая геотермальная электростанция на территории России, введена в эксплуатацию в 1966 году как экспериментальная электростанция.
В 2010 году началась реконструкция с целью увеличения мощности электростанции до 14,5 МВт (проект «Создание пилотного бинарного энергоблока мощностью 2,5 МВт»). В июле 2011 года были завершены основные работы по установке оборудования блока, по прокладке дополнительных труб от скважин Паужетского месторождения и прокладка водоводов для охлаждения (общая длина ≈3600 м).[1] Новый блок планировалось запустить в 2011 году.
1 января 2006 года электростанция была выделена из состава ОАО «Камчатскэнерго» и начала операционную деятельность как самостоятельное юридическое лицо — ОАО «Паужетская ГеоЭС».
На 2012 год мощность ГеоТЭС 12 МВт, станция осуществляет электроснабжение (в том числе на нужды отопления) населенных пунктов с социальной инфраструктурой и рыбопромышленных предприятий, расположенных в п.Озерновский, п. Паужетка, п. Шумный и селе Запорожье Усть-Большерецкого района Камчатского края.
Показатель |
2005 |
2006 |
2007 |
2008 |
2009 |
2010 |
Установленная мощность на конец года, МВт |
8,5 |
14,5 |
14,5 |
14,5 |
12 |
12 |
Выработка электроэнергии, млн кВт·ч |
37,7 |
42,557 |
46,771 |
43,155 |
42,669 |
42,544 |
Полезный отпуск электроэнергии, млн кВт·ч |
30,631 |
35,4 |
37,6 |
33,258 |
34,066 |
35,025 |
На Камчатке и Курильских островах геотермальная энергия уже сегодня может конкурировать с традиционными источниками даже без правительственной поддержки. В 2001 году средняя стоимость генерации составляла на Камчатке 3 руб./кВт-час. Тариф для населения был около 2 руб./кВт-час и косвенно субсидировался промышленным тарифом в 4,2 руб./кВт-час. В феврале 2003 года тариф для населения был увеличен до 2,3 руб./кВт-час ($0,076 за кВт-час), что было все еще ниже издержек. По оценкам Всемирного банка, средняя цена электричества, произведенного с помощью геотермальной энергии, составляет $0.05 за кВт-час. Проведенные исследования показывают, что геотермальная энергия может быть коммерчески привлекательна.
3.Достоинства и недостатки альтернативных источников энергии
Солнечная энергия
Всевозможные гелиоустановки используют солнечное излучение как альтернативный источник энергии. Излучение Солнца можно использовать как для нужд теплоснабжения, так и для получения электричества (используя фотоэлектрические элементы).
Способы получения электричества и тепла из солнечного излучения
фотовольтаика — получение электроэнергии с помощью фотоэлементов;
гелиотермальная энергетика — нагревание поверхности, поглощающей солнечные лучи, и последующее распределение и использование тепла двигатель Стирлинга;
термовоздушные электростанции (преобразование солнечной энергии в энергию воздушного потока, направляемого на турбогенератор).
солнечные аэростатные электростанции (генерация водяного пара внутри баллона аэростата за счет нагрева солнечным излучением поверхности аэростата, покрытой селективно-поглощающим покрытием).
Достоинства
К преимуществам солнечной энергии можно отнести возобновляемость данного источника энергии, бесшумность, отсутствие вредных выбросов в атмосферу при переработке солнечного излучения в другие виды энергии.
Недостатки
Недостатками солнечной энергии являются зависимость интенсивности солнечного излучения от суточного и сезонного ритма, а также, необходимость больших площадей для строительства солнечных электростанций. Также серьёзной экологической проблемой является использование при изготовлении фотоэлектрических элементов для гелиосистем ядовитых и токсичных веществ, что создаёт проблему их утилизации.
Ветряная энергия
Одним их перспективнейших источников энергии является ветер. Принцип работы ветрогенератора элементарен. Сила ветра, используется для того, чтобы привести в движение ветряное колесо. Это вращение в свою очередь передаётся ротору электрического генератора.
Достоинства
Преимуществом ветряного генератора является, прежде всего, то, что в ветряных местах, ветер можно считать неисчерпаемым источником энергии. Кроме того, ветрогенераторы, производя энергию, не загрязняют атмосферу вредными выбросами.
Недостатки
К недостаткам устройств по производству ветряной энергии можно отнести непостоянство силы ветра и малую мощность единичного ветрогенератора. Также ветрогенераторы известны тем, что производят много шума, вследствие чего их стараются строить вдали от мест проживания людей.
Геотермальная энергия
Огромное количество тепловой энергии хранится в глубинах Земли. Это обусловлено тем, что температура ядра Земли чрезвычайно высока. В некоторых местах земного шара происходит прямой выход высокотемпературной магмы на поверхность Земли: вулканические области, горячие источники воды или пара. Энергию этих геотермальных источников и предлагают использовать в качестве альтернативного источника сторонники геотермальной энергетики.
Используют геотермальные источники по-разному. Одни источники служат для теплоснабжения, другие – для получения электричества из тепловой энергии.
Достоинства
К преимуществам геотермальных источников энергии можно отнести неисчерпаемость и независимость от времени суток и времени года.
Недостатки
К негативным сторонам можно отнести тот факт, что термальные воды сильно минерализованы, а зачастую ещё и насыщены токсичными соединениями. Это делает невозможным сброс отработанных термальных вод в поверхностные водоёмы. Поэтому для отработанную воду необходимо закачивать обратно в подземный водоносный горизонт. Кроме того, некоторые учёные-сейсмологи выступают против любого вмешательства в глубокие слои Земли, утверждая, что это может спровоцировать землетрясения.
4.Развитие альтернативных источников энергии в Ставропольском крае
Климатические особенности Ставрополья
На территории Ставропольского края преобладают ветры восточного и западного направлений. Средняя скорость ветра составляет 2-5 м/с, максимальная скорость ветра приближается к 40 м/с. В целом, использование энергии ветра в Ставропольском крае в качестве альтернативной можно считать оправданным, в случае, если других источников энергии нет или поступающей потребителю энергии недостаточно. При установке ветряков необходимо учитывать рельеф местности. При выборе места установки желательно провести ряд дополнительных исследований для изучения ветрового режима в данной конкретной точке.
Также Ставропольский край относится к регионам с наиболее интенсивным солнечным излучением. Средняя продолжительность солнечного сияния на территории Ставропольского края превышает 2000 часов в год. Это позволяет успешно использовать солнечную энергию в крае в качестве альтернативной энергии, получать достаточное количество тепловой энергии. Внедрение солнечных коллекторов для выработки энергии в Ставрополье является весьма целесообразным.
Проект ветряных электростанций
По оценкам Гидрометеоцентра Ставропольского края, климат региона хорошо подходит для развития использования альтернативных источников энергии. Глава министерства Дмитрий Саматов также сказал: "В восточных районах края много свободных площадей, где мы сможем разместить объекты, относящиеся к возобновляемым источникам энергии. Уже ведутся предпроектные работы. После этого для аудита ветропотоков необходимо будет определиться с границами земельных участков и закрепить их в нормативно-правовых актах.
Как стало известно, Министерство промышленности, энергетики и транспорта Ставропольского края провело переговоры с одной из крупных российских компаний, которая занимается строительством энергетических объектов «под ключ». По словам представителей министерства, на территории края будет построен комплекс ветряных электростанций, каждая мощностью в 100 МВт.
Первая часть проекта ветряных электростанций будет построена в городе Лермонтове. Дополнительно ведется разработка плана строительства солнечной электростанции мощностью 50 МВт в окрестностях Кисловодска. Сейчас прорабатывается вопрос о целесообразности переноса места строительства солнечной электростанции в Невинномысск и создании на территории Ставропольского края ещё одной электростанции – ветряной.
В Ставрополе прошло совещание по вопросу строительства новой ветряной электростанции в Кочубеевском районе Ставропольского края мощностью 60 МВт. Ожидается, что после окончания строительства и запуска ветроэлектростанции в промышленную эксплуатацию, она будет интегрирована в общую энергосистему Ставропольского края. |
Энергию солнца будет собирать электростанция в Грачёвском районе.
В селе Старомарьевка проектируют солнечную электростанцию мощностью 75 МВт. На полную мощность она должна выйти в 2019 году. Здесь на участке в 288 га будут добывать электроэнергию с помощью солнечных модулей. Солнечная станция в Старомарьевке сейчас находится на этапе предварительных работ и проектирования. После запуска станция ежегодно будет приносить в бюджет 380 млн руб. налогов.
Планируется проведение переговоров по этому вопросу с федеральными структурами – так как стоит задача не только получать электроэнергию из возобновляемых источников, но и продавать ее в сети, чтобы проекты были экономически рентабельными. Пока себестоимость электроэнергии из альтернативных источников дороже, чем получаемой на электростанциях, работающих на ископаемых видах топлива. «Сейчас ищем механизм, чтобы эта разница не сказалась на кошельках потребителей Ставрополья", - отметил Саматов.
Строительство подобных комплексов выводит развитие альтернативной энергетики на новый уровень не только в отдельном регионе, но и в России в целом – масштабное применение восстанавливаемых ресурсов позволит увеличить производство экологически безопасной электроэнергии. Также данный проект позволит разработать нормативно-правовые акты, схему сбыта электроэнергии и повысить рентабельность данных установок.
Использование экологически чистых источников энергии актуально, учитывая, что в курортных зонах сжигание угля или мазута вредит экологии", - заявил Виктор Гвоздев.
По его мнению, по мере дальнейшего удорожания топливных ресурсов экономическая эффективность возобновляемых источников энергии возрастет.
В Ставропольском крае для электро- и теплоснабжения могут использоваться так же богатые запасы геотермальных источников.
Развитие малой энергетики в Ставропольском крае перспективно
Безусловно, поиски альтернативных источников электроснабжения вызваны прежде всего нынешним удручающим состоянием дел в энергетике края. Так, катастрофически изношены сети и оборудование, что грозит учащением аварийных инцидентов. Между тем киловатт-час год от года дорожает, вызывая каждый раз волны возмущения бизнес-сообщества.
И именно то, что краевые власти к нынешнему моменту потеряли основные рычаги влияния на энергетическую отрасль, побудило инициативную группу ставропольских ученых и инженеров-практиков разработать и представить депутатам концепцию развития малой энергетики. Как отметил один из ее авторов В. Кульбицкий, собственные генерирующие мощности (пусть и небольшие) в первую очередь позволят приостановить темпы роста коммунальных тарифов. А, следовательно, сделают край более привлекательным в инвестиционном плане. Причем за примерами далеко ходить не надо. Ростовская область и Краснодарский край, сохранившие малую гидроэнергетику, ныне пользуются более дешевым электричеством.
Не вдаваясь в специфические подробности концепции, стоит отметить, что, кроме небольших речушек и малых месторождений газа, для производства тепло – и электроэнергии ученые предлагают использовать и возобновляемые источники энергии. Такие, как ветер, солнце, термальные воды и даже бытовые отходы. Помимо очевидной экономической выгоды, утверждают авторы концепции, есть и другой важный аспект: внедрение таких технологий должно в перспективе улучшить экологическую обстановку в крае.
Однако, несмотря на столь серьезные доводы в пользу представленной концепции, не обошлось без дискуссии. К сожалению, воплощению многих благих намерений на Ставрополье ныне мешают объективные обстоятельства. Это в первую очередь политика по либерализации рынка электроэнергетики, вводящая жесткие правила продажи киловатт-часов. Есть свои «законы» и у газовиков. В частности, авторы концепции ратуют за установку на котельных края экономичного газопоршневого оборудования для выработки тепло – и электроэнергии. Однако на практике оказывается, что очень сложно, а порой и просто невозможно добиться для этих установок так называемых лимитов газа.
Что же касается солнечной, ветровой энергии, то, как было отмечено, это пока слишком дорогое удовольствие для края. И если на одних весах окажутся экономия и экология, выбор однозначно будет сделан не в пользу последней.
Потому по итогам депутатских слушаний правительству края рекомендовано принять концепцию и на ее основе доработать межотраслевые программы по развитию малой энергетики в регионе. К муниципалам же прозвучала просьба внести предложения в проекты этих программ с учетом местной специфики.
По большому счету, самостоятельно изготовить ветряную электростанцию не так уж и сложно – по крайней мере, намного легче, чем соорудить гидроэлектростанцию. Система эта не сложная, и самая ее проблематичная часть – это сам генератор. Если найдете его, то все остальное, как говорится, пустяки. Сразу хочу отметить тот факт, что обойдется такая установка не дешево, и срок ее окупаемости довольно большой. Она выгодна только в том случае, когда поблизости вообще отсутствуют другие источники электроэнергии. Либо когда добытое электричество будет продаваться. Как сделать ветряк своими руками. Вместе с сайтом stroisovety.org разберемся с его устройством, технологией изготовления и сборкой системы независимого энергоснабжения. Ветряной электрогенератор имеет довольно простую конструкцию, и решить вопрос, как сделать ветряк своими руками, не очень сложно. Если разбираться в его конструкции, то условно этот агрегат можно разделить на четыре основных узла.
1. Генератор. Это сердце данной установки – именно оно ответственно за выработку электрической энергии. Как правило, в ветряных установках используются генераторы, способные вырабатывать либо 12, либо 24 вольта – сами понимаете, что таким током современную бытовую технику не порадуешь. Именно по этой причине ветряк является всего лишь частью независимой электростанции – о том, как поднять вырабатываемое им напряжение до привычного для наших электроприборов 220 вольт, мы поговорим отдельно. Делать генератор своими руками очень сложно – во всех отношениях его лучше приобрести в готовом виде. Сейчас это не проблема – с одинаковым успехом можно купить как специальный генератор, предназначенный для ветряных установок, так и найти ему альтернативу (например, автомобильный генератор). Проблема последнего заключается в малой мощности – больше чем на сто ватт рассчитывать здесь не приходится. В отличие от него, специальные генераторы могут вырабатывать более 500Вт энергии – а это означает возможность использовать добытую энергию, так сказать, напрямую, без ее аккумулирования в емкостях.
2. Лопасти. По большому счету, эту часть ветряка также можно приобрести, что будет лучше всего – дело в том, что именно от них зависит эффективность работы самого генератора. Правильно изготовленные лопасти способны вращать его даже при слабом ветре. Лопасти могут быть двух типов – вертикальные и горизонтальные. В зависимости от этого, и ветряки классифицируются на два типа – вертикальный ветрогенератор своими руками сделать несколько сложнее, но зато он считается более эффективным, а главное, компактным. Он не занимает большого количества места, и его достаточно просто смонтировать даже на крыше дома – именно такой генератор является оптимальным решением для дома, расположенного в густонаселенных городах. Лопасти для него изготовить очень сложно – их лучше купить. Связано это с балансировкой, от которой во многом зависит эффективность работы ветряка.
3. Мачта. По сути, она нужно исключительно для горизонтального ветрогенератора, хотя и вертикальные также могут устанавливаться на нее. Если в первых установках она является неотъемлемой частью конструкции, то во втором необходимость в ее наличии появляется только при наземной установке. Этот элемент ветряка можно сделать и самостоятельно – по сути, это труба, установленная вертикально и оборудованная специальным креплением для генератора.
И четвертый элемент, который, по сути, является частью мачты, это подвижная платформа с флюгером – она отвечает за движение лопастей за ветром, который довольно часто меняет свое направление. Платформа является связующим звеном между генератором и мачтой и монтируется она на подвижном соединении, легкий ход которого обеспечивает подшипник. Сделать такое устройство своими руками также не сложно.
Получается так, что о полном изготовлении эффективной ветроэлектростанции не может быть и речи. В принципе, сделать ее можно, но эффективность работы такой установки остается под большим вопросом – в качестве эксперимента она подойдет, но вот для полноценного электроснабжения, увы, нет. Большую часть ветряка придется приобретать по частям, которые потом собирать в единое изделие. В общем, вопрос, как сделать ветрогенератор своими руками, решается только так – мало того, дополнительно придется решить вопрос передачи электроэнергии через подвижную платформу, что не так уж и просто. Опять же, в этом отношении намного привлекательнее выглядят ветрогенераторы с вертикальной осью вращения – здесь эта проблема снимается автоматически, что в значительной мере упрощает решение вопроса изготовления ветряка своими руками.
Ветряки для дома своими руками: устройство системы
Теперь, когда мы разобрались с устройством и возможностью решения вопроса изготовления ветрогенератора для дома своими руками, самое время рассмотреть и общий принцип построения независимой системы электроснабжения. Как вы понимаете, собрать генератор – это только полдела. Сама система потребует от вас дополнительных затрат на оборудование, изготовить которое самостоятельно практически невозможно, если не сказать, что совсем невозможно. В целом, если говорить об устройстве ветряной электростанции для дома, то ее можно разделить также на четыре части.
1. Ветрогенератор, о котором мы уже говорили. Добавить здесь можно только то, что вырабатываемая им энергия напрямую не используется – все электричество собирается в аккумуляторы, откуда и идет дальнейший его разбор.
2. Аккумуляторы. Именно они, наравне с мощность самого генератора, обеспечивают ваш дом необходимым количеством энергии – здесь важна их емкость, способность вмещать тот или иной объем электричества. Обычным автомобильным аккумулятором здесь не обойтись – речь идет о десятке аккумуляторов емкостью от 100 до 150А/часов. Их количество рассчитывается исходя из мощности ветряка, используемого в доме электрооборудования интенсивности его работы. В таких системах применяются, как правило, гелиевые аккумуляторы, которые лучше всех приспособлены к частым циклам зарядки и разрядки.
3. Контроллер зарядки аккумуляторных батарей – это небольшое устройство, которое является связующим звеном между ветряком и батареями. Оно контролирует цикл зарядки последних и не дает им, так сказать, перезаряжаться.
4. Есть еще один небольшой элемент, связывающий генератор и батареи – это так называемый диод Шоттки, в задачи которого входит не выпускать электричество назад в генератор во время его бездействия – в противном случае без этого диода ваш генератор может превратиться в электромотор, который очень быстро съест весь накопленный в аккумуляторах запас энергии.
5. И самая главная часть, отвечающая за повышение напряжения до отметки в 220 вольт, это инвертор. Преобразователь, который повышает напряжение – они бывают разные, и далеко не все подходят для использования в независимых электростанциях. Здесь нужен инвертор с чистой синусоидой на выходе – модифицированная синусоида плохо сказывается на работе большинства современных электрических потребителей. Мало того, огромное значение имеет и мощность подобных устройств – она тоже рассчитывается исходя из суммарной мощности одновременно работающих потребителей. После генератора это самая дорогостоящая часть системы ветряной энергетической установки.
Ветрогенераторы с вертикальной осью вращения своими руками
Кроме всего прочего, не стоит сбрасывать со счетов и провода, используемые в подобных системах – если после инвертора можно применять любые, то вот до него нужны специальные, изготовленные с учетом минимальных потерь при транспортировке электрического тока малого напряжения.
По большому счету, система не сложная, и имея в наличии все необходимые элементы, собрать ветряную электростанцию не так уж и сложно – важнее всего правильно рассчитать ее с учетом всех, даже, казалось бы, незначительных факторов. Особое внимание здесь нужно уделить количеству ветряных дней в году – может случиться так, что в тихих и спокойных регионах ветряк может оказаться практически бесполезным. Именно по этой причине системы независимого электроснабжения делают комбинированным способом, который предусматривает использование не только ветрогенератора, но и солнечных панелей. Они как бы дополняют друг друга, обеспечивая постоянную добычу электроэнергии из неиссякаемых природных ресурсов.
В заключение остается добавить не так уж и много – в частности, рассказать о тонкостях изготовления лопастей. Вернее не о тонкостях, а о трудностях – обосновать утверждение того, что их лучше не изготавливать своими руками, а приобретать в готовом виде или заказывать их изготовление на заводе. Дело в том, что есть такие понятия, как смещение оси и балансировка – первое вызывает биение, а второе неравномерное вращение. И то и другое приводит к замедлению вращения генератора, что само по себе сказывается на эффективности работы установки в целом. Проще говоря, вместо положенных 500Вт вы будете получать 250Вт энергии в час – вместо 18В тока – 14вольт, что, опять таки, скажется на темпах зарядки аккумуляторов.
ЗАКЛЮЧЕНИЕ
Человечество уже очень давно использует энергию сил природы в своих целях. И с тех пор, как закрутились первые ветряные мельницы, примерно с 1750 г. до н. э., развитие механизмов, позволяющих эффективнее использовать эти неисчерпаемые запасы природы, не прекращалось. Не прекращается и по сей день. Сегодня у нас есть прекрасная возможность использовать альтернативные источники энергии в личных целях а это - энергия ветра, а также солнечную, геотермальную и другие. С помощью современного оборудования, которое позволяет генерировать, аккумулировать, преобразовывать один вид энергии в другой, мы можем частично, либо полностью стать независимым от тарифов, перебоев с электричеством, отоплением, в своём загородном доме или даче.
Преимущества безтопливной генерации очевидны и бесспорны. Прежде всего, производство альтернативной энергии экологически чистое и полностью исключает выброс в атмосферу углерода и других вредных газов, ответственных за парниковый эффект привозного мазута, а заодно - улучшить экологическую обстановку в крае.В заключение я хочу сказать, что, проведя исследования, определил тенденцию к росту потребления электроэнергии, несмотря на всеобщее стремление к экономии электричества. Ведь многие из нас ставят энергосберегающие лампочки, выбираем технику с низким потреблением электроэнергии. Заменив традиционные источники энергии альтернативными, мы сможем сэкономить природные ресурсы и направить их в те области, где они необходимы и незаменимы. В этом и будет заключаться ресурсосбережение и ресурсобеспечение при помощи альтернативных источников энергии.
Изучив все достоинства и недостатки представленных альтернативных источников энергии, я пришел к выводу, что наиболее эффективены в нашем крае будет переход на ветряные, солнечные и геотермальные источники энергии.
5 млрд на ветряки в Ставрополье
В Ставропольском крае построят завод по выпуску ветрогенераторов.
Ветер дома
В Ставрополе будут производить компактные ветряки для домашнего использования.
Будущий производитель уже заручился моральной, а главное – материальной поддержкой местных властей. Добавим, что Ставропольский край в последнее время делает серьезные успехи в сфере возобновляемой энергетики. «Пятый элеменТ» уже писал о том, что в регионе достраивается одна из крупнейших в стране СЭС – Старомарьевская, а компания «Объединенная энергия» недавно дала старт проекту по строительству завода ветровых установок.
Скачано с www.znanio.ru
Материалы на данной страницы взяты из открытых источников либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.