Урок 11. ВЕРОЯТНОСТИ СОБЫТИЙ

  • rtf
  • 29.10.2024
Публикация на сайте для учителей

Публикация педагогических разработок

Бесплатное участие. Свидетельство автора сразу.
Мгновенные 10 документов в портфолио.

Иконка файла материала Урок 11. ВЕРОЯТНОСТИ СОБЫТИЙ.rtf

Учитель__________________

Проверил_________________

Дата_____________страниц 10

 
Урок 11. Вероятности событий

Тип урока

Практическая работа «Опыты с равновозможными элементарными  событиями» ( при бросании  2-х игральных кубиков)

Цели деятельности педагога

Создание условий для закрепления навыков решения комбинаторных задач с помощью перебора возможных вариантов

Образовательные источники
и ресурсы

МАТЕМАТИКА ВЕРОЯТНОСТЬ И СТАТИСТИКА

7—9 классы Базовый уровень/учебники по вероятности и статистике И. Р. Высоцкого, И. В. Ященко под ред. И. В. Ященко2022 г.

2.Картинки с сайта

Рожица- http://www.livegif.ru/archive/the_best/11_6.html

Школа- http://www.allforchildren.ru/pictures/school/school19-04.gif

Сова- http://www.allforchildren.ru/pictures/school/school10-01.gif

Методы и формы обучения

Беседа, прием «Плюс – минус – интересно».

Индивидуальная, фронтальная, групповая, парная, взаимопроверка, самопроверка

Основные понятия

элементарное событие, случайное событие как совокупность благоприятствующих элементарных событий, равновозможные элементарные события

Планируемые результаты

Предметные знания и умения

Метапредметные УУД

Личностные УУД

Научиться проводить и изучать опыты с равновозможными элементарными

событиями (с использованием монет,

игральных костей, других моделей) в  ходе практической работы

Видеть математическую задачу в контексте проблемной ситуации и в окружающей жизни

Проявлять интерес к изучению темы, желание применить приобретенные знания и умения, ответственное отношение к обучению, готовность к саморазвитию и самообразованию

 

 

 

Организационная структура урока

Этапы урока

Дидактическая задача этапа

Деятельность учителя

Форма работы

Деятельность учащихся

Задания для учащихся, выполнение которых приведет к достижению планируемых результатов

Самоопределение к деятельности (организационный момент)

Включение обучающихся в деятельность на личностно значимом уровне

Проверяет готовность класса. Приветствует детей. Спрашивает, какое настроение у каждого ученика: «смайлик – настроение»

И

Приветствуют учителя. Выполняют задание в своих тетрадях

Нарисовать на полях в своей тетради смайлик, отразив настроение:

Актуализация знаний и фиксация затруднения в деятельности

Обеспечение мотивации и принятия обучающимися цели учебно-познавательной деятельности, актуализация опорных знаний и умений

Организует устный счет

И–П

Выполняют указанные действия устно.

Осуществляют самопроверку по готовому образцу

Задание «Решаем устно».
(Приложение 1.)

Создание проблемной ситуации

Работают в паре с товарищем по парте, выполняют задание

– Рассмотрим случай, когда бросают 1 кубик. Выполним № 2 в виде таблицы

Работают с таблицей

– Назовите ключевые слова. (Приложение 2.)

Постановка учебных задач

Обсуждение затруднений («Почему возникли затруднения?», «Чего мы еще не знаем?»)

Организует работу по определению темы урока. Корректирует ответы обучающихся

Ф

Озвучивают тему урока.

Отвечают на вопросы.

С помощью учителя формулируют задачи урока

– Суммируя всю работу, которую мы сделали на предыдущем этапе, сформулируйте тему урока.

– При составлении таблицы элементарных событий, каким способом вы воспользовались? А если было бы большее количество цифр?

– Сформулируйте задачи сегодняшнего урока

Построение проекта выхода из затруднения
(«открытие» детьми нового знания)

Обсуждение проекта решения задачи

Организует работу в группах.

Рассказ учителя: 1) случайное событие как совокупность благоприятствующих элементарных событий; 2) равновозможные элементарные события; 3) схемы удобного и наглядного перебора

Г–Ф

Обучающиеся выполняют задания. Слушают учителя

Работа в группах. (Приложение 3.)

Физкультурная пауза

Первичное закрепление во внешней речи

Проговаривание нового знания

Предлагает выполнить задание на применение новых знаний

Ф

Оформляют свои задачи с помощью дерева возможных вариантов. Делают
вывод

– Оформите свои задачи, которые выполняли в группах, с помощью штриховки события, благоприятствующие событиям.

– Сделайте вывод о количестве возможных вариантов, если используются две цифры (два предмета). – При каком условии получается данное количество вариантов?

Самостоятельная работа с самопроверкой по эталону

Каждый для себя должен сделать вывод о том, что он уже умеет

Организует самостоятельную работу с самопроверкой по эталону. Для эталона вызывается к доске ученик, который выполняет задание на откидной доске. После проверки учителем
(или учеником) доска открывается для самопроверки

И

Самостоятельно выполняют предложенное задание.

Выполняют самопроверку по предложенному эталону

Задания для самостоятельной работы. (Приложение 4.)

Включение в систему знаний и повторения

Включение нового знания в систему знаний

Организует работу по применению полученных знаний. Консультирует в случае затруднений

И–П

Выполняют задание.

Осуществляют взаимопроверку с соседом по парте по эталону правильности

Задания для самостоятельной работы. (Приложение 4.)

Информация о домашнем
задании

Обеспечение понимания цели, содержания и способов выполнения домашнего задания. Проверка соответствующих записей

По ходу выполнения заданий на уроке обращает внимание обучающихся на номера домашнего задания

И

Домашнее задание записали в начале урока. По ходу выполнения заданий на уроке на полях учащиеся проставляют номера из домашнего задания, соответствующие выполненным заданиям в классе

§ __. Вопросы: _____.

Базовый: № ___.

Повышенный: № ___.

Повторение: № ___

Подведение
итогов

Анализ и оценка успешности выполнения задач урока

Организует подведение
итогов работы

Ф

Отвечают на вопросы.

Принимают участие в оценке работы всего класса и отдельных учащихся

 

Рефлексия

Выяснение отношения обучающихся к прошедшему уроку

Организует работу учащихся

И

Выполняют задание на отдельных листах

Задание «Желтая – Зеленая - Красная». (Приложение 5.)

 

Ресурсный материал

Приложение 1

Слайд3

 

Вероятностью Р наступления случайного события А называется отношение m к n, где n – это число всех возможных исходов эксперимента, а m – это число всех благоприятных исходов.

 

 

 

 

- Формула представляет собой так называемое классическое определение вероятности по Лапласу, пришедшее из области азартных игр, где теория вероятностей применялась для определения перспективы выигрыша. Эта формула применяется для опытов с конечным числом равновозможных исходов.

Слайд4

 Вероятность события =

 

Таким образом, вероятность – это число от 0 до 1.

Вероятность равна 0, если событие невозможное.

Вероятность равна 1, если событие достоверное.

Слайд5

-Решим задачу: На книжной полке стоят 20 книг, из них 3 справочника. Какова вероятность, что взятая с полки книга не окажется справочником?

Слайд6

Решение:

Общее число равновозможных исходов – 20

Число благоприятных исходов – 20 – 3 = 17

Р = = 0,85.

Ответ: 0,85.

 


Приложение 2

СЛАЙД7

 

   Математическая игральная кость, которая используется в теории вероятности,- это математический образ правильной кости. Математическая кость не имеет ни размера, ни цвета, ни веса и т.д.

   При бросании игральной кости (кубика) может выпасть любая из шести ее граней, т.е. произойти любое из событий- выпадение от 1 до 6 точек (очков). Но никакие две и более граней одновременно появиться не могут. Такие события называют несовместными.

СЛАЙД8

 

-Рассмотрим случай, когда бросают 1 кубик. Выполним № 2 в виде таблицы.

событие

 

Число благоприятных исходов

Общее число исходов

вероятность

А: « выпало число 4»

 

1

6

1\6

В: « выпало число 5»

 

1

6

1\6

С: « выпало число меньше 3»

 

2

6

1\3

Д: « выпало число 8»

 

0

6

0

Е: « выпало нечетное число меньше 3»

1

6

1\6

- Теперь рассмотрим случай, когда бросают 2 кубика.

Если на первом кубике выпало одно очко, то на втором может выпасть 1, 2, 3, 4, 5, 6.Получим пары (1;1),  (1;2), (1;3), (1;4), (1;5), (1;6) и так с каждой гранью. Все случаи можно представить в виде таблицы из 6-ти строк и 6-ти столбцов:

Приложение 3

Работа в группах:

Группы № 1 и № 2

Группы № 3 и № 4

Группы № 5 и № 6

Покажите штриховкой события, благоприятствующие событиям:

СЛАЙТ11

       Задание 1. «Выпало одинаковое число очков»;

Получим

СЛАЙТ 12

 

 

Покажите штриховкой события, благоприятствующие событиям: Задание 2. «Сумма очков равна 7»;

Слайт 13 и

Получим

 

слайт 14

Покажите штриховкой события, благоприятствующие событиям: Задание 3. «Сумма очков не меньше 7».

Что значит «не меньше»? ( Ответ - «больше, или равно»)

 

Слайт 15

 

 

получим

 

Таблица элементарных событий

 

1; 1

2; 1

3; 1

4; 1

5; 1

6; 1

1; 2

2; 2

3; 2

4; 2

5; 2

6; 2

1; 3

2; 3

3; 3

4; 3

5; 3

6; 3

1; 4

2; 4

3; 4

4; 4

5; 4

6; 4

1; 5

2; 5

3; 5

4; 5

5; 5

6; 5

1; 6

2; 6

3; 6

4; 6

5; 6

6; 6

 


Приложение 4

А теперь найдем вероятности событий,  для которых в практической работе заштриховывали благоприятствующие события.

Запишем в тетрадях №3

Задание 1.

Общее число исходов - 36

Число благоприятствующих исходов - 6

Р = 6/36=1/6.

Ответ: 1/6.

Задание 2.

Общее число исходов - 36

Число благоприятствующих исходов - 6

Р  = 6/36=1/6.

Ответ: 1/6.

Задание 3.

Общее число исходов- 36

Число благоприятствующих исходов - 21

Р = 21/36=7/12.

Ответ:7/12.

 

 Слайт 17

№4Саша и Влад играют в кости. Каждый бросает кость два раза. Выигрывает тот, у кого выпавшая сумма очков больше. Если суммы очков равны, игра оканчивается вничью. Первым бросал кости Саша, и у него выпало 5 очков и 3 очка. Теперь бросает кости Влад.

       а) В таблице элементарных событий укажите (штриховкой) элементарные события, благоприятствующие событию «Выиграет Влад».

б) Найдите вероятность события «Влад выиграет».

Решение:

а) Так как сумма очков Саши 5+3=8, то необходимо Владу набрать более 8 (9, 10,11, 12)

 

б) Общее число исходов - 36

Число благоприятствующих исходов - 10

Р  = 10/36=5/18.

Ответ: б) 5/18.

Приложение 5

Учащиеся отвечают на вопросы: Что нового узнали на уроке?

В конце урока /с помощью  карточек трёх цветов : жёлтого, зеленого, красного/

У ребят на партах лежат карточки. По просьбе учителя, учащиеся поднимают карточку соответствующего цвета.

- Поднимите зеленую, если вы всё поняли.

- Желтую, если есть небольшие недочеты и есть над чем работать.

- Красную, если не совсем  разобрались в теме.

Если нет вопросов, Урок окончен, до свидания!

. Постановка домашнего задания. Вы

1.Вырезать  развертку, склеить кубики. Принести на следующий урок.

2.Выполнить 25 бросков. Результаты записать в таблицу: (на следующем уроке можно ввести понятие частоты)

События

Количество выпадений

 

 

«Сумма очков 6»

 

 

 

 

«Сумма очков не менее 5»

 

 

 

 

«Сумма очков не более 5»

 

 

 

 

3.Решите задачу: Бросают две игральные кости. Вычислите вероятность:

а) «Сумма очков равна 6»;

б) «Сумма очков не менее 5»;

в) «На первой кости очков больше, чем на второй».