Урок 18
ВТОРОЙ ПРИЗНАК РАВЕНСТВА ТРЕУГОЛЬНИКОВ
Цели: повторить и закрепить изученный ранее материал; изучить второй признак равенства треугольников и выработать навыки использования первого и второго признаков равенства треугольников при решении задач; развивать логическое мышление учащихся.
Ход урока
I. Устная работа.
1. Ответы на контрольные вопросы 4 –13 на с. 50.
2. Решение задач по готовым чертежам с целью повторения первого признака равенства треугольников:
1) На рисунке 1 DЕ = DK, 1 = 2. Найдите ЕС, DСK и DKС, если KС = 1,8 дм; DСЕ = 45°, DЕС = 115°.
2) На рисунке 2 ОВ = ОС, АО = DО; АСВ = 42°, DСF = 68°.
Найдите АВС.
Рис. 1 Рис. 2
II. Объяснение нового материала.
1. Выполнение учащимися практического задания: с помощью транспортира и масштабной линейки начертить треугольник АВС так, чтобы А = 46°, В = 58°, АВ = 4,8 см.
2. Формулировка и доказательство второго признака равенства треугольников (на доске и в тетрадях).
При доказательстве второго признака желательно отметить аналогию с доказательством первого признака: в том и другом случае равенство треугольников доказывается путем такого наложения одного треугольника на другой, при котором они полностью совмещаются.
III. Закрепление изученного материала.
1. Устно по готовым рисункам (рис. 3–7) решить задачи:
Рис. 3 Рис. 4 Рис. 5
Рис. 6 Рис. 7
1)
На рисунке 3 1 = 2 и 3 = 4. Докажите, что АВС =
= АDС.
2) На рисунке 4 АС = СВ, А = В. Докажите, что ВСD = АСЕ.
3) На рисунке 5 луч АD – биссектриса угла ВАС, 1 = 2. Докажите, что АВD = АСD.
4) На рисунке 6 ВО = ОС, 1 = 2. Укажите равные треугольники на этом рисунке.
5) На рисунке 7 1 = 2, САВ = DВА. Укажите равные треугольники на этом рисунке.
2. Решить задачу № 121 (самостоятельно).
3. Решить задачу № 126 (по рис. 74).
4. Решить задачу № 127 (записать решение этой более сложной задачи на доске и в тетрадях):
Дано: АВС и А1В1С1; АВ = А1В1; ВС = В1С1; В = В1;
D АВ; D1 А1В1; АСD и А1С1D1.
Доказательство
1) АВС = А1В1С1 по двум сторонам и углу между ними, первый признак (АВ = А1В1, ВС = В1С1 и В = В1 по условию), значит, АСВ и А1С1В1 равны.
2) ВСD = АСВ – АСD; В1С1D1 = А1С1 В1 – А1С1D1.
Так как АСВ = А1С1В1 и АСD = А1С1D1 (по условию), то ВСD = В1С1D1.
3) ВСD = В1С1D1 по стороне и прилежащим к ней углам, второй признак (ВС = В1С1, В = В1, ВСD = В1С1D1), что и требовалось доказать.
IV. Итоги урока.
Домашнее задание: выучить доказательство теоремы из п. 19; решить задачи №№ 124, 125, 128.
© ООО «Знанио»
С вами с 2009 года.