Урок 18. ВТОРОЙ ПРИЗНАК РАВЕНСТВА ТРЕУГОЛЬНИКОВ
Оценка 4.8

Урок 18. ВТОРОЙ ПРИЗНАК РАВЕНСТВА ТРЕУГОЛЬНИКОВ

Оценка 4.8
docx
математика
31.08.2020
Урок 18. ВТОРОЙ ПРИЗНАК РАВЕНСТВА ТРЕУГОЛЬНИКОВ
повторить и закрепить изученный ранее материал; изучить второй признак равенства треугольников и выработать навыки использования первого и второго признаков равенства треугольников при решении задач; развивать логическое мышление учащихся.
18.docx

Урок 18
ВТОРОЙ ПРИЗНАК РАВЕНСТВА ТРЕУГОЛЬНИКОВ

Цели: повторить и закрепить изученный ранее материал; изучить второй признак равенства треугольников и выработать навыки использования первого и второго признаков равенства треугольников при решении задач; развивать логическое мышление учащихся.

Ход урока

I. Устная работа.

1. Ответы на контрольные вопросы 4 –13 на с. 50.

2. Решение задач  по готовым чертежам с целью повторения первого признака равенства треугольников:

1) На рисунке 1 DЕ = DK, 1 = 2. Найдите ЕС, DСK и DKС, если KС = 1,8 дм; DСЕ = 45°, DЕС = 115°.

2) На рисунке 2 ОВ = ОС, АО = DО; АСВ = 42°, DСF = 68°.

Найдите АВС.

           

Рис. 1                                                Рис. 2

II. Объяснение нового материала.

1. Выполнение учащимися практического задания: с помощью транспортира и масштабной линейки начертить треугольник АВС так, чтобы А = 46°, В = 58°, АВ = 4,8 см.

2. Формулировка и доказательство второго признака равенства треугольников (на доске и в тетрадях).

При доказательстве второго признака желательно отметить аналогию с доказательством первого признака: в том и другом случае равенство треугольников доказывается путем такого наложения одного треугольника на другой, при котором они полностью совмещаются.

III. Закрепление изученного материала.

1. Устно по готовым рисункам (рис. 3–7) решить задачи:

   

  Рис. 3                                           Рис. 4                                       Рис. 5

           

  Рис. 6                                                                  Рис. 7

1) На  рисунке  3 1 = 2 и 3 = 4.  Докажите,  что  АВС =
= АDС.

2) На рисунке 4 АС = СВ, А = В. Докажите, что ВСD = АСЕ.

3) На рисунке 5 луч АD – биссектриса угла ВАС, 1 = 2. Докажите, что АВD = АСD.

4) На рисунке 6 ВО = ОС, 1 = 2. Укажите равные треугольники на этом рисунке.

5) На рисунке 7 1 = 2, САВ = DВА. Укажите равные треугольники на этом рисунке.

2. Решить задачу № 121 (самостоятельно).

3. Решить задачу № 126 (по рис. 74).

4. Решить задачу № 127 (записать решение этой более сложной задачи на доске и в тетрадях):

               

Дано: АВС и А1В1С1; АВ = А1В1; ВС = В1С1; В = В1;

D  АВ; D1  А1В1; АСD и А1С1D1.

Доказательство

1) АВС = А1В1С1 по двум сторонам и углу между ними, первый признак (АВ = А1В1, ВС = В1С1 и В = В1 по условию), значит, АСВ и А1С1В1 равны.

2) ВСD = АСВ – АСD; В1С1D1 = А1С1 В1А1С1D1.

Так как АСВ = А1С1В1 и АСD = А1С1D1  (по  условию), то ВСD = В1С1D1.

3) ВСD = В1С1D1 по стороне и прилежащим к ней углам, второй признак (ВС = В1С1, В = В1, ВСD = В1С1D1), что и требовалось доказать.

IV. Итоги урока.

Домашнее задание: выучить доказательство теоремы из п. 19; решить задачи №№ 124, 125, 128.

 


 

Урок 18 ВТОРОЙ ПРИЗНАК РАВЕНСТВА

Урок 18 ВТОРОЙ ПРИЗНАК РАВЕНСТВА

Рис. 3

Рис. 3

АВС = А 1 В 1 С 1 по двум сторонам и углу между ними, первый признак (

АВС = А 1 В 1 С 1 по двум сторонам и углу между ними, первый признак (
Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.
31.08.2020