Урок 52. РЕШЕНИЕ ЗАДАЧ НА ПРИМЕНЕНИЕ СВОЙСТВ ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКА
Оценка 4.9

Урок 52. РЕШЕНИЕ ЗАДАЧ НА ПРИМЕНЕНИЕ СВОЙСТВ ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКА

Оценка 4.9
docx
математика
31.08.2020
Урок 52. РЕШЕНИЕ ЗАДАЧ НА ПРИМЕНЕНИЕ СВОЙСТВ  ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКА
52.docx

Урок 52
решение задач НА ПРИМЕНЕНИЕ СВОЙСТВ

 ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКА

Цели: повторить и систематизировать ранее изученный материал; вырабатывать навыки в решении задач; развивать логическое мышление учащихся.

Ход урока

I. Анализ результатов самостоятельной работы.

1. Указать ошибки учащихся в решении задач.

2. Решить задачи, вызвавшие затруднения у учащихся.

II. Устный опрос учащихся по карточкам.

Вариант I

1. Сформулируйте теорему о сумме углов треугольника.

2. Один из углов при основании равнобедренного треугольника равен 65°. Найдите остальные углы треугольника.

3. В треугольнике АВС В = 110°; биссектрисы углов А и С пересекаются в точке О.

Найдите угол АОС.

Вариант II

1. Сформулируйте свойство катета прямоугольного треугольника, лежащего против угла в 30°.

2. В  прямоугольном  треугольнике  АВС С = 90°; В = 60°, АВ =
= 15 см. Найдите ВС.

3. Один из углов прямоугольного треугольника равен 60°, а сумма гипотенузы и меньшего катета равна 42 см. Найдите гипотенузу.

Вариант III

1. Сформулируйте признак равенства прямоугольных треугольников по гипотенузе и катету.

2. В  треугольниках  АВС  и  А1В1С1  В =В190°;  АВ  =  А1В1, АС = А1С1. Найдите  углы А1 и С1 треугольника  А1В1С1,  если А = 34°; С = 54°.

3. На сторонах угла А отмечены точки В и С так, что АВ = АС. Через точки В и С проведены прямые, перпендикулярные соответственно к сторонам АВ и АС данного угла и пересекающиеся в точке М. Докажите, что МВ = МС.

Вариант IV

1. Сформулируйте признак равенства прямоугольных треугольников по гипотенузе и острому углу.

2. В  треугольниках  АВС  и  А1В1С1 углы В и В1 прямые, А = А1, АС = А1С1.  Найдите  стороны  В1С1  и  А1Втреугольника  А1В1С1,  если ВС = 17 см, АВ = 12 см.

3. Даны  два  равных  прямоугольных  треугольника  АВС  и  А1В1С1, у которых В =В190°, А = А1; ВН и В1Н1 – высоты. Докажите, чтоВНС = В1Н1С1.

III. Решение задач.

1. Решить задачу № 299 на доске и в тетрадях.

Решение

При решении удобно обозначить А = х и ввести обозначения цифровые для углов, как показано на рисунке.

Итак, А = х, поэтому 1 = А = х,
2 = 2х (как внешний угол АРQ), 4 =
=
2 = 2х; 3 = 180° – (2 + 4) = 180° –
– 4х; 5 = 180° – (1 + 3) = 3х; 6 =
=
5 = 3х.

Далее, 7 = В6, но В = С =
=
, поэтому 7 = 3х =
=
.

Так  как 8 = С,  то С + 8 + 7 = 2С + 7  =  180°,  или 180° – х +  = 180°.

Отсюда получаем, что х = 20°. Значит, А = 20°.

Ответ: 20°.

2. Решить задачу № 311 на доске и в тетрадях.

Решение

Проведем биссектрисы углов, образованных при пересечении двух прямых, ОА и ОВ.

Возьмем произвольную точку С на одной из биссектрис и докажем, что она равноудалена от прямых ОА и ОВ, то есть докажем, что СD = СЕ. В  самом  деле,  прямоугольные  треугольники  ОDС  и  ОЕС  равны  по гипотенузе  (ОС – общая гипотенуза) и острому углу (1 = 2), поэтому СD = СЕ.

Докажем теперь, что любая точка М, расположенная внутри угла АОВ и равноудаленная от сторон ОА и ОВ, лежит на биссектрисе этого угла. Для этого проведем перпендикуляры MN и MP к прямым ОА и ОВ и рассмотрим прямоугольные треугольники ONM и ОРМ. Они равны по катету и гипотенузе (ОМ – общая гипотенуза, MN = MP, так как по условию точка М равноудалена от сторон ОА и ОВ), поэтому NOM = POM, то есть луч ОМ – биссектриса угла АОВ. Из доказанных утверждений следует, что искомое множество точек состоит из двух прямых, содержащих биссектрисы углов, образованных при пересечении данных прямых.

IV. Итоги урока.

Домашнее задание: повторить пункты 15–33; решить задачи №№ 266, 297; принести циркули и линейки.

 


 

Урок 52 решение задач НА ПРИМЕНЕНИЕ

Урок 52 решение задач НА ПРИМЕНЕНИЕ

Решить задачу № 299 на доске и в тетрадях

Решить задачу № 299 на доске и в тетрадях

ОМ – биссектриса угла АОВ .

ОМ – биссектриса угла АОВ .
Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.
31.08.2020