Урок алгебры в 11 классе "Производная и её геометрический смысл"

  • pptx
  • 20.10.2024
Публикация на сайте для учителей

Публикация педагогических разработок

Бесплатное участие. Свидетельство автора сразу.
Мгновенные 10 документов в портфолио.

Иконка файла материала понятие производной.pptx

Производная

Тайны планетных орбит.
Древнегреческие учёные умели решать немногие задачи кинематики – рассчитать либо равномерное прямолинейное движение, либо равномерное вращение вокруг оси.
А планеты на небосводе двигались по самым замысловатым кривым . Свести эти движения планет к простым древним учёным не удавалось.
Лишь в 17 веке немецкому учёному Иоганну Кеплеру удалось сформулировать законы движения планет. Оказалось, что планеты движутся по эллипсам, и притом неравномерно. Объяснить, почему это так, Кеплер не смог.

В конце 17 века Исаак Ньютон открыл законы динамики, сформулировал закон всемирного тяготения и развил математические методы, позволявшие сводить неравномерное к равномерному, неоднородное к однородному, криволинейное к прямолинейному.
В основе лежала простая идея – движение любого тела за малый промежуток времени можно приближённо рассматривать как прямолинейное и равномерное.
Одновременно с Ньютоном немецкий философ и математик Готфрид Вильгельм Лейбниц изучал, как проводить касательные к произвольным кривым.

Он также развил новое исчисление, которое оказалось по сути дела тождественным построенному Ньютоном. Обозначения, введённые Лейбницем, оказались настолько удачными, что сохранились и по сей день.
Новая математика Ньютона и Лейбница состояла из двух больших частей – дифференциального и интегрального исчислений.
В первом из них говорилось, как, изучая малую часть явления, сводить неравномерное к равномерному.
Во второй – как из малых равномерных частей конструировать сложное неравномерное явление.

Дифференциальные исчисления – раздел математики, в котором изучаются производные и их применения к исследованию функции.

1). f(x) = 5x + 3
Найти :
f(2)
f(a)
f(a+2)
f(a+2) – f(a)

Приращение функции и аргумента

х = х – хо – приращение аргумента

f(х) = f(х) – f(хо)
f(х) = f (хо + х ) – f(хо)

приращение функции

Найдите f, если f(х) = х2, хо = 1, х = 0,5
Решение: f(хо) = f(1) = 12 = 1,
f (хо + х ) = f(1 + 0,5) = f(1,5) = 1,52 = 2,25,
f = 2,25 – 1 = 1,25.
Ответ: f = 1,25

изменение

Пусть точка движется вдоль прямой и за время t от начала движения проходит путь s(t).
Рассмотрим промежуток времени от t до t+h , где h – малое число.
Путь пройденный за это время s(t+h) – s(t).

Пусть функция f(x) определена на некотором промежутке, х – точка этого промежутка и число h≠ 0 такое, что х+h также принадлежит данному промежутку. Производной функции f(x) в точке х называется:

приращение аргумента

приращение функции

Исаак Ньютон (1643 – 1727)

«Когда величина является максимальной или минимальной, в этот момент она не течет ни вперед, ни назад.»

Механический смысл производной.

у = kх + в

у(хо) = kхо + в,
у(хо + ∆х) = k ∙ (хо + ∆х) + в = k хо + + k∆х + в,
∆у = у(хо + ∆х) – у(хо) = k хо + k∆х + + в – kхо – в = k∆х,

(kх + в)′ = k

Ответ:

=

k∆х

=

k.

∆x

∆x

∆y

у = х2

у(хо) = хо2,

у(хо + ∆х) = (хо + ∆х)2= хо2 + 2 хо ∆х + (∆х)2,

∆у = у(хо + ∆х) – у(хо) = хо2 + 2 хо ∆х + + (∆х)2 – хо2 = 2 хо ∆х + (∆х)2 = ∆х(2хо + ∆х),

∆у

∆х

=

∆х (2хо + ∆х)

∆х

=

2хо + ∆х

2хо

при ∆х → 0

Ответ:

(х2)′ = 2х

у = х3

у(хо) =
у(хо + ∆х) =
=
∆у = у(хо + ∆х) – у(хо) =
=

хо3

∆х(зхо2 + зхо ∆х + (∆х)2)

хо3 + зхо2 ∆х + зхо(∆х)2 + (∆х)3

∆у

∆х

зхо2

(х3)′ = 3х2