Урок алгебры в 11 классе "Производная и её геометрический смысл"
Оценка 5

Урок алгебры в 11 классе "Производная и её геометрический смысл"

Оценка 5
pptx
20.10.2024
Урок алгебры в 11 классе "Производная и её геометрический смысл"
понятие производной.pptx

Производная

Производная

Производная

Тайны планетных орбит. Древнегреческие учёные умели решать немногие задачи кинематики – рассчитать либо равномерное прямолинейное движение, либо равномерное вращение вокруг оси

Тайны планетных орбит. Древнегреческие учёные умели решать немногие задачи кинематики – рассчитать либо равномерное прямолинейное движение, либо равномерное вращение вокруг оси

Тайны планетных орбит.
Древнегреческие учёные умели решать немногие задачи кинематики – рассчитать либо равномерное прямолинейное движение, либо равномерное вращение вокруг оси.
А планеты на небосводе двигались по самым замысловатым кривым . Свести эти движения планет к простым древним учёным не удавалось.
Лишь в 17 веке немецкому учёному Иоганну Кеплеру удалось сформулировать законы движения планет. Оказалось, что планеты движутся по эллипсам, и притом неравномерно. Объяснить, почему это так, Кеплер не смог.

В конце 17 века Исаак Ньютон открыл законы динамики, сформулировал закон всемирного тяготения и развил математические методы, позволявшие сводить неравномерное к равномерному, неоднородное к однородному,…

В конце 17 века Исаак Ньютон открыл законы динамики, сформулировал закон всемирного тяготения и развил математические методы, позволявшие сводить неравномерное к равномерному, неоднородное к однородному,…

В конце 17 века Исаак Ньютон открыл законы динамики, сформулировал закон всемирного тяготения и развил математические методы, позволявшие сводить неравномерное к равномерному, неоднородное к однородному, криволинейное к прямолинейному.
В основе лежала простая идея – движение любого тела за малый промежуток времени можно приближённо рассматривать как прямолинейное и равномерное.
Одновременно с Ньютоном немецкий философ и математик Готфрид Вильгельм Лейбниц изучал, как проводить касательные к произвольным кривым.

Он также развил новое исчисление, которое оказалось по сути дела тождественным построенному

Он также развил новое исчисление, которое оказалось по сути дела тождественным построенному

Он также развил новое исчисление, которое оказалось по сути дела тождественным построенному Ньютоном. Обозначения, введённые Лейбницем, оказались настолько удачными, что сохранились и по сей день.
Новая математика Ньютона и Лейбница состояла из двух больших частей – дифференциального и интегрального исчислений.
В первом из них говорилось, как, изучая малую часть явления, сводить неравномерное к равномерному.
Во второй – как из малых равномерных частей конструировать сложное неравномерное явление.

Дифференциальные исчисления – раздел математики, в котором изучаются производные и их применения к исследованию функции

Дифференциальные исчисления – раздел математики, в котором изучаются производные и их применения к исследованию функции

Дифференциальные исчисления – раздел математики, в котором изучаются производные и их применения к исследованию функции.

Найти : f(2) f(a) f(a+2) f(a+2) – f(a)

Найти : f(2) f(a) f(a+2) f(a+2) – f(a)

1). f(x) = 5x + 3
Найти :
f(2)
f(a)
f(a+2)
f(a+2) – f(a)

Приращение функции и аргумента х = х – хо – приращение аргумента f(х) = f(х) – f(хо) f(х) = f (хо + х ) –…

Приращение функции и аргумента х = х – хо – приращение аргумента f(х) = f(х) – f(хо) f(х) = f (хо + х ) –…

Приращение функции и аргумента

х = х – хо – приращение аргумента

f(х) = f(х) – f(хо)
f(х) = f (хо + х ) – f(хо)

приращение функции

Найдите f, если f(х) = х2, хо = 1, х = 0,5
Решение: f(хо) = f(1) = 12 = 1,
f (хо + х ) = f(1 + 0,5) = f(1,5) = 1,52 = 2,25,
f = 2,25 – 1 = 1,25.
Ответ: f = 1,25

изменение

Пусть точка движется вдоль прямой и за время t от начала движения проходит путь s(t)

Пусть точка движется вдоль прямой и за время t от начала движения проходит путь s(t)

Пусть точка движется вдоль прямой и за время t от начала движения проходит путь s(t).
Рассмотрим промежуток времени от t до t+h , где h – малое число.
Путь пройденный за это время s(t+h) – s(t).

Пусть функция f(x) определена на некотором промежутке, х – точка этого промежутка и число h≠ 0 такое, что х+h также принадлежит данному промежутку

Пусть функция f(x) определена на некотором промежутке, х – точка этого промежутка и число h≠ 0 такое, что х+h также принадлежит данному промежутку

Пусть функция f(x) определена на некотором промежутке, х – точка этого промежутка и число h≠ 0 такое, что х+h также принадлежит данному промежутку. Производной функции f(x) в точке х называется:

приращение аргумента

приращение функции

Исаак Ньютон (1643 – 1727) «Когда величина является максимальной или минимальной, в этот момент она не течет ни вперед, ни назад

Исаак Ньютон (1643 – 1727) «Когда величина является максимальной или минимальной, в этот момент она не течет ни вперед, ни назад

Исаак Ньютон (1643 – 1727)

«Когда величина является максимальной или минимальной, в этот момент она не течет ни вперед, ни назад.»

Механический смысл производной.

у = kх + в у(хо) = kхо + в, у(хо + ∆х) = k ∙ (хо + ∆х) + в = k хо +…

у = kх + в у(хо) = kхо + в, у(хо + ∆х) = k ∙ (хо + ∆х) + в = k хо +…

у = kх + в

у(хо) = kхо + в,
у(хо + ∆х) = k ∙ (хо + ∆х) + в = k хо + + k∆х + в,
∆у = у(хо + ∆х) – у(хо) = k хо + k∆х + + в – kхо – в = k∆х,

(kх + в)′ = k

Ответ:

=

k∆х

=

k.

∆x

∆x

∆y

у = х2 у(хо) = хо2, у(хо + ∆х) = (хо + ∆х)2= хо2 + 2 хо ∆х + (∆х)2, ∆у = у(хо + ∆х)…

у = х2 у(хо) = хо2, у(хо + ∆х) = (хо + ∆х)2= хо2 + 2 хо ∆х + (∆х)2, ∆у = у(хо + ∆х)…

у = х2

у(хо) = хо2,

у(хо + ∆х) = (хо + ∆х)2= хо2 + 2 хо ∆х + (∆х)2,

∆у = у(хо + ∆х) – у(хо) = хо2 + 2 хо ∆х + + (∆х)2 – хо2 = 2 хо ∆х + (∆х)2 = ∆х(2хо + ∆х),

∆у

∆х

=

∆х (2хо + ∆х)

∆х

=

2хо + ∆х

2хо

при ∆х → 0

Ответ:

(х2)′ = 2х

у = х3 у(хо) = у(хо + ∆х) = = ∆у = у(хо + ∆х) – у(хо) = = хо3 ∆х(зхо2 + зхо ∆х +…

у = х3 у(хо) = у(хо + ∆х) = = ∆у = у(хо + ∆х) – у(хо) = = хо3 ∆х(зхо2 + зхо ∆х +…

у = х3

у(хо) =
у(хо + ∆х) =
=
∆у = у(хо + ∆х) – у(хо) =
=

хо3

∆х(зхо2 + зхо ∆х + (∆х)2)

хо3 + зхо2 ∆х + зхо(∆х)2 + (∆х)3

∆у

∆х

зхо2

(х3)′ = 3х2

Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.
20.10.2024