9 КЛАСС
тема: методы Решения целых уравнений
Цель: продолжить формирование умения применять различные методы при решении целых уравнений выше второй степени. Обобщить значения и умения по изученной теме. Систематизировать основные понятия, которые имеют место в данной теме (определения, свойства, правила). Систематизировать свойства, как свойства, действия умножения и действия сложения.
Воспитательная цель: повысить интерес к математике, способствовать развитию трудолюбия, взаимопомощи и патриотизма.
Оборудование: персональный компьютер, интерактивная доска.
Ход урока
I. Организационный момент.
II. Устная работа.
Определите, каким методом может быть решено каждое из данных целых уравнений:
а) 7х5 + 3х4 = 0; г) ;
б) х4 + 3х2 – 4 = 0; д) (х2 – 5)2 + 2(х2 – 5)2 + 1 = 0;
в) х3 + х2 + х + 1 = 0; е) (х2 – 2х) (х2 + 4 – 2х) = 3.
III. Формирование умений и навыков.
На этом уроке учащиеся продолжают применять разные методы решения целых уравнений. При этом внимание уделяется не только грамотному их использованию, но и умению распознавать по внешнему виду уравнения тот метод, который целесообразно применить в данной ситуации.
Упражнения:
1. № 273 (в. д), № 279 (д), № 282 (а), № 277 (а, в), № 282 (а).
2. № 283 (а).
Р е ш е н и е
х5 + х4 – 6х3 – 6х2 + 5х + 5 = 0.
Разложим выражение, стоящее слева, на множители методом группировки. Получим:
х4 (х + 1) – 6х2 (х + 1) + 5 (х + 1) = 0;
(х + 1) (х4 – 6х2 + 5) = 0;
х + 1 = 0; или х = –1. |
х4 – 6х2 + 5 = 0; х2 = t; t2 – 6t + 5 = 0; t1 = 1, t2 = 5; х2 = 1, х2 = 5; х = ±1, х = ±. |
О т в е т: ±1, ±.
Некоторым сильным в учебе учащимся можно дополнительно дать карточки-задания.
К а р т о ч к а № 1
1. Решите уравнение: (х + 1) (х + 2) (х + 3) (х + 4) = 360.
2. При каких значениях параметра а не имеет корней уравнение
х4 – 6х2 + а = 0?
К а р т о ч к а № 2
1. Решите уравнение: (х – 1) (х – 3) (х – 5) (х – 7) = 105.
2. При каких значениях параметра а не имеет корней уравнение
х4 + ах2 + 9 = 0?
Р е ш е н и е задач карточки № 1.
1. Найдем произведение крайних и средних множителей, заменив их трехчленами. Получим:
(х2 + 5х + 4) (х2 + 5х + 6) = 360.
С д е л а е м з а м е н у: х2 + 5х + 4 = t. Получим:
t (t + 2) = 360;
t2 + 2t – 360 = 0;
t1 = –20, t2 = 18.
В е р н е м с я к з а м е н е:
х2 + 5х + 4 = –20; или х2 + 5х +24 = 0; D = 25 – 96 = –71. Корней нет. |
х2 + 5х + 4 = 18; х2 + 5х – 14 = 0; х1 = –7, х2 = 2. |
О т в е т: –7; 2.
2. Биквадратное уравнение не имеет корней в двух случаях: если дискриминант полученного после замены квадратного уравнения отрицателен или если это квадратное уравнение имеет только отрицательные корни.
С д е л а е м з а м е н у: х2 = t. Получим уравнение:
t2 – 6t – а = 0;
D1 = 9 – а;
D1 < 0, если 9 – а < 0, то есть а > 9.
Значит, при а > 9 данное биквадратное уравнение корней не имеет. При а ≤ 9 уравнение имеет корни х1 и х2. Предположим, что они отрицательные. Однако, по теореме Виета, имеем: х1 + х2 = = 6. Таким образом, полученное квадратное уравнение не может иметь одновременно двух отрицательных корней. Значит, исходное биквадратное уравнение не имеет корней только при а > 9.
О т в е т: (9; +∞).
Р е ш е н и е задач карточки 2.
1. Так же, как и при решении уравнения из карточки 1, выполним преобразование и получим уравнение:
(х2 – 8х + 7) (х2 – 8х + 15) = 105.
С д е л а е м з а м е н у: х2 – 8х + 7 = t. Получим:
t (t + 8) = 105;
t2 + 8t – 105 = 0;
t1 = –15, t2 = 7.
В е р н е м с я к з а м е н е:
х2 – 8х + 7 = –15; или х2 – 8х +22 = 0; D1 = 16 – 22 = –6. Корней нет. |
х2 – 8х + 7 = 7; х2 – 8х = 0; х (х – 8) = 0; х1 = 0, х2 = 8. |
О т в е т: 0; 8.
2. С д е л а е м з а м е н у: х2 = t. Получим уравнение:
t2 + аt + 9 = 0;
D1 = а2 – 36;
D1 < 0, если а2 – 36 < 0, то есть а (–6; 6).
Значит, при таких значениях а данное биквадратное уравнение корней не имеет.
Если а (–∞; –6) (6; +∞), то квадратное уравнение t2 + аt + 9 = 0 имеет два корня: х1 и х2. По теореме Виета, х1 · х2 = 9, значит, эти корни одинаковых знаков.
Чтобы данное биквадратное уравнение не имело корней, числа х1 и х2 должны быть отрицательными, то есть х1 + х2 < 0, а по теореме Виета х1 + х2 = –а. Имеем:
х1 + х2 < 0, если –а < 0, то есть а > 0.
О т в е т: (–6; 6) (6; +∞).
IV. Итоги урока.
В о п р о с ы у ч а щ и м с я:
– Какие существуют методы решения целых уравнений?
– В чем состоит суть метода введения новой переменной при решении целого уравнения?
– В чем состоит метод разложения на множители решения целого уравнения?
Домашнее задание: № 273, № 277 (б), № 279 (е), № 282 (б), № 283 (б).
© ООО «Знанио»
С вами с 2009 года.