Тема учебного занятия: «Применение распределительного свойства умножения».
Тип учебного занятия: урок комплексного применения знаний и способов действий.
Цель учебного занятия:
1. повторить распределительное свойство умножения относительно сложения и вычитания;
2. показать применение распределительного свойства умножения при работе с обыкновенными дробями и смешанными числами;
3. совершенствовать навыки рациональных вычислений;
4. способствовать развитию логического мышления, умению формулировать и обосновывать суждения;
5. воспитывать аккуратность, точность и внимательность при работе с обыкновенными дробями.
6. Организовать деятельность учащихся по самостоятельному переносу усвоенных ими комплекса знаний и способов действий в рамках изучаемой темы в изменённую и новую ситуации.
7. Продолжить формирование у учащихся критического отношения к получаемому результату деятельности посредством самооценки и взаимопроверки.
8. Обеспечить оптимальное сочетание мотивации учения школьников и развитие интеллекта.
Форма учебного занятия: Урок – игра «Математические гонки».
Логика учебного занятия: Мотивация→актуализация опорных знаний и способов действий, необходимых для применения на творческом уровне→образец комплексного применения знаний →самостоятельное применение знаний и способов действий → самоконтроль и контроль → коррекция.
Содержание:
Комплекса знаний: |
Комплекса способов действий: |
1.Алгоритм сложения и вычитания дробей с одинаковыми и разными знаменателями 2.Алгоритм умножения дробей. 3.Правило нахождения дроби от числа. 4.Формулировка распределительного свойства умножения относительно сложения и вычитания. 5.Правило сокращения дробей. |
1.Сложение и вычитание дробей с одинаковыми и разными знаменателями.
2.Умножение дробей. 3.Нахождение дроби от числа. 4.Применение распределительного свойства умножения относительно сложения и вычитания. 5. Сокращение дробей. |
Средства, необходимые для проведения учебного занятия:
Дидактический материал, карточки, учебник, доска, компьютер,
мультимедио.
1. Организационный момент
Ø Сегодняшний урок начнём с высказывания Л.Н, Толстого: «Человек подобен дроби: в знаменателе – то, что он о себе думает, в числителе – то, что он есть на самом деле. Чем больше знаменатель, тем меньше дробь».
Ø Как вы понимаете эти слова? (Чем больше человек о себе воображает, тем меньше он что-то из себя представляет).
2. Постановка темы и цели урока:
Ø Как вы думаете, о чем сегодня наш урок?
Ø Какую цель поставим мы перед собой?
3. Актуализация знаний
Устно найти значения выражений:
1). ∙ 2). ∙ 3). 6 ∙ 7 4). 2 ∙ 6
4. Подготовка учащихся к работе на основном этапе урока.
Ø У нас есть поговорка «Попал в тупик», то есть попал в трудное положение, аналогичная поговорка у немцев звучит так: «Попасть в дроби». Она напоминает о тех временах, когда дроби считали самым трудным разделом математики, В наше время их начинают изучать уже в младших классах.
Ø Сегодня у нас необычный урок, на этот раз мы принимаем участие в гонках, причём гонки эти – математические.
Ø В чём состоит ваша задача?
Ø Вы должны как можно быстрее и качественнее преодолеть все препятствия, которые будут попадаться по всей трассе, а препятствия эти – примеры, уравнения, задачи, которые вам надо решить.
Ø В конце гонки подведём итоги.
Ø «Зачисление в экипаж гоночной машины»
Задание. Записать на доске и « сигнальных карточках» формулы, выражающие распределительное свойство умножения (РСУ) относительно:
1. сложения:
2. вычитания.
Вопрос. Сформулировать правило умножения смешанного и натурального чисел.
5. Применение знаний и способов действий, учащихся в изменённой ситуации.
Ø Что нужно сделать, прежде чем выйти на трассу?
Ø «Устранение неполадки в машине».
Задание. Найти ошибку и охарактеризовать её:
Ø Есть неполадки, их нужно устранить:
Задание. Отгадать слово, обозначающее неполадку в машине.
Даётся установка: «Найти значение выражений и из соответствующих им букв составить слово, обозначающее неполадку в машине».
Ответы:
а) 17(Ш); б) 9(И); в) 11(Н); г) 36(А).
о |
ш |
ь |
и |
с |
а |
н |
13 |
17 |
36 |
9 |
3 |
36 |
11 |
Ø Неполадки вы ликвидировали, а теперь вам предстоят:
Ø «Гонки по пересечённой местности».
Участникам команд даётся установка: «Выполнить по очереди задания».
Задание. а) Упростите выражение:
б) Найдите его значение при x, равном
Задание 5. Решите уравнение:
Ответ: x=2
6. Применение учащимися знаний и способов действий в новой ситуации
Ø «Внезапная остановка».
Ø С 93 № 570
Ø «Финиш». Самостоятельное выполнение заданий в новой ситуации.
Даётся установка: «Чтобы успешно пересечь линию финиша, каждому нужно успешно решить задания самостоятельной работы».
Задание. Найдите значение выражения:
Ответ:17; 5.
Задание. Решите уравнение:
7. Подведение итогов.
Ø Над чем работали?
Ø Цели достигли?
Ø Выставление оценок.
8. Домашнее задание:
Ø № 539 (в, г) упростить выражение
Ø № 540 (б) решить уравнение.
Анкета, которая позволяет осуществить самоанализ, дать качественную и количественную оценку уроку.
1.На уроке я работал 2.Своей работой на уроке я 3.Урок для меня показался 4.За урок я 5.Мое настроение 6.Материал урока мне был
7.Домашнее задание мне кажется |
активно / пассивно доволен / не доволен коротким / длинным не устал / устал стало лучше / стало хуже понятен / не понятен полезен / бесполезен интересен / скучен легким / трудным интересно / не интересно |
9. Этап рефлексии.
Ø Перед вами лист настроений.
Ø С каким настроением вы уходите с урока? Поднимите тот смайлик, который соответствует вашему настроению.
|
|
|
хорошее |
равнодушное |
плохое |
Спасибо за урок! До свидания!
Урок математики в 6 классе по теме «Распределительное свойство умножения». Коммуникативные УУД формировались через обсуждение проблем, которые возникали в ходе выполнения заданий. Формирование познавательных действий, определяющих умение ученика выделять тип задач и способы их решения: ученикам предлагается ряд задач, в котором необходимо найти схему, отображающую логические отношения между известными данными и искомыми. Предметом ориентировки и целью решения математической задачи становится не конкретный результат, а установление логических отношений между данными и искомыми, что обеспечивает успешное усвоение общего способа решения задач. В процессе вычислений, измерений, поиска решения задач у учеников формируются основные мыслительные операции (анализа, синтеза, классификации, сравнения, аналогии и т.д.), умения различать обоснованные и необоснованные суждения, обосновывать этапы решения учебной задачи, производить анализ и преобразование информации (используя при решении самых разных математических задач простейшие предметные, знаковые, графические модели, таблицы, диаграммы, строя и преобразовывая их в соответствии с содержанием задания). Коммуникативные действия, которые обеспечивают возможности сотрудничества учеников: умение слушать и понимать партнера, планировать и согласованно выполнять совместную деятельность, распределять роли, взаимно контролировать действия друг друга и уметь договариваться. В процессе изучения математики осуществляется знакомство с математическим языком, формируются речевые умения: дети учатся высказывать суждения с использованием математических терминов и понятий, формулировать вопросы и ответы в ходе выполнения задания, доказательства верности или неверности выполненного действия, обосновывают этапы решения учебной задачи. Работая в соответствии с инструкциями к заданиям учебника, дети учатся работать в парах, выполняя заданные в учебнике проекты в малых группах. Формирование регулятивных действий - действий контроля: приемы самопроверки и взаимопроверки заданий. В процессе работы ребёнок учится самостоятельно определять цель своей деятельности, планировать её, самостоятельно двигаться по заданному плану, оценивать и корректировать полученный результат. Личностные действия: Самостоятельно определять и высказывать самые простые общие для всех людей правила поведения при общении и сотрудничестве (этические нормы общения и сотрудничества).
© ООО «Знанио»
С вами с 2009 года.