МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ ПРАКТИЧЕСКОЙ РАБОТЫ ПО МАТЕМАТИКЕ В СПО
Разработал преподаватель: Игнатьева Елена Сергеевна
Тема:
Решение задач по теме: «Числовая последовательность, способы ее задания, вычисления членов последовательности. Предел последовательности. Бесконечно убывающая геометрическая прогрессия».
Цель работы:
- применить умения по владению представлений об основных понятиях математического анализа и их свойствах, владение умением характеризовать поведение функций, использование полученных знаний для описания и анализа реальных зависимостей.
Оборудование:
1. Рабочая тетрадь в клетку
2. Раздаточные материалы: карточки-задания, инструкционные карты – 20 штук.
3. Калькулятор простой.
4. Ручка.
Задание:
I Вариант II Вариант
1. Последовательность задана словесно. Напишите первые десять членов последовательности
а) натуральных чисел, кратных 5 |
а) натуральных чисел, кратных 3 |
б) степеней числа 2 с натуральными показателями |
б) степеней числа 3 с натуральными показателями |
2. Последовательность задана формулой общего члена. Напишите первые десять членов последовательности |
|
а) |
а) |
б) |
б) |
3. Предложите формулу общего члена для каждой из последовательностей. Если известно несколько первых членов |
|
а) 4,8,12, 16,20,…; |
а) 2,5,8.11,14,…; |
б) -1.1,-1,1,…; |
б) 3,12,48,192….; |
4. Вычислите пределы последовательностей |
|
а) |
а) |
б) |
б) |
Порядок выполнения:
1. Внимательно прочитать тему и цель практической работы.
2. Изучить учебный материал по теме.
3. Ответить на вопросы.
4. Выполнить задания.
5. Подготовить отчет.
Пояснения к работе (учебный материал):
Определение: множество чисел, каждое из которых снабжено своим номером, называется числовой последовательностью.
Элементы этого числового множества называются членами последовательности и обозначают: первый член - а 1, второй - а 2 , n- й член - а n и т.д. Вся последовательность обозначается: а 1, а 2, а 3, …, а n или (а n ).
Числовая последовательность представляет собой не что иное, как множество нумерованных чисел, упорядоченных наподобие натурального ряда, т.е. располагаемое в порядке возрастания номеров. Последовательность может содержать как конечное, так и бесконечное число членов.
Последовательность, состоящая из конечного числа членов, называется конечной, а последовательность, состоящая из бесконечного числа членов, - бесконечной последовательностью.
Иногда бесконечную числовую последовательность вводят, используя понятие функции:
Определение:
Функцию у = f(x),
xN называют
функцией натурального аргумента или числовой последовательностью и обозначают:
у = f(n), или у1,
у2, у3..., уn
или у(n).
Последовательности можно задавать различными способами, например, словесно, когда правило задавания последовательности описано словами, без указания формулы. Так, словесно задается последовательность простых чисел:
2,3,5,7,11,13,17,19,23,29,...
Особенно важны аналитический и рекуррентный способы задания последовательности.
Говорят, что последовательность задана аналитически, если указана формула ее n-го члена.
Приведем три примера.
1) уn = n2. Это аналитическое задание последовательности
1,4,9,16,…, n2, …
Указав конкретное значение n, нетрудно найти член последовательности с соответствующим номером. Если. Например, n= 9, то у9 = 92 = 81, если
2) уn = С. Здесь речь идет о последовательности С, С, С, …., С, …. . Такую последовательность называют постоянной (или стационарной).
3) уn = 2n . Это аналитическое задание последовательности 2, 22, 23, ….,2n, …
Рекуррентный способ задания последовательности состоит в том, что указывают правило, позволяющее вычислить n- й член последовательности, если известны ее предыдущие члены. Например, арифметическая прогрессия – это числовая последовательность (аn), заданная рекуррентно соотношениями:
а 1, = а, аn+1 = аn+ d
(а и d – заданные числа, d – разность арифметической прогрессии)
Геометрическая прогрессия – это числовая последовательность (bn), заданная рекуррентно соотношениями:
b 1, = b, bn+1 = bn·q
(b и q – заданные числа, b≠0, q ≠ 0; q знаменатель геометрической прогрессии ).
Пример: Выписать первые пять членов последовательности, заданной рекуррентно:у1 =1; у2 = 1; уn = уn-2 + уn-1
Решение. n –й член последовательности равен сумме двух предшествующих ему членов. Значит, последовательно получаем:
у1 =1; у2 = 1; у3 =1+1 = 2; у4 = 1+ 2 = 3; у5 =2+3 =5; и т.д.
Ограниченные последовательности.
·
Последовательность (хn)
называется ограниченной, если существуют такие два числа m
и М, что для всех nN
выполняется неравенство m≤ хn ≤М.
·
Последовательность (хn)
называется ограниченной сверху, если существует такое число М, что для всех nN выполняется
неравенство хn ≤М.
·
Последовательность (хn)
называется ограниченной снизу, если существует такое число m,
что для всех nN
выполняется неравенство m≤ хn
Например: последовательность (хn), заданная формулой общего члена хn = n, ограничена снизу (например, число 0) и не ограничена сверху.
Монотонные последовательности.
Последовательность (хn) называется возрастающей, если каждый ее член, начиная со второго, больше предыдущего, т.е. если для любого натурального n выполняется неравенство хn+1 > хn.
Последовательность (хn) называется убывающей, если каждый ее член, начиная со второго, меньше предыдущего, т.е. если для любого натурального n выполняется неравенство хn+1 < хn.
Последовательность (хn) называется невозрастающей, если каждый ее член, начиная со второго, не более предыдущего, т.е. если для любого натурального n выполняется неравенство хn+1 ≤ хn.
Последовательность (хn) называется неубывающей, если каждый ее член, начиная со второго, не меньше предыдущего, т.е. если для любого натурального n выполняется неравенство хn+1 ≥ хn.
Возрастающие, убывающие, невозрастающие и неубывающие последовательности образуют класс монотонных последовательностей.
Предел числовой последовательности.
Рассмотрим для числовые последовательности – (уn) и (xn).
(уn): 1, 3,5, 7, 9, … 2n – 1, …;
(xn):
1,
Изобразим члены этих последовательностей точками на координатной прямой.
![]() |
0 1 3 5 7 9 11 у
![]() |
0 0,25 0,5 1
Замечаем, что члены последовательности (xn) как бы «сгущаются» около точки 0 – говорят последовательность сходятся , а у последовательности (уn) такой точки сгущения нет – и говорят, что последовательность расходится.
Математики не используют термин точка сгущения, а они говорят предел последовательности.
Определение: Число b называется пределом последовательности (уn), если в любой заранее выбранной окрестности точки b содержится все члены последовательности, начиная с некоторого номера.
Пишут так: уn→b или читают так: предел
последовательности уn при
стремлении n к бесконечности равен b.
На практике используется еще одно
истолкование равенства , связанное с
приближенными вычислениями: если последовательность уn = f(n) сходится к числу b, то
выполняется приближенное равенство f(n)≈b, причем это
приближенное равенство тем точнее, чем больше n.
Вопросы для закрепления теоретического материала к практическому занятию:
1. Дайте определение числовой последовательности.
2. Перечислите способы задания последовательностей.
3. Какие последовательности называют ограниченными?
4. Сформулируйте определение предела числовой последовательности.
Содержание отчета:
Название практической работы.
Учебная цель.
Решение заданий практической работы.
Ответы на вопросы для закрепления теоретического материала.
Литература:
1. Алимов Ш.А. и др. Алгебра и начала математического анализа: Учебник 10—11 классы. — М.И., 2016.
2. Атанасян Л.С., Бутузов В. Ф., Кадомцев С.Б. и др. Математика: алгебра и начала математического анализа. Геометрия. Геометрия (базовый и углубленный уровни). 10—11 классы. — М., 2016.
3. Башмаков М.И. Математика: алгебра и начала математического анализа, геометрия: учебник для студентов профессиональных образовательных организаций, осваивающих профессии и специальности СПО. – М.,2017
4. Башмаков М.И. Математика: алгебра и начала математического анализа, геометрия: Сборник задач профильной направленности: учеб. пособие для студентов профессиональных образовательных организаций, осваивающих профессии и специальности СПО. – М.,2017
5. Башмаков М.И. Математика: алгебра и начала математического анализа, геометрия: Задачник: учеб. пособие для студентов профессиональных образовательных организаций, осваивающих профессии и специальности СПО. – М.,2017
6. Башмаков М.И. Математика: алгебра и начала математического анализа, геометрия: Электронный учеб.- метод. комплекс для студентов профессиональных образовательных организаций, осваивающих профессии и специальности СПО. – М.,2017
7. Башмаков М.И. Математика: Учебник. — М., 2016.
Материалы на данной страницы взяты из открытых источников либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.