Филиал бюджетного профессионального образовательного учреждения Чувашской Республики
«Чебоксарский медицинский колледж»
Министерства здравоохранения Чувашской Республики в городе Канаш
РАССМОТРЕНО и ОДОБРЕНО на заседании ЦМКОГСЭ Протокол № ____ «____» _______________ 20 ___ г. Председатель ЦМК ____________Л.М Иванова |
утверждено Зав. филиалом БПОУ «ЧМК» МЗ Чувашии в г. Канаш ____________ Т.Э Фадеева |
Методическая разработка теоретического занятия
аксиомы стереометрии.
учебная дисциплина БД. 04 Математика
специальность 34.02.01Сестринское дело
(базовая подготовка)
Канаш, 2021
Составитель: Семенова А.М., преподаватель высшей квалификационной категории филиала БПОУ ЧР «Чебоксарский медицинский колледж» Министерства здравоохранения Чувашии в г. Канаш
|
Рецензент: Иванова Л.М., преподаватель, высшей квалификационной категории филиала БПОУ ЧР «Чебоксарский медицинский колледж» Министерства здравоохранения Чувашии в г. Канаш
|
Аннотация
Данная разработка предназначена для изучения темы «Аксиомы стереометрии и их связь аксиомами планиметрии» обучающимися 1 курсов СПО. Эта тема является введением в последующие, следовательно, именно ее успешное понимание и отработка послужат базой под изучение других.
Для того чтобы установить связи преемственности в изучении нового материала с изученным, включить новые знания в систему ранее усвоенных, повторяется тема «Стереометрия», которая подготавливает учащихся к восприятию нового материала.
СОДЕРЖАНИЕ
ВВЕДЕНИЕ
1. методический блок
1.1. Учебно-методическая карта
Формы деятельности
1.2. Технологическая карта
2. Информационный блок
2.1. План лекции
2.2 Текст лекции
2.3. Глоссарий
3. Контролирующий блок
Методическая разработка занятия на тему «Аксиомы стереометрии и их связь аксиомами планиметрии» на основе Рабочей программы по математике и календарно-тематического плана. Темы занятия взаимосвязаны содержанием, основными положениями.
Цель изучения данной темы ознакомиться аксиомами стереометрии и их связью аксиомами планиметрии. Программный материал данного занятия базируется на знаниях математики. Методическая разработка занятия составлена для проведения теоретических занятий по теме: «Аксиомы стереометрии и их связь аксиомами планиметрии» –2 часа. В процессе практического занятия студенты закрепляют полученные знания.
Методическая разработка предназначена для оказания методической помощи студентам при изучении занятий по теме «Аксиомы стереометрии и их связь аксиомами планиметрии». Методическая разработка основывается на учебнике для базового и профильного обучения: Алгебра и начала математического анализа Ш.А Алимов.
Тема занятия |
Логарифмы. |
||||||
Учебная дисциплина |
БД.04 Математика |
||||||
Специальность |
34.02.01 Сестринское дело (базовая подготовка) |
||||||
Курс |
I |
||||||
Группа |
9М-11-20, 9М-12-20, 9М-13-20,9М-14-20, 9М-15-20. |
||||||
Место проведения |
Кабинет № 5 |
||||||
Продолжительность занятия |
90 мин. |
||||||
Характеристика занятия |
Вид |
Вид занятия: Лекция текущая, обзорная.
|
|||||
Тип |
Типы учебных занятий урок изучения нового материала; комбинированный урок
|
||||||
Форма |
Изложение, рассказ, объяснение с демонстрацией наглядных пособий. Формы деятельностиФронтальная.
|
||||||
Технологии обучения |
Традиционная технология обучения
|
||||||
Методы обучения |
Метод Репродуктивный: упражнения, действия по алгоритму. Интерактивные методы – практическая отработка осваиваемых знаний, умений, навыков на уровне компетенций
|
||||||
Средства обучения |
1.По характеру воздействия на обучаемых: ИКТ - презентации; 2.По степени сложности: простые: учебники, печатные пособия.
|
||||||
Методическая цель |
Методическая цель - отрабатывать методику контроля результатов выполнения письменных упражнений. - реализовывать индивидуальный дифференцированный подход в процессе выполнения обучающимися заданий для самостоятельной работы; |
||||||
Цели и задачи занятия |
Воспитательная |
Формулировать интеллектуальных, нравственных, эмоционально-волевых качеств у обучающихся.
|
Воспитывать положительное отношение к приобретению новых знаний; Воспитывать ответственность за свои действия и поступки; Вызвать заинтересованность новым для студентов подходом изучения математики. Воспитывать интерес к математике путём введения разных видов закрепления материала: устной работой, работой с учебником, работой у доски, ответами на вопросы и умением делать самоанализ, самостоятельной работой; стимулированием и поощрением деятельности учащихся.
|
||||
Образовательная |
Обобщение и систематизирование приобретенных знаний по теме. Освоение основных понятий стереометрии. Ознакомление с основными понятиями и аксиомами стереометрии; Отработка умения переноса знаний из планиметрии в стереометрию.
|
Поспособствовать развитию навыков аналитического и образного мышления; Закрепить знания студентов о взаимном расположении точек, прямых и плоскостей в пространстве. Включить новые знания в систему ранее усвоенных; закрепить изученный на этом уроке.
|
|||||
Развивающая |
Развитие речи, мышления, сенсорной восприятие внешнего мира через органы чувств сферы;
|
Формировать навыки познавательного мышления. Продолжить развитие умения выделять главное. Продолжить развитие умения устанавливать причинно-следственные связи. Развивать
навыки и умения, в выполнении заданий по теме, умение работать в группе и
самостоятельно. Развивать логическое мышление, правильную и грамотную
математическую речь, развитие самостоятельности и уверенности в своих знаниях
и умениях при выполнении разных видов работ. |
|||||
Планируемый результат |
Уметь: |
распознавать пространственные геометрические фигуры; раскрывать сущность геометрических понятий; формулировать аксиомы стереометрии и следствия из них; объяснять способы задания плоскости и соотношение принадлежности прямой и плоскости; |
|||||
Знать: |
следствия из аксиом стереометрии основные фигуры стереометрии; правила обозначения основных фигур; аксиомы стереометрии; |
||||||
Формированиекомпетенций у обучающихся |
Общие (ОК)
|
Л1. Сформированность представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, идеях и методах математики; Л5. Готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности; Л8. Отношение к профессиональной деятельности как возможности участия в решении личных, общественных, государственных, общенациональных проблем; М2. Умение продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции других участников деятельности, эффективно разрешать конфликты; М5. Владение языковыми средствами: умение ясно, логично и точно излагать свою точку зрения, использовать адекватные языковые средства;
|
|||||
Профессиональные (ПК) |
П1. Сформированность представлений о математике как части мировой культуры и месте математики в современной цивилизации, способах описания явлений реального мира на математическом языке; П3. Владение методами доказательств и алгоритмов решения, умение их применять, проводить доказательные рассуждения в ходе решения задач; П4. Владение стандартными приемами решения рациональных и иррациональных, показательных, степенных, тригонометрических уравнений и неравенств, их систем; использование готовых компьютерных программ, в том числе для поиска пути решения и иллюстрации решения уравнений и неравенств; |
||||||
Межпредметные связи |
Входящие |
Алгебра, тригонометрия. |
Математический анализ. |
||||
Выходящие |
Тригонометрическое тождество |
Тригонометрические уравнения. |
|||||
|
|
||||||
|
|
||||||
Внутрипредметные |
Синус, косинус, тангенс и котангенс. |
||||||
|
|||||||
Оснащение занятия |
Методическое |
Методическая разработка занятия. |
|||||
Материально-техническое |
Ручка, карандаш, тетрадь, линейка. |
||||||
Информационное |
Компьютер, интерактивная доска. |
||||||
Список литературы |
Основная |
1.Алимов, Ш. А. Алгебра и начала математического анализа (базовый и углубленный уровни)10—11 классы / Ш.А. Алимов — М., 2018. – с.455. 2.Колягин, Ю.М. Математика: алгебра и начала математического анализа. Алгебра и начала математического анализа (базовый и углубленный уровни). 11 класс / М. В Ткачева., Н. Е Федерова. — М., 2018. - 384 с. |
|||||
Дополнительная |
1 Александров А.Д., Геометрия / А.Л.Вернер, В.И. Рыжик (базовый и профильный уровни). 10—11 кл. – 2017. – 344 с. 2. Богомолов, И.Д. Математика: учебник / И.Д. Богомолов. – М., 2018. - 384 с.
|
||||||
Интернет-ресурсы |
1. Калашникова В.А. Методическое пособие: «Конспекты лекций по математике» [Электронный ресурс] /В.А. Калашникова. 2. Яковлев Г.Н. Алгебра и начала анализа (Математика для техникумов) [Электронный учебник] /Г.Н Яковлев. - Режим доступа: http://lib.mexmat.ru/books/78472. 3.http://fcior.edu.ru/ - Федеральный центр информационно-образовательных ресурсов 4.http://school-collection.edu.ru/ - Единая коллекция цифровых образовательных ресурсов
|
||||||
Деятельность преподавателя |
Деятельность обучающихся |
Методическое обоснование |
Формируемые ОК и ПК |
|
1. Организационный этап -5 мин. |
||||
Проверяет готовность обучающихся к занятию. дает положительный эмоциональный настрой, организует, проверяет готовность уч-ся к уроку |
Готовятся к началу занятия. |
Включение обучающихся в деятельность на личностно значимом уровне. |
ОК 1, ОК 4. П1. |
|
2. Этап всесторонней проверки домашнего задания - 10мин. |
||||
Выявляет правильность и осознанность выполнения всеми обучающимися домашнего задания; устранить в ходе проверки обнаруженные пробелы в знаниях. |
По очереди комментируют свои решения. Приводят примеры. Пишут под диктовку.
|
Повторение изученного материала, необходимого для открытия нового знания, и выявление затруднений в индивидуальной деятельности каждого обучающегося. |
ОК1, ПК 1, ПК4 |
|
3. Постановка цели и задач занятия. Мотивация учебной деятельности обучающихся - 5 мин. |
||||
Озвучивает тему урока и цель, уточняет понимание обучающегося поставленных целей урока. Эмоциональный настрой и готовность преподавателя на урок.
|
Эмоционально настраиваются и готовятся обучающихся на урок. Ставят цели, формулируют тему урока. |
Обсуждение затруднений; проговаривание цели урока в виде вопроса, на который предстоит ответить. Методы, приемы, средства обучения: побуждающий от проблемы диалог, подводящий к теме диалог. |
ОК 1, ОК 4. П1. |
|
4. Актуализация знаний -30 мин. |
||||
Уточняет понимание обучающимися поставленных целей занятия. Выдвигает проблему. Создает условия, чтобы обучающийся смогли систематизировать знания о множестве действительных чисел, имели представление о пределе числовой последовательности
|
Под диктовку, все выполняют задание, а один проговаривает вслух.
|
Создание проблемной ситуации. Уч-ся- фиксируют индивидуальные затруднения. Создание условия, чтобы обучающийся смогли систематизировать знания о множестве действительных чисел. |
ОК 1, ОК 4. П1. |
|
5. Первичное усвоение новых знаний- 10 мин. |
||||
Создаёт эмоциональный настрой на усвоение новых знаний.
|
Внимательно слушают, записывают под диктовку в тетрадь. |
Создание условий, чтобы обучающийся смогли систематизировать знания о множестве действительных чисел. |
ОК1, ПК 1, ПК4 |
|
6. Первичная проверка понимания- 10 мин. |
||||
Проводит параллель с ранее изученным материалом. Проводит беседу по уточнению и конкретизации первичных знаний;
|
Отвечают на заданные вопросы преподавателем. |
Осознание степени овладения полученными знаниями - каждый для себя должен сделать вывод о том, что он уже умеет. |
ОК1, ПК 1, ПК4 |
|
7. Первичное закрепление- 5 мин. |
||||
Контролирует выполнение работы. Осуществляет: индивидуальный контроль; выборочный контроль. Побуждает к высказыванию своего мнения. Показывает на доске решение, опираясь на алгоритм. |
записывают решение, остальные решают на местах, потом проверяют друг друга;
|
Тренировка и активизация употребления новых знаний, включение нового в систему Режим работы: устная, письменная, фронтальная, индивидуальная. |
ОК1, ПК 1, ПК4 |
|
8. Контроль усвоения, обсуждение допущенных ошибок и их коррекция (подведение итогов занятия 5 мин |
||||
Отмечает степень вовлеченности обучающихся в работу на занятии. Задает вопросы по обобщению материала. |
Под диктовку, все выполняют задание, а один проговаривает вслух; |
Оценивание работу обучающихся, делая акцент на тех, кто умело взаимодействовал при выполнении заданий |
ОК 1, ОК 4. П1. |
|
9. Информация о домашнем задании, инструктаж по его выполнению5 мин |
||||
Обсуждение способов решения домашнего задания. Записывает номера заданий на доске.
|
Обобщают полученные знания, делают вывод о выполнении задач урока. |
Информация о домашнем задании, инструктаж по его выполнению
|
ОК 1, ОК 4. П1. |
|
10. Рефлексия (подведение итогов занятия),5 мин |
||||
Акцентирует внимание на конечных результатах учебной деятельности обучающихся на занятии.
|
1. Проводят самоанализ: “Чему научились и что нового узнали?”
|
Осознание своей учебной деятельности; самооценка результатов деятельности своей. |
ОК1, ПК 1, ПК4 |
|
№ п/п |
Изучаемые вопросы |
Уровень усвоения |
1. |
Объяснение темы Аксиомы стереометрии и их связь аксиомами планиметрии. |
1 |
|
1.1 Аксиомы стереометрии. |
2 |
|
1.2. Связь аксиомами планиметрии. |
2 |
2. |
Закрепление нового материала. |
|
|
2.1 Примеры и разбор решения заданий тренировочного модуля. |
3 |
|
2.2Решение примеров устно № 1,2. |
|
3. |
Решение упражнений (нечетные пункты) на закрепление темы № 3-6. |
3 |
4. |
Домашнее задание № 7,8,9.. (четные пункты). |
3 |
Текст лекции
1. Теоретический материал.
Устная работа.
Перечень вопросов, рассматриваемых в теме
Простейшими (основными) фигурами в пространстве являются точки, прямые и плоскости.
Теоретический материал
Мы закончили изучать и повторять раздел геометрии, который называется планиметрией.
В планиметрии все фигуры, которые рассматривались при доказательстве каждой теоремы или при решении задач, располагались на плоскости. Таким образом, мы имели дело только с одной плоскостью.
Сегодня мы начинаем изучать новый раздел геометрии, который называется
стереометрией.
Обратите внимание на данные фигуры. Как вы заметили- они объемные.
И их все объединяет раздел геометрии Стереометрия.
Что же такое стереометрия?
По аналогии с планиметрией мы можем вывести следующее определение:
Стереометрия- это раздел геометрии, в котором изучаются свойства фигур в пространстве.
Простейшими (основными) фигурами в пространстве являются точки, прямые и плоскости.
Вместе с этими фигурами рассматриваются геометрические тела и их поверхности. Представления о геометрических телах дают нам: кристаллы (составлен из многоугольников) – многогранники; куб; капли жидкости в невесомости – шар; футбольный мяч (шар); консервная банка (цилиндр).
Многогранники:
Шар:
Куб:
Цилиндр:
Изучая свойства геометрических фигур, мы получаем представления о геометрических свойствах реальных предметов. В этом и состоит практическое значение геометрии, в частности стереометрия, широко используется в строительстве, архитектуре, машиностроении, геодезии, в науке и технике.
В планиметрии основными фигурами были точки и прямые. В стереометрии наряду с ними рассматривается ещё одна основная фигура – плоскость.
Представление плоскости нам дает любая гладкая поверхность. Она безгранична.
В стереометрии:
Основные свойства точек, прямых и плоскостей, касающиеся их взаимного расположения, выражены в аксиомах.
А1: Через 3 точки, не лежащие на одной прямой, проходит плоскость, и притом только одна.
Точки А α, В
α, С
α.
Если взять четыре произвольные точки, то через них может не проходить ни одна плоскость.
А2: Если две точки прямой лежат в плоскости, то все точки прямой лежат в этой плоскости.
В этом случае говорят, что прямая лежит в плоскости или плоскость проходит через прямую.
Это свойство используется при проверке “ровности” линейки.
Если прямая и плоскость имеют одну общую точку, то говорят, что они пересекаются.
А3: Если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей.
В этом случае говорят, что плоскости пересекаются по прямой.
Пример: пересечение пола и стены
В пространстве существует бесконечно много плоскостей, и в каждой плоскости справедливы все аксиомы и теоремы планиметрии.
Некоторые следствия из аксиом.
Теорема 1: Через прямую и не лежащую на ней точку проходит плоскость, и притом только одна.
Дано: а – прямая, точка М ∉ а.
Доказать: 1) существует α: а α.
2) α – единственная.
Доказательство:
1) Дополнительные построения: т. В а, т. С
а.
2) В, С, М не лежат на одной прямой, следовательно, по первой аксиоме существует плоскость α.
3) т. к.
4) Единственность α. следует из того, что любая плоскость, проходящая через прямую а и т. М, проходит через М, В, С. Значит, она совпадает с α (по Аксиоме 1). Теорема доказана.
Теорема 2: Через две пересекающиеся прямые проходит плоскость, и, причём только одна.
Дано: а ∩ b в точке М
Доказать: существование плоскости α, а α, b
α.
Доказательство:
1) Дополнительные построения: N Є b, N∉ a.
2) Существует α : N α, a
α.
3)
4) Из 2) и 3) следует α. проходит через прямые а и b.
5) Единственность α следует из того, что любая плоскость, проходящая через прямые а и b, проходит через точку N, значит она совпадает с α (по Теореме 1). Теорема доказана.
Разбор решения заданий тренировочного модуля
№1.
Тип задания: выделение цветом
Прямая MN пересекает плоскость:
1) (АА1В1);
2) (ABC);
3) (AA1D1).
Разбор решения:
Внимательно рассмотрите рисунок, как вы видите прямая MN пересекает плоскости ABC и A1B1С1, рассмотрим варианты ответов, среди них есть вариант 2) (ABC), он и является верным.
Ответ: 2) (ABC);
№2.
Тип задания: смежный граф
Пользуясь данным рисунком
назовите три плоскости, содержащие прямую DС1 (нижний индекс записываете цифрой после буквы, без пробела)
Решение: Внимательно рассмотрите прилагающийся рисунок, определите, где на нем располагается прямая DС1, как вы видите из рисунка он располагается в плоскостях:
1)DD1С1С
2)D1С1С
3) DСС1
Их и запишем в ответ.
Ответ: 1)DD1С1С; 2)D1С1С; 3) DСС1
2. Решение примера устно № 1,2.
3.Решение упражнений на закрепление темы № 3, 4, 5..
4. Домашнее задание № 7,8. Подведение итогов.
2.3. Глоссарий
Термин |
Значение |
Геометрия |
- это наука о свойствах геометрических фигур. |
Планиметрия |
- это раздел геометрии, в котором изучаются свойства фигур на плоскости. |
Стереометрия |
- это раздел геометрии, в котором изучаются свойства фигур в пространстве. |
3. Контролирующий блок
Вариант 1
«Аксиомы стереометрии и их простейшие следствия»
Вариант 1
1. Раздел геометрии, в котором изучаются свойства фигур в пространстве, называется:
а) планиметрией; б) стереометрией; в) видеометрией; г) сферометрией.
2. Какие из изображенных фигур являются основными в пространстве?
а) прямая
б) точка
в) отрезок
г) плоскость
3. Перепишите утверждения, вставьте пропущенные слова в утверждениях:
«Через любые ___ точки, не лежащие на одной ________, проходит ______, и притом только одна. Если ____ точки прямой лежат в _________, то все точки ______ лежат в этой ____. Если две _________ имеют общую точку, то они имеют общую ______, на которой лежат все общие точки этих ________.»
4. Какое наименьшее число точек определяет прямую в пространстве?
а) одна точка; б) две точки; в) три точки; г) четыре точки.
5. Сколько плоскостей можно провести через две точки в пространстве?
а) одну; б) две; в) три; г) бесконечно много.
6. Что называют аксиомой в геометрии?
7. Какие из ученых являются основоположниками Неевклидовой геометрии?
8. Сколько аксиом в стереометрии Евклидовой геометрии?
9. Сформулировать аксиомы стереометрии группы С. Проиллюстрировать каждую аксиому.
10. Сформулировать теоремы, которые являются следствием из аксиом. Доказать любую из них.
11.. Назовите 4 способа задания плоскости и выполните чертеж к каждому способу.
12. Изобразите тетраэдр. Пользуясь рисунком, назовите:
а) точку, не принадлежащую плоскости (АВС)
б) прямую, по которой пересекаются плоскости (BCD) и (ABD)
в) плоскость, проходящую через прямые AD и CD
Вариант 2
1. Стереометрия – это раздел геометрии, в котором изучаются свойства:
а) прямых в пространстве;
б) фигур в пространстве;
в) фигур на плоскости;
г) плоскостей в пространстве.
2. Какие три из изображенных фигур не являются основными в пространстве?
а) треугольник
б) отрезок
в) плоскость
г) куб
3. Перепишите утверждения, вставьте пропущенные слова в утверждениях:
«Через любые ___ точки, не лежащие на одной ________, проходит ______, и притом только одна. Если ____ точки прямой лежат в ____, то все точки _________ лежат в этой _____. Если две _______ имеют общую точку, то они имеют общую ______, на которой лежат все общие точки этих ________.»
4. Какое наименьшее число точек определяет прямую в пространстве?
а) одна точка; б) две точки; в) три точки; г) четыре точки.
5. Сколько плоскостей можно провести через прямую в пространстве?
а) одну; б) две; в) три; г) бесконечно много.
6. Что называют теоремой в геометрии?
7. Какой ученый является основоположником геометрии?
8. Сколько аксиом в планиметрии в Евклидовой геометрии?
9. Сформулировать аксиомы стереометрии группы С. Проиллюстрировать каждую аксиому.
10. Сформулировать теоремы, которые являются следствием из аксиом. Доказать любую из них.
11.. Назовите 4 способа задания плоскости и выполните чертеж к каждому способу.
12. Изобразите тетраэдр. Пользуясь рисунком, назовите:
а) точку, не принадлежащую плоскости (BCD)
б) прямую, по которой пересекаются плоскости (BCD) и (ABС)
в) плоскость, проходящую через прямые AС и CD
Ответы:
Вариант 1
1) б
2) а, б, г
3)а) 1 – три, 2 – прямой, 3 – плоскость;
б) 1 – две, 2 – плоскости, 3 – прямой, 4 – плоскости;
в) 1 – плоскости; 2 – прямую, 3 – плоскости.
4) б
5) г
6) утверждение, не требующее доказательства
7) Лобачевский
8) 13
12) D BD ACD
Вариант 2
1) б
2) а б г
3) а) 1 – три, 2 – прямой, 3 – плоскость;
б) 1 – две, 2 – плоскости, 3 – прямой, 4 – плоскости;
в) 1 – плоскости; 2 – прямую, 3 – плоскости.
4) б
5) г
6) утверждение, требующее доказательство
7) Евклид
8) 10
12) А ВС ACD
Скачано с www.znanio.ru
Материалы на данной страницы взяты из открытых источников либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.