|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
|
Alternate material
In this article, we will learn C# implementation of Dijkstra Algorithm for Determining the Shortest Path
Dijkstra’s algorithm is an algorithm for finding the shortest paths between nodes in a graph.It was conceived by computer scientist Edsger W. Dijkstra in 1956.This algorithm helps to find the shortest path from a point in a graph (the source) to a destination.
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Diagnostics;
namespace DijkstraAlgorithm
{
class Dijkstra
{
private static int MinimumDistance(int[] distance, bool[] shortestPathTreeSet, int verticesCount)
{
int min = int.MaxValue;
int minIndex = 0;
for (int v = 0; v < verticesCount; ++v)
{
if (shortestPathTreeSet[v] == false && distance[v] <= min)
{
min = distance[v];
minIndex = v;
}
}
return minIndex;
}
private static void Print(int[] distance, int verticesCount)
{
Console.WriteLine("Vertex Distance from source");
for (int i = 0; i < verticesCount; ++i)
Console.WriteLine("{0}\t {1}", i, distance[i]);
}
public static void DijkstraAlgo(int[,] graph, int source, int verticesCount)
{
int[] distance = new int[verticesCount];
bool[] shortestPathTreeSet = new bool[verticesCount];
for (int i = 0; i < verticesCount; ++i)
{
distance[i] = int.MaxValue;
shortestPathTreeSet[i] = false;
}
distance[source] = 0;
for (int count = 0; count < verticesCount - 1; ++count)
{
int u = MinimumDistance(distance, shortestPathTreeSet, verticesCount);
shortestPathTreeSet[u] = true;
for (int v = 0; v < verticesCount; ++v)
if (!shortestPathTreeSet[v] && Convert.ToBoolean(graph[u, v]) && distance[u] != int.MaxValue && distance[u] + graph[u, v] < distance[v])
distance[v] = distance[u] + graph[u, v];
}
Print(distance, verticesCount);
}
static void Main(string[] args)
{
int[,] graph = {
{ 0, 6, 0, 0, 0, 0, 0, 9, 0 },
{ 6, 0, 9, 0, 0, 0, 0, 11, 0 },
{ 0, 9, 0, 5, 0, 6, 0, 0, 2 },
{ 0, 0, 5, 0, 9, 16, 0, 0, 0 },
{ 0, 0, 0, 9, 0, 10, 0, 0, 0 },
{ 0, 0, 6, 0, 10, 0, 2, 0, 0 },
{ 0, 0, 0, 16, 0, 2, 0, 1, 6 },
{ 9, 11, 0, 0, 0, 0, 1, 0, 5 },
{ 0, 0, 2, 0, 0, 0, 6, 5, 0 }
};
DijkstraAlgo(graph, 0, 9);
}
}
}
Vertex Distance from source
0 0
1 6
2 15
3 20
4 22
5 12
6 10
7 9
8 14
Press any key to continue…
Given a graph and a source vertex in the graph, find shortest paths from source to all vertices in the given graph.
Dijkstra’s algorithm is very similar to Prim’s algorithm for minimum spanning tree. Like Prim’s MST, we generate a SPT (shortest path tree) with given source as root. We maintain two sets, one set contains vertices included in shortest path tree, other set includes vertices not yet included in shortest path tree. At every step of the algorithm, we find a vertex which is in the other set (set of not yet included) and has a minimum distance from the source.
Below are the detailed steps used in Dijkstra’s algorithm to find
the shortest path from a single source vertex to all other vertices in the
given graph.
Algorithm
1) Create
a set sptSet (shortest
path tree set) that keeps track of vertices included in shortest path tree,
i.e., whose minimum distance from source is calculated and finalized.
Initially, this set is empty.
2) Assign
a distance value to all vertices in the input graph. Initialize all distance
values as INFINITE. Assign distance value as 0 for the source vertex so that it
is picked first.
3) While sptSet doesn’t
include all vertices
….a) Pick
a vertex u which is not there in sptSet and has minimum distance value.
….b) Include
u to sptSet.
….c) Update
distance value of all adjacent vertices of u. To update the distance values,
iterate through all adjacent vertices. For every adjacent vertex v, if sum of
distance value of u (from source) and weight of edge u-v, is less than the
distance value of v, then update the distance value of v.
// A C# program for Dijkstra's single
// source shortest path algorithm.
// The program is for adjacency matrix
// representation of the graph
using System;
class GFG {
// A utility function to find the
// vertex with minimum distance
// value, from the set of vertices
// not yet included in shortest
// path tree
static int V = 9;
int minDistance(int[] dist,
bool[] sptSet)
{
// Initialize min value
int min = int.MaxValue, min_index = -1;
for (int v = 0; v < V; v++)
if (sptSet[v] == false && dist[v] <= min) {
min = dist[v];
min_index = v;
}
return min_index;
}
// A utility function to print
// the constructed distance array
void printSolution(int[] dist, int n)
{
Console.Write("Vertex Distance "
+ "from Source\n");
for (int i = 0; i < V; i++)
Console.Write(i + " \t\t " + dist[i] + "\n");
}
// Funtion that implements Dijkstra's
// single source shortest path algorithm
// for a graph represented using adjacency
// matrix representation
void dijkstra(int[, ] graph, int src)
{
int[] dist = new int[V]; // The output array. dist[i]
// will hold the shortest
// distance from src to i
// sptSet[i] will true if vertex
// i is included in shortest path
// tree or shortest distance from
// src to i is finalized
bool[] sptSet = new bool[V];
// Initialize all distances as
// INFINITE and stpSet[] as false
for (int i = 0; i < V; i++) {
dist[i] = int.MaxValue;
sptSet[i] = false;
}
// Distance of source vertex
// from itself is always 0
dist[src] = 0;
// Find shortest path for all vertices
for (int count = 0; count < V - 1; count++) {
// Pick the minimum distance vertex
// from the set of vertices not yet
// processed. u is always equal to
// src in first iteration.
int u = minDistance(dist, sptSet);
// Mark the picked vertex as processed
sptSet[u] = true;
// Update dist value of the adjacent
// vertices of the picked vertex.
for (int v = 0; v < V; v++)
// Update dist[v] only if is not in
// sptSet, there is an edge from u
// to v, and total weight of path
// from src to v through u is smaller
// than current value of dist[v]
if (!sptSet[v] && graph[u, v] != 0 &&
dist[u] != int.MaxValue && dist[u] + graph[u, v] < dist[v])
dist[v] = dist[u] + graph[u, v];
}
// print the constructed distance array
printSolution(dist, V);
}
// Driver Code
public static void Main()
{
/* Let us create the example
graph discussed above */
int[, ] graph = new int[, ] { { 0, 4, 0, 0, 0, 0, 0, 8, 0 },
{ 4, 0, 8, 0, 0, 0, 0, 11, 0 },
{ 0, 8, 0, 7, 0, 4, 0, 0, 2 },
{ 0, 0, 7, 0, 9, 14, 0, 0, 0 },
{ 0, 0, 0, 9, 0, 10, 0, 0, 0 },
{ 0, 0, 4, 14, 10, 0, 2, 0, 0 },
{ 0, 0, 0, 0, 0, 2, 0, 1, 6 },
{ 8, 11, 0, 0, 0, 0, 1, 0, 7 },
{ 0, 0, 2, 0, 0, 0, 6, 7, 0 } };
GFG t = new GFG();
t.dijkstra(graph, 0);
}
}
// This code is contributed by ChitraNayal
Output:
Vertex Distance from Source0 01 42 123 194 215 116 97 88 14
Please refer complete article on Dijkstra’s shortest path algorithm | Greedy Algo-7 for more details!
Links:
1. https://www.videlin.eu/2016/04/28/shortest-path-in-graph-dijkstras-algorithm-c-implementation/
2. https://www.csharpstar.com/dijkstra-algorithm-csharp/
3. https://www.geeksforgeeks.org/csharp-program-for-dijkstras-shortest-path-algorithm-greedy-algo-7/
4. https://en.wikipedia.org/wiki/Adjacency_matrix
5. https://www.thecrazyprogrammer.com/2014/03/representation-of-graphs-adjacency-matrix-and-adjacency-list.html
Скачано с www.znanio.ru
Материалы на данной страницы взяты из открытых источников либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.