10 сыныпқа арналған сабақ жоспары
Функция ұғымы, оның берілу тәсілдері
Сабақтың міндеттері:
Білімділік: Оқушылардың функция туралы түсініктерін қалыптастыру, Дамытушылық: Оқушылардың ой - өрісін дамытып, пәнге деген қызығушылығын арттыру.
Тәрбиелік: Оқушыларды ұқыптылыққа, зейін қоюға тәрбиелеу.
Сабақтың көрнекілігі : графиктер
Сабақтың түрі : білім бекіту
Сабақтың әдісі: сұрақ-жауап, есептер шығару, көрнекілік, өзіндік жұмыс
№7+ алг 10 кл.doc
Сабақ жоспары
y
xf
Оқушылардың ой өрісін дамытып, пәнге деген
Оқушылардың функция туралы түсініктерін қалыптастыру,
Сабақ нөмірі: №7
Пәні: алгебра
Сыныбы: 10 а,ә
Күні: 16.09.2016ж
Сабақтың тақырыбы: Функция ұғымы, оның берілу тәсілдері
Сабақтың міндеттері:
Білімділік:
Дамытушылық:
қызығушылығын арттыру.
Тәрбиелік: Оқушыларды ұқыптылыққа, зейін қоюға тәрбиелеу.
Сабақтың көрнекілігі : графиктер
Сабақтың түрі : білім бекіту
Сабақтың әдісі: сұрақжауап, есептер шығару, көрнекілік, өзіндік жұмыс
Сабақтың барысы
1.Ұйымдастыру кезеңі
2.Үй тапсырмасын тексеру: №551, 553(9 сынып, Әбілқасымова)
3. Жаңа тақырып.
Математикада өте күрделі ұғымдардың бірі – функция ұғымы. Функция
ұғымына қатысты шамалартұрақты және айнымалы. Ал тұрақты
шамалар абсолют тұрақты және параметр болып бөлінеді, ал айнымалылар
тәуелді және тәуіелсіз болып бөлінеді.
Анықтама. Кезкелген жағдайда, тек қана бір сандық мәнді ғана
қабылдайтын шаманы абсолют тұрақты шама деп атайды.
Анықтама. Берілген бір жағдайда ғана тұрақты, толық анықталған сандық
мәнін сақтайтын тұрақты шаманы параметр деп атайды.
Анықтама. Әр түрлі сандық мәндер қабылдайтын шаманы айнымалы
шама деп атаймыз.
Анықтама. Х жиынындағы хтің әрбір мәніне У жиынының нақты бір у
мәнін сәйкес қоятын ереже немесе заңдылық функция деп аталады.
Функцияны
аргумент, ал утәуелді айнымалы немесе функция,
заңдылық.
Функцияның берілуінің 3 жағдайы бар.
деп белгілейді, мұндағы хтәуелсіз айнымалы немесе
f ереже немесе 1. Кестемен берілуі, ерекшелігі аргументтің мәндеріне сәйкес функцияның
мәндері беріледі.
2. Графиктік тәсіл, ерекшелігікөрнекілігінде.
3. Аналитикалық тәсіл, функцияны толық зерттеу үшін өте ыңғайлы.
3.Есептер шығару:
Ауызша орындалатын есептер: 5
Тақтада орындалатын есептер: №1
Орындарынан орындалатын есептер: №4
№1
А)
3;5,2;1
3
х
xf
xf
5
2
xf
5
6
xf
4
xf
0
5,15
1
2
xf
xf
21
1
3
1
9
1
15
1
2
1
5
xf
xf
2 2
х
1
3
xf
xf
x
2
5
2
3
x
Ә)
Б)
В)
5
x
х
;5,0
0;
2
х
;5;4
xf
7
xf
0
х
;0;1
xf
2
xf
1
xf
1
№4
Қосымша есеп: №14
Функцияның берілген нүктедегі мәнін табыңдар:
А) ƒ(х) =х 3 +х2 , х= t1 ; ƒ(t1)=(t1)3 +(t1)2 =t 3 –2t 2 +t ;
Б) ƒ(х) =3sin
х , х= + ; ƒ(х) = 3sin
2
π α
2
=3cоs
2
В) ƒ(х)=
х
1х
, х= +2; ƒ(х) =
α
2
1
2
=
2
1
4. Бекіту сұрақтары:
1) Функцияның анықтамасы, мысал келтір.
2) Функцияның берілу тәсілдері,аналитикалық тәсілмен берілген
функцияларға мысал келтір; 3) Функцияның берілу тәсілдерінің ерекшеліктері қандай?
5. Үйге тапсырма: №9, 13
Қорытындылау. Бағалау
Функция ұғымы, оның берілу тәсілдері
Функция ұғымы, оның берілу тәсілдері
Функция ұғымы, оның берілу тәсілдері
Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.