Данное пособие содержит лекционный материал по теме: уравнения, содержащие модуль, практическую часть по теме.
Предлагаемый дидактический материал дает возможность активизировать умственную деятельность, осуществить дифференцированный подход к обучению учащихся разной степени подготовленности.
Пособие адресовано учителям математики. Тема: решение уравнений, содержащих знак модуля
Мусатова_пособие.doc
Муниципальное бюджетное
образовательное учреждение «Средняя
школа №31 с углубленным
изучением предметов ХЭП»
МЕТОДЫ РЕШЕНИЯ УРАВНЕНИЙ.
10 класс
учитель математики: Мусатова М.Ю.
Нижневартовск
2015г.
Оглавление Об авторе
Аннотация
План занятия по теме: уравнения, содержащие
знак модуля
Практическая часть
Дополнительный материал
Список ресурсов
Глоссарий
2 Мусатова Марина Юрьевна
Контактная информация:
Email: marina 20010@yandex.ru.
Образование:высшее, 1998 г.
Нижневартовский
Государственный
педагогический институт
учитель математики
стаж работы: 18лет
место работы: МСОШ № 31, учитель математики
3 Аннотация
Данное пособие содержит лекционный
материал по теме: уравнения, содержащие
модуль, практическую часть по теме.
Предлагаемый дидактический материал
дает возможность активизировать умственную
деятельность,
осуществить
дифференцированный подход к обучению
учащихся разной степени подготовленности.
Пособие адресовано учителям математики.
4 Тема: решение уравнений, содержащих знак
модуля.
Цель занятия: познакомить учащихся с
методами решения уравнений, содержащих
модуль, отработать навык в решении
уравнений.
Тип урока: Уроклекция, практикум.
Оборудование: тесты на диске.
Ход занятия.
Проверка домашнего задания.
Актуализация знаний:
Раскройте модуль:
2
.
; 2)
3
3
1
15
; 3) 3 2 ; 4)
1)
2
3. Объяснение нового материала. Лекция.
Рассмотрим несколько теоретических
положений, которые будут полезны при
решении уравнений, содержащих знак модуля.
Свойства модуля.
квадрат модуля;
арифметический корень из квадрата
любого числа;
модуль любого числа;
5
1.
2.
1.
максимальное из двух
противоположных;
расстояние на числовой оси;
сумма модулей;
сравнение модулей;
модуль произведения чисел;
сумма двух чисел и их произведение;
2. Теоремы о равносильности уравнений,
содержащих знак модуля.
3. Методы решения уравнений:
квадрат;
Корни уравнений с модулями проверяются,
посторонние отсеиваются.
Пример 1.
Решить уравнение
1 способ:
Раскрывая модуль по определению, мы
получим, что заданная система равносильна
совокупности двух следующих систем:
раскрытие модуля по определению;
возведение обеих частей уравнения в
метод разбиения на промежутки;
3 х
9
= 6
6
9
9
,0
или
;6
3
3
х
х
3
9
0
х
3
х
9
.
6
Решая эти системы, находим
Х 1х =1, Х 2 =5.
2 способ.
Так как обе части исходного уравнения
выражения одинаковых знаков, то в соответствии с
теоремой о функциях одинакового знака возведем
обе части в квадрат.
х
2
=36.
)9
3(
Решая последнее уравнение, находим корни
заданного уравнения:
Х 1х =1, Х 2 =5.
Пример 2.
Решим уравнение:
Установим, в какой точке обращается в нуль
выражение, стоящее под знаком модуля. Эта точка
разбивает числовую ось на промежутки, внутри
которых выражение сохраняет постоянный
знак( промежутки знакопостоянства) . Это
позволяет на каждом из таких промежутков
освободиться от знака модуля и свести задачу к
= 2х1.
3х
7 решению нескольких уравнений по одному на
каждом промежутке.
Выражение х+3 обращается в нуль при х=3.
Промежутки: (
)
)3;
;3
и
1)
при х< 3 получаем уравнение –х
3=2х1, х=
2 .
3
Но данное значение не входит в промежуток.
2) при х 3 получаем уравнение х+3=2х1 ,
х=4.
Найденное значение входит в промежуток.
Ответ: 4.
4.
Решение тренировочных упражнений.
По цепочке:
х
2)2;2
х
Задания по степени сложности.
10
)3
5
3
х
х
7
2
х
4)4;3
х
2
х
5. Домашнее задание: рассмотреть методы решения
уравнений, решить:
учащимся выдаются карточки с индивидуальным д/з
по уровням их подготовленности.
6. Итог занятия ( рефлексия учащихся – письменно).
Следующие два
занятия посвящены отработке
данных методов решения уравнений через различные
формы работы.
Практическая часть может быть сформирована на
основании
учебного пособия В.А.Далингера
( параграф6 стр 115) , учебного пособия для
учащихся 89 классов
Е.В.Смыкаловой,
8 тесты с подсказками
разноуровневые
и
теоретическим справочником
диске «
Интерактивная линия.Алгебра 79.Просвещение –
Медиа, 2003».
на
Сопровождение ЦОР
№
1.
Тема
Решение
уравнений,
содержащих
знак модуля
Название ЦОР
1. В.А.Далингер.
для
на
Все
успеха
выпускных
экзаменах и
вступительны
х экзаменах
по
математике.
Омск: Издво
Омского
педуниверсит
ета, 1995.
Описание
Типичные
ошибки
учащихся,
допускаемые на
экзаменах по
математике.
Подробное
рассмотрение
решения
уравнений,
содержащих знак
модуля.
Содержит задачи
для
самостоятельной
9 работы.
Курсы,
рассчитанные
для профильной
подготовки
учащихся 1011
классов.
Система
пошагового
интерактивного
решения задач,
экспертная
система разбора
математических
выражений,
позволяющая
анализировать
действия
пользователя,
находить
ошибки, давать
2. Е.В.
Смыкалова.
Математика.
Модули,
параметры,
многочлены
предпрофильн
ая
подготовка.
СПб: СМИО
Пресс, 2007.
3. Н.И.Зиль
бельберг.
Методы решения
уравнений
10 рекомендации по
их исправлению.
11 Глоссарий.
(
абсолютной величиной
1. Модулем
)
действительного числа а называется само это
число, если оно неотрицательное, и это число,
взятое с противоположным знаком, если оно
отрицательное.
2. Модулем действительного числа а называется
расстояние от точки, изображающей число а на
числовой прямой, до точки 0.
3. Модуль любого действительного числа а есть
неотрицательное число:
4. Каждое действительное число а не больше
своего модуля и не меньше числа,
противоположного модулю,
каждое
действительное число а удовлетворяет неравенству
5. Если число а>0 и число х удовлетворяет
неравенству
х
а
неравенству
неравенство а
, то модуль числа х удовлетворяет
а
х . Если
х , то справедливо
т.е.
х
а
0а
а
а
а
а
.
.
а
6. Модуль суммы двух чисел не больше суммы
модулей этих чисел.
7. Модуль произведения двух чисел равен
произведению модулей этих чисел.
12 8. Модуль разности двух чисел равен
расстоянию между точками числовой прямой,
изображающими эти числа.
9. Квадратный корень квадрата числа равен
модулю этого числа.
13 Приложение.
Экскурсия.
14 15 16
МЕТОДЫ РЕШЕНИЯ УРАВНЕНИЙ
МЕТОДЫ РЕШЕНИЯ УРАВНЕНИЙ
МЕТОДЫ РЕШЕНИЯ УРАВНЕНИЙ
МЕТОДЫ РЕШЕНИЯ УРАВНЕНИЙ
МЕТОДЫ РЕШЕНИЯ УРАВНЕНИЙ
МЕТОДЫ РЕШЕНИЯ УРАВНЕНИЙ
МЕТОДЫ РЕШЕНИЯ УРАВНЕНИЙ
МЕТОДЫ РЕШЕНИЯ УРАВНЕНИЙ
МЕТОДЫ РЕШЕНИЯ УРАВНЕНИЙ
МЕТОДЫ РЕШЕНИЯ УРАВНЕНИЙ
МЕТОДЫ РЕШЕНИЯ УРАВНЕНИЙ
МЕТОДЫ РЕШЕНИЯ УРАВНЕНИЙ
МЕТОДЫ РЕШЕНИЯ УРАВНЕНИЙ
МЕТОДЫ РЕШЕНИЯ УРАВНЕНИЙ
МЕТОДЫ РЕШЕНИЯ УРАВНЕНИЙ
МЕТОДЫ РЕШЕНИЯ УРАВНЕНИЙ
Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.