Объемы многоугольников

  • Работа в классе
  • docx
  • 22.04.2023
Публикация на сайте для учителей

Публикация педагогических разработок

Бесплатное участие. Свидетельство автора сразу.
Мгновенные 10 документов в портфолио.

Иконка файла материала Объемы многогранников.docx

Тема. «Объёмы многогранников».

Методическое пособие по решению задач для студентов 2 курса СПО.

Составила Хлонина О.Е.

Дистанционная форма обучения.

 

1. Теоретический материал.

 

                    Вид многогранника

                   Формула объёма

                          1. Призма

 

               

    

 

 

 

 

V=Sосн H

     2. Прямоугольный  параллелепипед

 

  

 

 

 

 

 

V=abc

                                    3. Куб

 

 

 

 

V=a3

                                 4. Пирамида

        

 

 

 

V=Sосн H

                        5.Усеченная  пирамида

     

 

 

V=h

 

 

 

 

2. Решение задач.

Задача № 1

Найдите объем прямой призмы, в основании которой лежит ромб с диагоналями, равными 25 и 60, и боковым ребром, равным 25.

          

Дано:                                                                                                                                         

 АВСДА1В1С1Д1 - прямая четырехугольная призма

 АС = 60; ВД = 25; АА1 = 25

 Найти: V призмы

Решение

V призмы = Sосн H;      Н=АА1

АВСД - ромб, следовательно     Sосн = ;

Sосн = V призмы = 75025=18750

Ответ.  18750

Задача № 2

Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 8 и 15, боковое ребро равно 9. Найдите объем призмы.

Дано:

АВСА1В1С1 - прямая треугольная призма.

 АВС - прямоугольный; АС и ВС - катеты

АС = 15; ВС = 8;  АА1 = 9

Найти:   V призмы

V призмы = Sосн H;      Н=АА1

АВС - прямоугольный треугольник,

следовательно     Sосн = ;

Sосн = V призмы = 609=540

Ответ.  540

 

Задача  3.

В основании наклонной треугольной призмы лежит треугольник со сторонами 14; 12 и 12. Боковое ребро равно 6 и наклонено к плоскость основания под углом 30. Найти объём призмы.

Дано:

АВСА1В1С1 - наклонная треугольная призма.

АС = 12; ВС = 12;  АВ = 14;  СС1 = 6; С1СО=30.

Найти:   V призмы

V призмы = Sосн H;     

ОСС1 - прямоугольный треугольник, так как

С1О  плоскости  АВС;    С1СО = 30;

С1О = С1С sin 30= 6= 3

Н=ОС1 = 3

Sосн =  ; р=;

р =;

Sосн =

V призмы =

Ответ.  21

 

Задача  4.

Три ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 4, 6, 9. Найдите ребро равновеликого ему куба. 

 

Дано: прямоугольный параллелепипед;

а=4; в=6; с=9. Vп.п = Vк

Найти : d

Решение:

Vп.п =авс; Vп.п = 469=216;

Vк = d3;   d3 = 216;  d =

Ответ. 6

 

Задача  5

От треугольной пирамиды, объем которой равен 34, отсечена треугольная пирамида плоскостью, проходящей через вершину пирамиды и среднюю линию основания. Найдите объем отсеченной треугольной пирамиды.

 

Дано:

VSАВС = 34;   SМN - сечение SАВС

MN - средняя линия треугольника АВС

Найти: VSMNC

Решение:

Так как MN - средняя линия треугольника АВС, то

MN = АВ , поэтому АВС подобен MNC.

Коэффициент подобия к=2, следовательно

;     22;     4; 

Так как высоты пирамид  SАВС и  SMNC совпадают, то

VSMNC = VSАВС : 4= 34:4=8,5

Ответ. 8,5

Задача  6

 Основанием пирамиды является прямоугольник со сторонами 3 и 4. Ее объем равен 16. Найдите высоту этой пирамиды.

 

Дано: SABCD - пирамида; ABCD - прямоугольник;

АВ=3; ВС = 4; VSABCD = 16

Найти: H

Решение:

 V=Sосн HVSABCD =  SАВСDH;

SАВСD = АВВС; SАВСD = 34=12;

16=; 4Н=16;  Н=4

Ответ. 4                                                            

 

 

Задача  7

Сторона основания правильной четырехугольной пирамиды равна 6см, боковая грань наклонена к плоскости основания под углом 60°. Найти объем пирамиды.

 

Дано: SABCD - правильная четырехугольная пирамида;

АВ=6см; SKO=60°

Найти: VSABCD

Решение:

VSABCD =Sосн H;

Sосн = AB2Sосн = (6)2 = 363=108(см2)

SKO - прямоугольный треугольник, так как

SO - высота пирамиды;

 SKO  - линейный угол двугранного угла при основании пирамиды SABCD, следовательно

  SKO = 60;   ОК=АВ;   ОК=6=3(см)

;    SO=OKtg60°=3=9(cм);

Н=SО = 9см;

VSABCD =108 9=324(см3)

Ответ. 324 см3

 

Задача  8

Основанием пирамиды является прямоугольник со сторонами 6см и 8см. Все боковые ребра равны 13 см. Найти объём пирамиды.

 

 

 

 

Дано: SABCD - пирамида; ABCD - прямоугольник;

АВ=6см; ВС = 8си; SA=SB=SC=SD=13cм.

Найти: VSABCD

Решение:

 VSABCD =Sосн H

SАВСD = АВВС; SАВСD = 68=48(см2)

АВС - прямоугольный, по теореме Пифагора

АС2 = АВ2 + ВС2 ;  АС2 = 62 + 82 =100; АС=10; AO=5см

SO АВСD, поэтому SАO прямоугольный, по теореме Пифагора

SO2 = АS2 - AO2 ;  SO2 = 132 - 52 =169-25=144; SO=12см

Н=SO

VSABCD =48 12=192(cм3)

Ответ. 192см3

 

Задача  9

Найдите высоту правильной треугольной пирамиды, стороны основания которой равны

2см, а объем равен  см3.

 

Дано: SABC-правильная треугольная пирамида; АВ=2см;

VSABC = см3

Найти: Н

Решение:

VSABC =Sосн H;

АВС - правильный, поэтому SABC = ABACsin600;

SABC = 22sin600=2(см2);

=Н;  Н=(см)

Ответ. 3

 

Задача  10

Стороны оснований правильной четырехугольной усеченной пирамиды равны 3см и 5см. Найдите объем пирамиды, если ее боковое ребро равно 2см и   наклонено к плоскости основания под углом 60 градусов​.

 

Дано: ABCDA1B1C1D1-правильная усеченная четырехугольная пирамида;

АВ=5см; A1B1 = 3 см;  DD1 = 2см; D1F(ABCD);

 D1DF=600

Найти: V

Решение:

V=h

S1 =;         S2 =;     h = D1F

=АВ2;      = 52 = 25(см2)

1В12= 32 = 9(см2);

D1DF - прямоугольный, поэтому  D1F= D1Dsin600;

D1F = 2sin600=2(см);

V=(cм3)

Ответ. 49 см3

 

Задания для самостоятельного решения

1. Найдите объем правильной треугольной пирамиды, стороны основания которой равны 1, а высота равна .

2. В правильной четырехугольной пирамиде высота равна 6, боковое ребро равно 10. Найдите ее объем.

3. Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 3 и 5. Объем призмы равен 30. Найдите ее боковое ребро.

4. Основанием прямой призмы является ромб со стороной 12см и углом 60º. Меньшее из диагональных сечений призмы является квадратом. Найти объем призмы.

5. В кубе AD1 через середину ребер АВ, DС и вершину D1 проведено сечение. Найдите объем куба, если площадь этого сечения равна .